A New Blast Absorbing Sandwich Panel with Unconnected Corrugated Layers—Numerical Study
Abstract
:1. Introduction
2. Geometrical and Material Properties
3. Blast Loading
- The sandwich panel is outside fireball of explosion with no afterburning effect. Hence, it is possible to ignore the interaction with the gases created.
- The blast occurs at sea level (the altitude of the location affects the atmospheric pressure, which is an important factor for blast wave propagation).
4. Numerical Model
5. Panel Response-Comparative Study
5.1. Deformations
5.2. Peak Nodal Reaction Forces
5.3. Energy Dissipation
6. The ‘Graded’ Sandwich Panel
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Miller, E.; LaFree, G.; Dugan, L. Global Terrorism Database (GTD). Available online: https://start.umd.edu/research-projects/global-terrorism-database-gtd (accessed on 5 May 2020).
- Mazek, S.A. Performance of Sandwich Structure Strengthened by Pyramid Cover under Blast Effect. Struct. Eng. Mech. 2014, 50, 471–486. [Google Scholar] [CrossRef]
- Lotfi, S.; Zahrai, S.M. Blast Behavior of Steel Infill Panels with Various Thickness and Stiffener Arrangement. Struct. Eng. Mech. 2018, 65, 587–600. [Google Scholar]
- Al-Rifaie, H.; Sumelka, W. Numerical Analysis of Reaction Forces in Blast Resistant Gates. Struct. Eng. Mech. 2017, 63, 347–359. [Google Scholar]
- Draganić, H.; Gazić, G.; Varevac, D. Experimental Investigation of Design and Retrofit Methods for Blast Load Mitigation–A State-of-the-Art Review. Eng. Struct. 2019, 190, 189–209. [Google Scholar] [CrossRef]
- Sielicki, P.; Lodygowski, T.; Al-Rifaie, H.; Sumelka, W. Designing of Blast Resistant Lightweight Elevation System—Numerical Study. Procedia Eng. 2017, 172, 991–998. [Google Scholar] [CrossRef]
- Alberdi, R.; Przywara, J.; Khandelwal, K. Performance Evaluation of Sandwich Panel Systems for Blast Mitigation. Eng. Struct. 2013, 56, 2119–2130. [Google Scholar] [CrossRef]
- Al-Rifaie, H. Application of Passive Damping Systems in Blast Resistant Gates, 1st ed.; Wydawnictwo Politechniki Poznańskiej: Poznan, Poland, 2019. [Google Scholar]
- Al-Rifaie, H.; Sumelka, W. The Development of a New Shock Absorbing Uniaxial Graded Auxetic Damper (UGAD). Materials 2019, 12, 2573. [Google Scholar] [CrossRef] [Green Version]
- Novak, N.; Vesenjak, M.; Ren, Z. Auxetic Cellular Materials—A Review. Strojniški Vestnik–J. Mech. Eng. 2016, 62, 485–493. [Google Scholar] [CrossRef] [Green Version]
- Novak, N.; Starčevič, L.; Vesenjak, M.; Ren, Z. Blast Response Study of the Sandwich Composite Panels with 3D Chiral Auxetic Core. Compos. Struct. 2019, 210, 167–178. [Google Scholar] [CrossRef]
- Baranowski, P.; Małachowski, J.; Mazurkiewicz, Ł.A. Numerical and Experimental Testing of Vehicle Tyre under Impulse Loading Conditions. Int. J. Mech. Sci. 2016, 106, 346–356. [Google Scholar] [CrossRef]
- Nowak, Z.; Pęcherski, R.; Potoczek, M.; Śliwa, R.; Nowak, M. Numerical Simulations of Mechanical Properties of Alumina Foams Based on Computed Tomography. J. Mech. Mater. Struct. 2017, 12, 107–121. [Google Scholar] [CrossRef]
- Andrews, E.; Sanders, W.; Gibson, L. Compressive and Tensile Behaviour of Aluminum Foams. Mater. Sci. Eng. A 1999, 270, 113–124. [Google Scholar] [CrossRef]
- Pecherski, R.B.; Nowak, M.; Nowak, Z. Virtual Metallic Foams. Application for Dynamic Crushing Analysis. Int. J. Multiscale Comput. Eng. 2017, 15, 431–442. [Google Scholar] [CrossRef]
- Papadopoulos, D.; Konstantinidis, I.; Papanastasiou, N.; Skolianos, S.; Lefakis, H.; Tsipas, D. Mechanical Properties of Al Metal Foams. Mater. Lett. 2004, 58, 2574–2578. [Google Scholar] [CrossRef]
- Peroni, L.; Avalle, M.; Peroni, M. The Mechanical Behaviour of Aluminium Foam Structures in Different Loading Conditions. Int. J. Impact Eng. 2008, 35, 644–658. [Google Scholar] [CrossRef]
- Gibson, L.J.; Ashby, M.F. Cellular Solids: Structure and Properties; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Dharmasena, K.P.; Wadley, H.N.; Xue, Z.; Hutchinson, J.W. Mechanical Response of Metallic Honeycomb Sandwich Panel Structures to High-Intensity Dynamic Loading. Int. J. Impact Eng. 2008, 35, 1063–1074. [Google Scholar] [CrossRef]
- Li, X.; Zhang, P.; Wang, Z.; Wu, G.; Zhao, L. Dynamic Behavior of Aluminum Honeycomb Sandwich Panels under Air Blast: Experiment and Numerical Analysis. Compos. Struct. 2014, 108, 1001–1008. [Google Scholar] [CrossRef]
- Rathbun, H.; Radford, D.; Xue, Z.; He, M.; Yang, J.; Deshpande, V.; Fleck, N.; Hutchinson, J.; Zok, F.; Evans, A. Performance of Metallic Honeycomb-Core Sandwich Beams under Shock Loading. Int. J. Solids Struct. 2006, 43, 1746–1763. [Google Scholar] [CrossRef] [Green Version]
- Hu, L.; Yu, T.X. Dynamic Crushing Strength of Hexagonal Honeycombs. Int. J. Impact Eng. 2010, 37, 467–474. [Google Scholar] [CrossRef]
- Okumura, D.; Ohno, N.; Noguchi, H. Post-buckling Analysis of Elastic Honeycombs Subject to in-Plane Biaxial Compression. Int. J. Solids Struct. 2002, 39, 3487–3503. [Google Scholar] [CrossRef]
- Zou, Z.; Reid, S.; Tan, P.; Li, S.; Harrigan, J. Dynamic Crushing of Honeycombs and Features of Shock Fronts. Int. J. Impact Eng. 2009, 36, 165–176. [Google Scholar] [CrossRef]
- Ruan, D.; Lu, G.; Wang, B.; Yu, T. In-Plane Dynamic Crushing of Honeycombs—A Finite Element Study. Int. J. Impact Eng. 2003, 28, 161–182. [Google Scholar] [CrossRef]
- Al-Rifaie, H.; Sumelka, W. Auxetic Damping Systems for Blast Vulnerable Structures. In Handbook of Damage Mechanics, 2nd ed.; Voyiadjis, G.Z., Ed.; Springer: Berlin/Heidelberg, Germany, 2020; p. 25. [Google Scholar]
- Xu, S.; Beynon, J.H.; Ruan, D.; Lu, G. Experimental Study of the Out-of-Plane Dynamic Compression of Hexagonal Honey-Combs. Compos. Struct. 2012, 94, 2326–2336. [Google Scholar] [CrossRef]
- Nia, A.A.; Sadeghi, M. The Effects of Foam Filling on Compressive Response of Hexagonal Cell Aluminum Honeycombs under Axial Loading-Experimental Study. Mater. Des. 2010, 31, 1216–1230. [Google Scholar] [CrossRef]
- Hou, X.; Deng, Z.; Zhang, K. Dynamic Crushing Strength Analysis of Auxetic Honeycombs. Acta Mech. Solida Sin. 2016, 29, 490–501. [Google Scholar] [CrossRef]
- Imbalzano, G.; Linforth, S.; Ngo, T.D.; Lee, P.V.S.; Tran, P. Blast Resistance of Auxetic and Honeycomb Sandwich Panels: Comparisons and Parametric Designs. Compos. Struct. 2018, 183, 242–261. [Google Scholar] [CrossRef]
- Alderson, A. A Triumph of Lateral Thought. Chem. Ind. 1999, 17, 384–391. [Google Scholar]
- Yang, W.; Li, Z.-M.; Shi, W.; Xie, B.-H.; Yang, M.-B. Review on Auxetic Materials. J. Mater. Sci. 2004, 39, 3269–3279. [Google Scholar] [CrossRef]
- Greaves, G.N. Poisson’s Ratio over Two Centuries: Challenging Hypotheses. Notes Rec. R. Soc. 2013, 67, 37–58. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Hu, H. A Review on Auxetic Structures and Polymeric Materials. Sci. Res. Essays 2010, 5, 1052–1063. [Google Scholar]
- Prawoto, Y. Seeing Auxetic Materials from the Mechanics Point of View: A Structural Review on the Negative Poisson’s Ratio. Comput. Mater. Sci. 2012, 58, 140–153. [Google Scholar] [CrossRef]
- Zhang, P.; Liu, J.; Cheng, Y.S.; Hou, H.; Wang, C.; Li, Y. Dynamic Response of Metallic Trapezoidal Corrugated-Core Sandwich Panels Subjected to Air Blast Loading–An Experimental Study. Mater. Des. 2015, 65, 221–230. [Google Scholar] [CrossRef]
- Wiernicki, C.J.; Liem, F.; Wood, G.D.; Furio, A.J. Structural Analysis Methods for Lightweight Metallic Corrugated Core Sandwich Panels Subjected to Blast Loads. Nav. Eng. J. 1991, 103, 192–202. [Google Scholar] [CrossRef]
- Studziński, R.; Gajewski, T.; Malendowski, M.; Sumelka, W.; Al-Rifaie, H.; Peksa, P.; Sielicki, P.W. Blast Test and Failure Mechanisms of Soft-Core Sandwich Panels for Storage Halls Applications. Materials 2021, 14, 70. [Google Scholar] [CrossRef] [PubMed]
- Studziński, R.; Pozorski, Z. Experimental and Numerical Analysis of Sandwich Panels with Hybrid Core. J. Sandw. Struct. Mater. 2016, 20, 271–286. [Google Scholar] [CrossRef]
- Rubino, V.; Deshpande, V.S.; Fleck, N. The Dynamic Response of Clamped Rectangular Y-Frame and Corrugated Core Sandwich Plates. Eur. J. Mech.—A/Solids 2009, 28, 14–24. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Cheng, Y.S.; Liu, J. Numerical Analysis of Dynamic Response of Corrugated Core Sandwich Panels Subjected to Near-Field Air Blast Loading. Shock. Vib. 2014, 2014, 1–16. [Google Scholar] [CrossRef]
- Rejab, M.R.M.; Cantwell, W.J. The Mechanical Behaviour of Corrugated-Core Sandwich Panels. Compos. Part B: Eng. 2013, 47, 267–277. [Google Scholar] [CrossRef]
- Yazici, M.; Wright, J.; Bertin, D.; Shukla, A. Experimental and Numerical Study of Foam Filled Corrugated Core Steel Sandwich Structures Subjected to Blast Loading. Compos. Struct. 2014, 110, 98–109. [Google Scholar] [CrossRef]
- Zhang, L.; Hebert, R.; Wright, J.; Shukla, A.; Kim, J.-H. Dynamic Response of Corrugated Sandwich Steel Plates with Graded Cores. Int. J. Impact Eng. 2014, 65, 185–194. [Google Scholar] [CrossRef]
- Zhang, Z.; Lei, H.; Xu, M.; Hua, J.; Li, C.; Fang, D. Out-of-Plane Compressive Performance and Energy Absorption of Multi-Layer Graded Sinusoidal Corrugated Sandwich Panels. Mater. Des. 2019, 178, 107858. [Google Scholar] [CrossRef]
- Wijaya, C.; Kim, B.-T. FE Analysis of Unstiffened and Stiffened Corrugated Panels Subjected to Blast Loading. J. Mech. Sci. Technol. 2011, 25, 3159–3164. [Google Scholar] [CrossRef]
- Schleyer, G.; Lowak, M.; Polcyn, M.; Langdon, G. Experimental Investigation of Blast Wall Panels under Shock Pressure Loading. Int. J. Impact Eng. 2007, 34, 1095–1118. [Google Scholar] [CrossRef]
- Liang, C.-C.; Yang, M.-F.; Wu, P.-W. Optimum Design of Metallic Corrugated Core Sandwich Panels Subjected to Blast Loads. Ocean Eng. 2001, 28, 825–861. [Google Scholar] [CrossRef]
- Li, X.; Wang, Z.; Zhu, F.; Wu, G.; Zhao, L. Response of Aluminium Corrugated Sandwich Panels under Air Blast Loadings: Experiment and Numerical Simulation. Int. J. Impact Eng. 2014, 65, 79–88. [Google Scholar] [CrossRef]
- Kılıçaslan, C.; Güden, M.; Odacı, İ.K.; Taşdemirci, A. Experimental and Numerical Studies on the Quasi-Static and Dynamic Crushing Responses of Multi-Layer Trapezoidal Aluminum Corrugated Sandwiches. Thin-Walled Struct. 2014, 78, 70–78. [Google Scholar] [CrossRef] [Green Version]
- Kılıçaslan, C.; Guden, M.; Odacı, İ.K.; Taşdemirci, A. The Impact Responses and the Finite Element Modeling of Layered Trapezoidal Corrugated Aluminum Core and Aluminum Sheet Interlayer Sandwich Structures. Mater. Des. 2013, 46, 121–133. [Google Scholar] [CrossRef] [Green Version]
- Rong, Y.; Liu, J.; Luo, W.; He, W. Effects of Geometric Configurations of Corrugated Cores on the Local Impact and Planar Compression of Sandwich Panels. Compos. Part B: Eng. 2018, 152, 324–335. [Google Scholar] [CrossRef]
- Winkler, M.; Kress, G. Influence of Corrugation Geometry on the Substitute Stiffness Matrix of Corrugated Laminates. Compos. Struct. 2012, 94, 2827–2833. [Google Scholar] [CrossRef]
- Shaban, M.; Alibeigloo, A. Three-Dimensional Elasticity Solution for Sandwich Panels with Corrugated Cores by Using Energy Method. Thin-Walled Struct. 2017, 119, 404–411. [Google Scholar] [CrossRef]
- Xia, Y.; Friswell, M.; Flores, E.S. Equivalent Models of Corrugated Panels. Int. J. Solids Struct. 2012, 49, 1453–1462. [Google Scholar] [CrossRef] [Green Version]
- Bartolozzi, G.; Baldanzini, N.; Pierini, M. Equivalent Properties for Corrugated Cores of Sandwich Structures: A General Analytical Method. Compos. Struct. 2014, 108, 736–746. [Google Scholar] [CrossRef]
- Li, S.; Li, X.; Wang, Z.; Wu, G.; Lu, G.; Zhao, L. Finite Element Analysis of Sandwich Panels with Stepwise Graded Aluminum Honeycomb Cores under Blast Loading. Compos. Part: Appl. Sci. Manuf. 2016, 80, 1–12. [Google Scholar] [CrossRef]
- Hou, S.; Shu, C.; Zhao, S.; Liu, T.; Han, X.; Li, Q. Experimental and Numerical Studies on Multi-Layered Corrugated Sandwich Panels under Crushing Loading. Compos. Struct. 2015, 126, 371–385. [Google Scholar] [CrossRef]
- Rigby, S.; Fay, S.D.; Tyas, A.; Warren, J.A.; Clarke, S.D. Angle of Incidence Effects on Far-Field Positive and Negative Phase Blast Parameters. Int. J. Prot. Struct. 2015, 6, 23–42. [Google Scholar] [CrossRef]
- Al-Rifaie, H.; Sumelka, W. Improving the Blast Resistance of Large Steel Gates—Numerical Study. Materials 2020, 13, 2121. [Google Scholar] [CrossRef]
- Chipley, M.; Lyon, W.; Smilowitz, R.; Williams, P.; Arnold, C.; Blewett, W.; Hazen, L.; Krimgold, F. Primer to Design Safe School Projects in Case of Terrorist Attacks and School Shootings. Buildings and Infrastructure, 2nd ed.; Protection Series; Department of Homeland Security: Washington, DC, USA, 2012. [Google Scholar]
- Yuen, S.C.K.; Nurick, G.; Langdon, G.; Iyer, Y. Deformation of Thin Plates Subjected to Impulsive Load: Part III – an Update 25 Years On. Int. J. Impact Eng. 2017, 107, 108–117. [Google Scholar] [CrossRef]
- Szymczyk, M.; Sumelka, W.; Łodygowski, T. Numerical Investigation on Ballistic Resistance of Aluminium Multi-Layered Panels Impacted by Improvised Projectiles. Arch. Appl. Mech. 2018, 88, 51–63. [Google Scholar] [CrossRef]
- Sielicki, P.; Ślosarczyk, A.; Szulc, D. Concrete Slab Fragmentation after Bullet Impact: An Experimental Study. Int. J. Prot. Struct. 2019, 10, 380–389. [Google Scholar] [CrossRef]
- Gajewski, T.; Sielicki, P. Experimental Study of Blast Loading behind a Building Corner. Shock. Waves 2020, 30, 385–394. [Google Scholar] [CrossRef] [Green Version]
- Sielicki, P.W.; Stewart, M.G.; Gajewski, T.; Malendowski, M.; Peksa, P.; Al-Rifaie, H.; Studziński, R.; Sumelka, W. Field Test and Probabilistic Analysis of Irregular Steel Debris Casualty Risks from a Person-Borne Improvised Explosive Device. Def. Technol. 2020. [Google Scholar] [CrossRef]
- Rigby, S.; Tyas, A.; Clarke, S.D.; Fay, S.D.; Reay, J.J.; Warren, J.A.; Gant, M.; Elgy, I. Observations from Preliminary Experiments on Spatial and Temporal Pressure Measurements from Near-Field Free Air Explosions. Int. J. Prot. Struct. 2015, 6, 175–190. [Google Scholar] [CrossRef]
- Shin, J.; Whittaker, A.S.; Cormie, D. TNT Equivalency for Overpressure and Impulse for Detonations of Spherical Charges of High Explosives. Int. J. Prot. Struct. 2015, 6, 567–579. [Google Scholar] [CrossRef]
- Hong, X.-W.; Li, W.; Cheng, W.; Li, W.-B.; Xu, H.-Y. Numerical Simulation of the Blast Wave of a Multilayer Composite Charge. Def. Technol. 2020, 16, 96–106. [Google Scholar] [CrossRef]
- Cullis, I.; Dunsmore, P.; Harrison, A.; Lewtas, I.; Townsley, R. Numerical Simulation of the Natural Fragmentation of Ex-plosively Loaded Thick Walled Cylinders. Def. Technol. 2014, 10, 198–210. [Google Scholar] [CrossRef] [Green Version]
- Johnson, G.R.; Cook, W.H. A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures. In Proceedings of the 7th International Symposium on Ballistics, Hague, The Netherlands, 19–21 April 1983; pp. 541–547. [Google Scholar]
- Johnson, G.R.; Cook, W.H. Fracture Characteristics of Three Metals Subjected to Various Strains, Strain Rates, Temperatures and Pressures. Eng. Fract. Mech. 1985, 21, 31–48. [Google Scholar] [CrossRef]
- Grazka, M.; Janiszewski, J. Identification of Johnson-Cook Equation Constants using Finite Element Method. Eng. Trans. 2012, 60, 215–223. [Google Scholar]
- Shrot, A.; Bäker, M. Determination of Johnson–Cook Parameters from Machining Simulations. Comput. Mater. Sci. 2012, 52, 298–304. [Google Scholar] [CrossRef]
- Dassault Systèmes. Abaqus Documentation; Dassault Systemes Simulia Corporation: Johnston, RA, USA, 2016. [Google Scholar]
- Børvik, T.; Hopperstad, O.; Berstad, T.; Langseth, M. A Computational Model of Viscoplasticity and Ductile Damage for Impact and Penetration. Eur. J. Mech.—A/Solids 2001, 20, 685–712. [Google Scholar] [CrossRef]
- ASM Specification Aerospace Metals. Aluminum 6063-T4. Available online: http://asm.matweb.com (accessed on 17 June 2020).
- Wisniewski, K.; Turska, E. Improved Nine-Node Shell Element MITC9i with Reduced Distortion Sensitivity. Comput. Mech. 2017, 62, 499–523. [Google Scholar] [CrossRef] [Green Version]
- Wisniewski, K.; Kowalczyk, P.; Turska, E. Analytical DSA for Explicit Dynamics of Elastic-plastic Shells. Comput. Mech. 2006, 39, 761–785. [Google Scholar] [CrossRef]
Topology | Side View of the Core | 3D View of Core | Aluminum Core + Steel Frame |
---|---|---|---|
(a) Trapezoidal | |||
(b) Triangular | |||
(c) Sinusoidal | |||
(d) Rectangular |
Chosen M-R Combination in This Study | Equivalent Real-Life M-R Combinations | ||||
---|---|---|---|---|---|
Blast Intensities | Scaled Distance Z | Person-Borne TNT R = 0.5 m | Luggage-Borne TNT M = 45 kg | Car-Borne TNT M = 200 kg | Van-Borne TNT M = 2000 kg |
BI-1 | Z = 1.08 | M = 0.1 kg | R = 3.85 m | R = 6.35 m | R = 13.60 m |
BI-2 | Z = 0.85 | M = 0.2 kg | R = 3.00 m | R = 5.00 m | R = 10.70 m |
BI-3 | Z = 0.75 | M = 0.3 kg | R = 2.65 m | R = 4.40 m | R = 9.50 m |
BI-4 | Z = 0.68 | M = 0.4 kg | R = 2.40 m | R = 4.00 m | R = 8.60 m |
BI-5 | Z = 0.63 | M = 0.5 kg | R = 2.25 m | R = 3.70 m | R = 7.90 m |
Category | Constant | Description | Unit | Weldox 460E Steel | AL6063-T4 |
---|---|---|---|---|---|
Elastic Constants | E | Modulus of Elasticity | 200 | 68.9 | |
ν | Poisson’s ratio | - | 0.33 | 0.33 | |
Density | ρ | Mass density | 7850 | 2703 | |
Yield stress and strain hardening | A | Yield Strength | 490 | 89.6 | |
B | Ultimate Strength | 807 | 172 | ||
n | Work-hardening exponent | - | 0.73 | 0.42 | |
Strain-rate hardening | Reference Strain rate | 5 × | 1 × | ||
C | Strain rate factor | - | 0.0114 | 0.002 | |
Damage evolution | Critical Damage | - | 0.3 | 0.3 | |
Damage threshold | - | 0 | 0 | ||
Adiabatic heating and temperature softening | Specific heat | 452 × | 910 × | ||
χ | Taylor Quinney empirical constant/inelastic heat fraction | - | 0.9 | 0.9 | |
Melting Temperature | 1800 | 616 | |||
Room Temperature | 293 | 293.2 | |||
m | Thermal-softening exponent | - | 0.94 | 1.34 | |
Fracture Strain Constants | - | - | 0.0705 | −0.77 | |
- | - | 1.732 | 1.45 | ||
- | - | −0.54 | 0.47 | ||
- | - | −0.015 | 0.00314 | ||
- | - | 0 | 1.6 |
Considered output | Mesh = 10 mm | Mesh = 5 mm |
Plastic dissipation energy | 14% | 4.1% |
Peak reaction force | 5.3% | 0.6% |
Time (ms) | 0 | 0.5 | 1 | 1.5 | 2 | 3D View | ||
---|---|---|---|---|---|---|---|---|
d (mm) | Trap. | 101 mm (~0.77) | ||||||
Tri. | 94 mm (~0.72) | |||||||
Rect. | 112 mm (~0.85) | |||||||
Sin. | 111 mm (~0.85) |
BI-1 | BI-2 | BI-3 | BI-4 | BI-5 | ||
---|---|---|---|---|---|---|
(mm) | Non graded | |||||
() | 30.4 (0.23) | 60.3 (0.46) | 82.3 (0.63) | 96.1 (0.73) | 101 (0.77) | |
Graded | ||||||
() | 84.9 (0.65) | 94.1 (0.72) | 103 (0.79) | 110 (0.84) | 115 (0.88) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Rifaie, H.; Studziński, R.; Gajewski, T.; Malendowski, M.; Sumelka, W.; Sielicki, P.W. A New Blast Absorbing Sandwich Panel with Unconnected Corrugated Layers—Numerical Study. Energies 2021, 14, 214. https://doi.org/10.3390/en14010214
Al-Rifaie H, Studziński R, Gajewski T, Malendowski M, Sumelka W, Sielicki PW. A New Blast Absorbing Sandwich Panel with Unconnected Corrugated Layers—Numerical Study. Energies. 2021; 14(1):214. https://doi.org/10.3390/en14010214
Chicago/Turabian StyleAl-Rifaie, Hasan, Robert Studziński, Tomasz Gajewski, Michał Malendowski, Wojciech Sumelka, and Piotr W. Sielicki. 2021. "A New Blast Absorbing Sandwich Panel with Unconnected Corrugated Layers—Numerical Study" Energies 14, no. 1: 214. https://doi.org/10.3390/en14010214
APA StyleAl-Rifaie, H., Studziński, R., Gajewski, T., Malendowski, M., Sumelka, W., & Sielicki, P. W. (2021). A New Blast Absorbing Sandwich Panel with Unconnected Corrugated Layers—Numerical Study. Energies, 14(1), 214. https://doi.org/10.3390/en14010214