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Abstract: To probe the possibility of thiophenolate as an origin of dibenzothiophenes (DBTs) and
establish the detailed chemical transformations from thiophenolate to DBTs, the thermal degrada-
tion of thiophenolate has been carried out at various temperatures. The characterizations of both
gaseous products and solid residues indicate that DBTs together with benzene, diphenyl sulfide, and
diphenyl disulfide are the major degradation products. The presence of benzene supports that the
thermal degradation of thiophenolate begins with the homolysis of Ar-H bonds. The subsequent
hydroarylation followed by the elimination and cyclization reactions facilely generates DBTs. The
transformation of thiophenolate to DBTs is chemically simple and highly geochemically feasible. It
readily unifies the chemical pathways involved in the generation of DBTs from thiophenolate and
that of dibenzofurans from phenolate in nature.

Keywords: thiophenolate; dibenzothiophene; phenyldibenzothiophene; homolysis; hydroarylation;
aromatic sulfur heterocyclics

1. Introduction

Dibenzothiophene and its derivatives are major polycyclic aromatic sulfur hetero-
cyclics (PASHs) in coals, crude oils and sedimentary organic matter [1–4]. Due to the
excellent micro-biological degradation resistance and a high thermal stability of DBTs [5–9],
their geochemical parameters such as distribution and concentration have been widely
applied to evaluate the maturity of coals and suggested as the depositional environment
indicator of sedimentary organic matter as well as the tracer of hydrocarbon migration
pathways [10–16]. In view of their valuable applications as geochemical markers, great
efforts have been devoted to elucidating the origin of DBTs [17–20].

Generally, it has been assumed that aromatic sulfur compounds in nature are formed
from the reactions of hydrocarbons such as alkenes, benzenes, and biphenyls with pyrite,
sulfides or elemental sulfur during the coalification process [17–20]. Particularly, DBTs
have been shown to be promptly generated through direct insertion of heterosulfur bridges
into biaryls [18]. The early studies on the insertion reaction of biaryls have considerably
increased our understanding on the chemistry associated with the formation of DBTs.
However, the reactivity of elemental sulfur is rather high and hence not all ranks of coals
have elemental sulfur needed in the direct insertion reaction [15]. What is more, DBTs
generally have oxygen counterparts such as dibenzofurans (DBFs) [4,17,21,22]. Although
DBF can be generated from the reaction of biphenyl with oxygen [23], the formation of alkyl
substituted DBFs requires alkyl substituted biaryls, to which the insertion of oxygen bridge
would be much more difficult than that of sulfur bridge since benzylic hydrogen is much
more reactive than benzene ring toward oxygen, especially at a relatively low temperature
to which coals have been exposed. Thus, the chemistry involved in the formation of

Energies 2021, 14, 234. https://doi.org/10.3390/en14010234 https://www.mdpi.com/journal/energies

https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://doi.org/10.3390/en14010234
https://doi.org/10.3390/en14010234
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/en14010234
https://www.mdpi.com/journal/energies
https://www.mdpi.com/1996-1073/14/1/234?type=check_update&version=2


Energies 2021, 14, 234 2 of 16

substituted DBTs might not be applicable to that of substituted DBFs. This casts doubt on
the biaryls’ route to DBT(s) and DBF(s).

Considering that sulfur and oxygen are congeners, it would be much desirable that
similar chemistry can be constructed for the formation of DBTs and DBFs. In this aspect,
the thermal degradation of phenol or thiophenol might be a good alternative for the
generation of DBTs or DBFs. It has been demonstrated that the gas-phase thermolysis of
phenol produces DBF at 665–865 ◦C [24]. Although this pyrolysis temperature may be too
high for coals, the temperature can be reduced to 300–500 ◦C in the presence of activated
charcoal [25]. Thus, DBF from phenol is a feasible process in nature.

Recently, we discovered that the thermal degradation of phenols is also catalyzed by
alkalis and generates 2,2′-biphenol and 2-phenylphenol [26,27], which can cyclize to yield
DBF [28]. On the basis of this result, it is speculated that thiophenol can produce DBT too
under mild conditions in the presence of alkalis. Since this route is based on the catalyzed
thermal degradation of phenol or thiophenol, it does not require external agents such as
oxygen and elemental sulfur except the presence of inorganic salts which are ubiquitous or
readily available in coals and oils [29–31]. Therefore, the chemistry is essentially the same
for the generations of DBF and DBT.

In this paper, we report the thermal degradation of sodium thiophenolate at various
temperatures. Under conditions used in this study, DBT and a series of related compounds
have indeed been detected among the degradation products of thiophenolate. Detailed
chemistry involved in the formation of DBT and its derivatives is constructed. Our work
will provide insights into the origin of DBTs in coals and crude oils.

2. Experimental
2.1. Materials

Sodium thiophenolate, sodium sulfide and diphenyl disulfide were bought from
Aladdin Co. (Shanghai, China). Dibenzothiophene, 2,2′-biphenol and diphenyl sulfide
were purchased from Sigma-Aldrich Co. Ltd. (Shanghai, China). Acetonitrile was obtained
from Sinopharm Chemical Reagent Co. Ltd. (Shanghai, China). All materials were used
without further purification.

2.2. Thermal Treatments

Thermal treatment in TGA: About 15 mg of sodium thiophenolate was loaded in a
platinum pan and heated in a TA Q500 thermogravimetric analyzer (TA Instrument, New
Castle, DE, USA) up to 600 ◦C at a heating rate of 10 ◦C/min under nitrogen with a flow
rate of 60 mL/min. Residues at different temperatures (400, 440, 470, 500 ◦C) collected
at different temperatures (400, 440, 470, 500 ◦C) during the major degradation step were
subjected to further analysis.

Thermal treatment in alcohol flame: samples (sodium thiophenolate, sodium sulfide/2,2′-
biphenol, diphenyl disulfide or dibenzothiophene) of about 20 mg was each loaded in a
long nuclear magnetic resonance (NMR) glass tube filled with nitrogen. The tubes were
subsequently capped and directly heated in alcohol flame for a predetermined duration (up
to 40 s). The residues were subject to quadra pole-time of flight mass spectrograph (Q-TOF)
analysis or gas chromatography/mass spectrograph (GC-MS) analysis to quantify the yield
of DBT. The inside temperature of NMR tubes was estimated to be lower than 600 ◦C on
the basis of which the majority of bisphenol A bis(diphenyl phosphate) (BDP) kept intact in
NMR tubes for such short-duration thermal treatment although BDP completely degrades
at 600 ◦C [32].

Thermal degradation at the low temperature: sodium thiophenolate of about 40 mg
was loaded in a long glass NMR tube. It was heated in an oil bath of 220–225 ◦C under
nitrogen flow. The residue was collected for Q-TOF and GC-MS analysis to determine if
products obtained at high temperatures are generated at a low temperature.
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2.3. Characterizations

Thermogravimetric analysis/infrared spectra/mass spectra (TGA-FTIR-MS) of sodium
thiophenolate were recorded on a Perkin Elmer TGA 8000 thermogravimetric instrument
(Perkin Elmer, Columbus, OH, USA) coupled with a Spectrum Two FTIR spectrophotome-
ter (Perkin Elmer) and a Clarus SQ 8 T mass analyzer (Perkin Elmer). The transferring line
between the equipment was kept at 280 ◦C. Approximate 8 mg sample was heated from 50
to 600 ◦C under nitrogen (50 mL/min). The heating rate was 10 ◦C/min. The spectra were
recorded every 40 s for 85 min with a resolution of 4 cm−1. The range for the mass analysis
was from m/z = 2 to 300 Da.

Gas chromatography/mass spectrograph (GC-MS) of thermally treated sodium thiophe-
nolate, diphenyl sulfide, diphenyl disulfide, dibenzothiophene and 2,2′-biphenol/sodium
sulfide was recorded on an Agilent 7890B gas chromatograph interfaced to a 5977A mass-
selective detector (Agilent Technologies, Santa Clara, CA, USA). 1 µL of the extracts was
injected into a HP-5MS capillary column (30 m × 250 µm × 0.25 µm) using a PTV-injection.
The temperature was initially set at 40 ◦C and then raised up to 320 ◦C at 15 ◦C/min and
held at this temperature for 15 min. The range of the mass investigation using electron
ionization was selected from m/z = 2 to 500 Da. The solvent delay was set to 3 min.

Fourier transform infrared spectra (FTIR) of the solids left from the TGA thermal
treatment were performed on an Agilent Cary 660 FTIR analyzer (Agilent Technologies)
interfaced to a Pike GladiATR (Pike Technologies, Fitchburg, WI, USA) at a resolution of
4 cm−1. A diamond crystal was used as the sample loading platform.

Quadra pole-time of flight mass spectrograph (Q-TOF) of thermally treated sodium
thiophenolate was performed on an AB Sciex TripleTOF 4600 mass analyzer (AB Sciex,
Framingham, MA, USA). Both the negative ion and positive ion modes were performed.
The atmospheric pressure chemical ionization (APCI) mode was used to detect the fragment
ions. A declustering potential of 80 V and an ion spray voltage of 4500 V were used. The
vaporizer was heated to 500 ◦C. The samples were injected at a rate of 5 µL/min. The range
of the measurement was selected from m/z = 50 to 1000 Da.

3. Results and Discussion
3.1. TGA-FTIR-MS of Sodium Thiophenolate

Since thiophenolate is structurally related to phenolate and also because phenolate
can be thermally transformed to DBFs, the thermal degradation of thiophenolate is first
compared with that of phenolate. Figure 1 shows their thermogravimetric analyses. It can
be clearly seen that the temperature at the maximum mass loss of thiophenolate is more
than 50 ◦C lower than that of phenolate. Thus, DBTs might be more easily formed from
thiophenolate than DBFs from phenolate.

The notably reduced thermal stability of thiophenolate, compared with that of pheno-
late, likely stems from the great electronic donating ability of the sulfur anion. According
to our earlier work, the oxygen anion activates the homolysis of the NaOPh-H bond
through facilitating tautomerization of NaOPh to its keto forms followed by the regain of
aromaticity [26], sulfur anion should weaken the NaSPh-H bond more thanks to its great
electron donating ability. Consequently, the much weakened NaSPh-H bond expedites the
generation of NaSPh radical and hydrogen radical. The homolysis of the NaSPh-H bond is
strongly supported by the presence of benzene in the gaseous products. There is a clear
absorption at 673 cm−1, which is due to the characteristic C-H deformation vibration of
benzene [33], in the FTIR spectra of gaseous products as shown in Figure 2. Benzene is also
positively identified in the MS spectrum as illustrated in the Figure S1. Since the formation
of benzene requires hydrogenolysis, its early presence suggests the yield of hydrogen
radical during the initial thermal degradation of thiophenolate. Therefore, thiophenolate
follows the similar degradation chemistry as phenolate with the bond cleavage of Ar-H
taking place first [26,27].
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The thermal degradation of thiophenolate beginning with the homolysis of Ar-H has
important consequences. In the case of phenolate, the homolysis leads to hydroarylation
which produces phenylphenolate or self-combination of aryl radicals to biphenolates [27].
Likewise, thiophenolate is expected to form phenylthiophenolate or bithiophenolate, the
cyclization of which should yield DBT [34,35]. Unfortunately, the IR absorptions of DBT
overlap significantly with those of diphenyl sulfide, which is identified by its notable
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absorptions at 1584 and 1479 cm−1 as well as a series of small peaks attributed to vibrational
overtones of benzene ring as shown in Figure 2. As a result, the FTIR spectra of off-gases
from TGA experiments are not suitable to positively pinpoint DBT. However, the generation
of DBT is clearly suggested by the MS spectrum with a peak at MW = 184 as illustrated
in Figure S1. This implies that DBT can be formed from the thermal degradation of
thiophenolate. To firmly establish the presence of DBT and quantify its yield, thiophenolate
was subjected to thermal treatment in NMR tubes on alcohol flame.

3.2. GC-MS of Sodium Thiophenolate Thermally Treated on Alcohol Flame

Sodium thiophenolate in NMR tubes was directly heated on alcohol flame to accelerate
the investigation. The collected residues were subjected to the GC-MS analysis. Detectable
degradation products are identified and listed in Table 1. The chief volatile products are
diphenyl sulfide and DBT with a small amount of diphenyl disulfide as shown in Figure 3.
This result solidly supports that the generation of DBT from the thermal degradation of
thiophenolate is chemically feasible.

Table 1. Structures of detectable products found in the TGA-MS and GC analyses.

m/z (Da) Structures m/z (Da) Structures
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To quantify the yield of DBT, thiophenolate was heated for different durations in glass
NMR tubes filled with nitrogen. To verify that DBT was collected instead of escaping
from the tube, the same thermal treatment was carried out on standard DBT samples for
comparison. Figure 4 illustrates the recovery rates of standard DBT samples and yields
of DBT from thermally treated samples. It can be seen that all the standard DBT samples
were essentially recovered, indicating that DBT barely decomposes or escapes from the
glass tubes. This lends confidence to the measurement of yields of DBT from the thermal
degradation of thiophenolate. Noticeably, the yield of DBT increases first then stays about
6–7% during 20–40 s, suggesting that the thermal degradation of thiophenolate is complete
within 20 s. Considering that the mass loss of thiophenolate is about 55% as shown in
Figure 1, the value of 6–7% represents a significant quantity among volatile species and
validates the chemical route of DBT from thiophenolate.
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After establishing the feasibility of thiophenolate as a source of DBT, one thing that
remains to be clarified is the reaction pathway to DBT from thiophenolate. It has been
known that diphenyl sulfide, which is another major degradation product, can transform
to DBT [36–38]. To check whether DBT is formed from diphenyl sulfide or diphenyl
disulfide, both of them were subjected to flame tests. No DBT can be clearly spotted in
thermally treated diphenyl disulfide in Figure 3. However, DBT is indeed found among the
degradation products of diphenyl sulfide with a yield of 3.3% at 30 s. This yield is about
50% lower than that from thiophenolate. Thus, a considerable amount of DBT must come
from other sources.

As pointed out above, a likely precursor of DBT is 2,2′-bithiophenolate. Unfortunately,
an authentic 2,2′-bithiophenolate sample was not available. To probe whether it is possible
for 2,2′-bithiophenolate to cyclize to DBT, 2,2′-biphenol was instead mixed with sodium
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sulfide and the mixture was heated in alcohol flame for 30 s. It has been shown that
phenol can be readily converted to thiophenol by sulfides [39,40]. Figure 3 shows the gas
chromatogram of degradation products. Evidently, there is a peak at 16.2 min, which is
attributed to be DBT by its retention time and MS spectrum (to see in Figure S2). This
result indicates the formation of DBT from 2,2′-bithiophenolate or similar sulfur substituted
biaryl compounds which are generated from 2,2′-biphenol and sulfide. In addition, this
transformation is backed by the presence of hydroxyl-DBT, which appears at 16.9 min and
is identified by its MS spectrum (to see in Figure S3). The generation of hydroxyl-DBT
suggests that the cyclization of 2-phenylthiophenolate to DBT can occur too. The overall
conversion of 2,2′-biphenol to DBT and hydroxyl-DBT is shown in Scheme 1.

Energies 2021, 14, x FOR PEER REVIEW 7 of 16 
 

 

suggests that the cyclization of 2-phenylthiophenolate to DBT can occur too. The overall 
conversion of 2,2′-biphenol to DBT and hydroxyl-DBT is shown in Scheme 1. 

 
Scheme 1. Conversion of 2,2′-biphenol to DBT and its derivatives. 

3.3. FTIR and Q-TOF Analyses of Residues 
To examine the chemical structures of species in the condensed phase, residues were 

collected at pre-determined temperatures in TGA experiments and subjected to a detail 
examination. Figure 5 shows the FTIR spectra of the residues from the thermal degrada-
tion of thiophenolate at different temperatures. Notably, the intensity of the absorption of 
Ph−S at 1089 cm−1 is reduced with the increase of the temperature [33]. Simultaneously, 
new peaks at 968 cm−1, 641 cm−1 and 500 cm−1 appear at 400 °C and grow with the temper-
ature. These peaks are assigned to Na2SO3 [41], which is formed by the oxidation of Na2S 
in the air before and during the FTIR experiment, similar to the formation of Na2CO3 from 
the thermal degradation of phenolate [26]. The presence of Na2SO3 implies the disconnect 
of the Ph‒S bond, which is consistent with the presence of benzene in the gaseous phase. 

 
Figure 5. FTIR spectra of residues of sodium thiophenolates at selected temperatures. 

Scheme 1. Conversion of 2,2′-biphenol to DBT and its derivatives.

3.3. FTIR and Q-TOF Analyses of Residues

To examine the chemical structures of species in the condensed phase, residues were
collected at pre-determined temperatures in TGA experiments and subjected to a detail
examination. Figure 5 shows the FTIR spectra of the residues from the thermal degradation
of thiophenolate at different temperatures. Notably, the intensity of the absorption of Ph−S
at 1089 cm−1 is reduced with the increase of the temperature [33]. Simultaneously, new
peaks at 968 cm−1, 641 cm−1 and 500 cm−1 appear at 400 ◦C and grow with the temperature.
These peaks are assigned to Na2SO3 [41], which is formed by the oxidation of Na2S in the
air before and during the FTIR experiment, similar to the formation of Na2CO3 from the
thermal degradation of phenolate [26]. The presence of Na2SO3 implies the disconnect of
the Ph-S bond, which is consistent with the presence of benzene in the gaseous phase.

More information about residues is obtained from the Q-TOF analyses. As shown in
Figure 6, two strong peaks appear at 440 ◦C. They are respectively assigned to thiophe-
nolate (MW = 109) and phenylthiophenolate (MW = 185) that differ by one phenylene
group (MW = 76). At higher temperatures, major peaks can be characterized by a pat-
tern of MW = 109 + 32 m + 76 k (m = 0, 1, 2; k = 0, 1, 2, 3), suggesting the continuous
buildup of NaS• and phenylene group to thiophenolate. Additionally, a series of peaks
with MW = 215 + 76 n (n = 0, 1, 2) emerge at 440 ◦C and grow with the temperature. A
species matching MW = 183 + 32 m + 76 k (m = 1; k = 0) is NaS-substituted DBT. Ap-
parently, the NaS-substituted DBT and its phenylene insertion products are related to
species with MW = 109 + 32 m +76 k (m = 1; k = 1, 2, 3). The former can be viewed as the
cyclization products of the latter by losing NaH. Similarly, species with MW = 185 + 76 n
(n = 0, 1, 2) which observed in the positive mode (to see in Figure 7), is linked to those
with MW = 109 + 76 k (k = 1, 2, 3) in Figure 6. The extensive one-to-one correspondence
suggests that the cyclization of 2-aryl-thiophenolate by losing NaH should be common.
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3.4. Thermal Degradation Chemistry of Thiophenolate

On the basis of analysis of gaseous products and residues, the thermal degradation of
thiophenolate has very similar chemistry as that of phenolate. Scheme 2 lists typical steps
that account for the results obtained in the TGA-FTIR, GC-MS, FTIR, and Q-TOF.

First, the homolysis of the NaSPh-H bond generates an aryl radical anion (I) and a H•
as shown in Reaction (1). The H• attacks the ipso-carbon bonding to –SNa yielding benzene
as observed in the TGA-FTIR. Hydroarylation of thiophenolate by the aryl radical and
the H radical followed by the elimination of NaSH produces a phenylthiophenolate (II),
which subsequently undergoes more hydroarylation reactions to generate polyaromatics
with MW = 109 + 76 k (k = 0, 1, 2, 3) as detected in the Q-TOF. Phenylthiophenolate can
also cyclize to DBT which is discovered in the gas phase while a cyclization of phenyl
substituted phenylthiophenolate readily generates phenyl substituted DBT (phenyl-DBT),
which appears at MW = 185 + 76 n (n = 0, 1, 2) in the Q-TOF positive mode.

In addition, the radical (I) can self-combine to a bithiophenolate (III), whose hydroary-
lation produces species (IV) with MW = 109 + 32 m +76 k (m = 1; k = 0, 1, 2, 3). With –SNa in
an ortho- position of the benzene ring, (IV) cyclize to DBT or NaS-substituted DBT or those
with MW = 215 + 76 n (n = 0, 1, 2) in Figure 7 as shown in Reaction (9). On the other hand,
the sulfur radical couples with the radical (I) to form a benzenedithiolate and subsequently
benzenetrithiolate, accounting for species with MW = 109 + 32 m (m = 0, 1, 2).

The above schemes illustrate not only the formation of DBT but also the generation of
some unusual species such as phenyl-DBT. The latter has been proposed as an alternative
molecular marker of maturity of coals but its origin has remained elusive [15,42]. Fur-
ther, benzonaphthothiophenes, which have been found in crude oils, coals, and sediment
extracts [15], can also be readily elucidated. Referencing the formation of polyaromatic
hydrocarbons during the thermal degradation of phenol [27], an exemplified pathway
to benzonaphthothiophenes is shown in Scheme 3. In addition, the presence of benzon-
aphthothiophenes is consistent with MW = 235 + 76 n (n = 0, 1, 2) observed in the APCI
positive mode.
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Scheme 3. An exemplified pathway to benzonaphthothiophenes.

The thermal degradation of thiophenolate has been so far investigated at relatively
high temperatures. To confirm that it can also take place at coalification temperatures
which are typically below 300 ◦C, sodium thiophenolate was further subjected to thermal
treatment at a reduced temperature.

3.5. Thermal Degradation of Thiophenolate at Low Temperature

Sodium thiophenolate was thermally treated at 220–225 ◦C from 30 to 120 h. The GC
spectra of the collected residues are shown in Figure 8. It can be seen that a new peak albeit
with a weak absorption emerges at 16.2 min after 30 h, suggesting the presence of trace
DBT. The slow generation of DBT from the thermolysis of thiophenolate at the relatively
low temperature should come without surprise since the formation of DBTs in nature takes
many years. However, the peak of DBT grows significantly with time and becomes one of
major species in the residue obtained after 120 h. This species is further confirmed to be
DBT by its MS spectrum with a molecular weight of 184.

What is more, the Q-TOF results of the residues clearly indicates the presence of
polyaromatics with MW = 109 + 76 k (k = 0, 1, 2) (in the negative mode) and 110 + 76 k
(k = 0, 1, 2, 3) (in the positive mode), NaS-substituted DBT (MW = 215) (in the negative
mode), phenyl-DBT with MW = 185 + 76 n (n = 0, 1) (in the positive mode) and benzon-
aphthothiophenes with MW = 235 + 76 n (n = 0, 1, 2) (in the positive mode) as shown
in Figures 9 and 10. The presence of these species is strong evidence that the chemistry
leading to the generation of DBTs at high temperature also takes place at coalification
temperatures well below 300 ◦C.
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3.6. Geochemical Feasibility of DBTs from Thiophenols in Coals and Oils

The above investigations clearly demonstrate that thiophenolate can be transformed to
DBTs. Although this transformation is realized in a lab environment, the conditions used in
this work are actually readily achievable in nature. As a matter of fact, the chemistry leading
to the generation of DBTs is so simple that it only requires the presence of thiophenolate
and a mild temperature.

For thiophenolate, it is simply yielded from a neutralization reaction of thiophenol
with alkalis or inorganic salts. The existing evidence points out that thiophenol is one
of the major organic sulfur-containing components in certain coals and oils [6,10,43]. For
other types of coals or sedimentary matter containing limited quantities of thiophenol,
it can be generated from phenol and inorganic sulfide [39,40]. In this aspect, thiophenol
works as an intermediate for the generation of DBT so a large quantity of thiophenol is
not required. On the other hand, alkalis or inorganic salts are abundantly distributed in
sedimentary organic matter [29,31,44]. As a matter of fact, Scheme 2 clearly shows the ion,
Na+, is regenerated so only a catalytic amount of salts is needed to catalyze the thermal
degradation of thiophenol. Thus, neither thiophenolate or salts are exotic compounds in
nature, nor are they necessitated in large quantities.

For the condition of the mild reaction temperature, it can be easily achieved by the
geothermal energy that also provides heat for the coalification process [45–47]. What is
more, the current investigation shows that the higher the temperature of the thermal
degradation of thiophenolate is, the faster the generation of DBTs is. Thus, the thermal
degradation of thiophenolate can undoubtedly occur at a much lower temperature albeit at
a slower rate. Consequently, both the reactants and the thermal condition for the generation
of DBTs from thiophenol are clearly accessible in a real coalification scenario.

Further, the chemistry of thiophenolate to DBTs is hardly affected by external sub-
stances surrounding thiophenolate since thiophenolate is a solid even at 220 ◦C. The
degradation reactions occurring inside the solid shall be the same as those taking place in
the lab environment. Although DBT is only one of the major sulfur-containing products in
the lab simulation, other major products such as diphenyl sulfide can transform into DBT
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albeit with a slower rate. Consequently, DBT with a much higher yield will be generated
from thiophenolate in nature. Overall, on the basis of the availability of raw materials and
reaction conditions that are attainable in nature, the formation of DBTs from thiophenols is
highly geochemically feasible.

4. Conclusions

The thermal degradation of sodium thiophenolate has been studied at various tem-
peratures. Similar to phenolate, the thiophenolate begins the degradation with an initial
cleavage of the Ar−H bond which generates aryl radicals and hydrogen radicals. The
subsequent hydrogenolysis and hydroarylation followed by the elimination of NaSH or
the cyclization reaction largely account for the formation of benzene, multi-sulfuretted
benzenes, DBT, phenyl or –SNa substituted DBTs, benzonapthothiophenes as well as
sulfur-containing oligomers.

The generation of DBTs from thiophenolate is chemically simple and highly geochem-
ically feasible. This new transformation represents a completely different approach from
those based on the insertion of sulfur into biphenyl. It has a merit to easily unify the chem-
ical pathways to DBTs from thiophenolate and DBFs from phenolate. Further, it clearly
shows that a variety of PASHs come from a common starting material, thiophenolate.
This suggests that a ratio of these PASHs, for example, the ratio of phenyl-DBT/DBT or
benzonapthothiophene/DBT, might be a good indicator for the evaluation of maturity
of coals and oils since they are formed in a sequential manner. Since thiophenol can be
readily generated from phenol, an important source of DBTs in coals, crude oils and organic
sedimentary matter might very well be inorganic sulfides and phenols.

Supplementary Materials: The following are available online at https://www.mdpi.com/1996-107
3/14/1/234/s1, Figure S1: MS spectrum of gaseous products (at 525 ◦C) of sodium thiophenolate,
Figure S2: MS spectrum of DBT (at 16.2 min) in GC, Figure S3: MS spectrum of hydroxyl-DBT (at
16.9 min) in GC.
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