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Abstract: In this paper, the cyber-security of smart microgrids is thoroughly discussed. In smart grids,
the cyber system and physical process are tightly coupled. Due to the cyber system’s vulnerabilities,
any cyber incidents can have economic and physical impacts on their operations. In power electronics-
intensive smart microgrids, cyber-attacks can have much more harmful and devastating effects on
their operation and stability due to low inertia, especially in islanded operation. In this paper, the
cyber–physical systems in smart microgrids are briefly studied. Then, the cyber-attacks on data
availability, integrity, and confidentiality are discussed. Since a false data injection (FDI) attack that
compromises the data integrity in the cyber/communication network is one of the most challenging
threats for smart microgrids, it is investigated in detail in this paper. Such FDI attacks can target state
estimation, voltage and frequency control, and smart microgrids’ protection systems. The economic
and physical/technical impacts of the FDI attacks on smart microgrids are also reviewed in this
paper. The defensive strategies against FDI attacks are classified into protection strategies, in which
selected meter measurements are protected, and detection/mitigation strategies, based on either
static or dynamic detection. In this paper, implementation examples of FDI attacks’ construction and
detection/mitigation in smart microgrids are provided. Samples of recent cyber-security projects in
the world, and critical cyber-security standards of smart grids, are presented. Finally, future trends of
cyber-security in smart microgrids are discussed.

Keywords: cyber–physical system; cyber-security; cyber-attacks; power electronics converters;
smart microgrids

1. Introduction

In recent years, the development of smart grids is increasing rapidly. The smart grids
encompass interconnected clusters of AC-DC microgrids, in which smart power electronics
converters are widely used to interface distributed generations (DGs) and energy storage
as well as loads. In such microgrids, information and communication technologies play
a crucial role in their operation and control. Since the cyber system and the physical
process are tightly coupled, any cyber incidents can impact their reliable operations. In
other words, power electronics-intensive microgrids operation depends on efficient and
reliable data flows in the cyber system. Any delay or corruption of data may affect the
physical system’s smooth operation and jeopardize smart grids’ efficiency, stability, and
safety [1,2]. For example, it is estimated that the U.S. PV and wind installations reach
around 16,000 MWdc and 11GW in 2021, respectively, which will require around 2081 MW
energy storage deployment [3,4]. Increasing renewable generations and energy storage
resources and emerging loads such as electric vehicles require more coordination and
reliable cyber system for proper operation.

Different cyber incidents have resulted in massive electric power outages, where
Italy blackout in 2003 (affected more than 56 million customers), Arizona Blackout in 2007
(affected more than 100,000 customers), Florida blackout (affected more than 1 million
customers), and Southwest blackout (affected more than 2.7 million customers), and
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Ukraine blackout in 2016 were all wake-up calls [5]. Based on the study, a blackout across
15 U.S. states would affect 93 million people, which cost between 243 billion and 1 trillion
dollars [6,7].

Considering the disruptive effects of cyber-attacks and smart grids’ vulnerability,
several projects and plans have been initiated recently. The federal governments of the
United States and Canada have started a collaborative effort to protect the emerging
power grid from cyber-attacks (National Electric Grid Security and Resilience action plan).
Moreover, the Department of Energy (DoE) of the United States has initiated several projects
addressing cyber-security issues. For example, the DoE has funded $12.2 million for the
Secure Evolvable Energy Delivery Systems (SEEDS) project at the University of Arkansas.
In another project, the DoE has funded $28.1 million for a project called Cyber Resilient
Energy Delivery Consortium (CREDC) at the University of Illinois, Urbana-Champaign.
In addition to North American projects, the European Union has funded the Smart Grid
Protection Against Cyber-Attacks (SPARKS) project considering EU energy objectives for
2030. In Section 3, examples of projects on cyber-security will be provided.

Data should meet three fundamental requirements in the cyber system; (1) availability
where data are timely and accessible, (2) integrity in which data are accurate and trust-
worthy, and (3) Confidentiality where data are viewed and used by an authorized person.
Among different cyber-attacks, a false data injection (FDI) attack targeting data integrity
is one of the most challenging smart grid threats. If such attacks are crafted intelligently,
they can penetrate the system without being detected by the conventional attack detection
method [8,9]. Those attacks are also called stealth attacks [10–12]. The successful FDI
attack could introduce major economic problems as well as steady-state and dynamic
stability issues. Please refer to the U.S. Department of Energy GMLC project in [13] for
more information on distinguishing cyber events from physical events.

The smart grids’ cyber–physical systems and their security have been studied in some
literature, such as in [1,14–17]. In [1], the importance of cyber-security in microgrids opera-
tion and control are discussed in general. The common cyber vulnerabilities in microgrids
are addressed, and the potential risks of cyber-attacks are studied. The cyber-physical elec-
trical energy systems are thoroughly reviewed in [14], and their critical scientific problems,
including co-simulation, the interaction between energy and information networks, failure
in the communication system, and security of the cyber–physical system, are discussed.
The FDI attacks in power systems are studied in [15]. In addition to the theoretical basis,
the impacts of successful FDI attacks on power systems are studied. Although such surveys
provide valuable discussions on cyber–physical systems and smart power systems’ security,
they do not address smart microgrids with AC-DC subgrids and high penetration of power
electronics converters in detail.

In smart microgrids with high penetration of power electronics converters, the cyber-
attacks can be much harmful. Although the optimal economical operation is not the
primary concern in such microgrids, cyber-attacks could have devastating effects on mi-
crogrids’ stability, especially in islanded mode. In other words, due to the low inertia
of such microgrids, the cyber-attacks could affect the transient and steady-state stability
of microgrids. Further, in the hybrid AC-DC microgrids, any cyber-attack in either AC
or DC subgrid will affect the other side. For instance, if any cyber-attack affects the AC
subgrid’s frequency stability, it will affect DC voltage stability on the DC side through
AC-DC subgrids interlinking power converters. Considering the future roadmap of smart
microgrids (e.g., E-LANs and IoE), the cyber-security will receive more and more attention
in the near future.

In this paper, the cyber-security of smart microgrids is studied. First, the cyber–
physical systems in smart microgrids and their challenges are presented in Section 2. In
Section 3, examples of current cyber-security projects are provided in detail. A few critical
standards and protocols associated with cyber-security of smart grids are discussed in
Section 4. In Section 5, the cyber-attacks on data availability, integrity, and confidentiality
are studied. Due to the importance and devastating effects of FDI attacks targeting data
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integrity, the rest of the paper studies the FDI attacks. The economic and physical/technical
impacts of FDI attacks on smart microgrids are addressed in Section 6. In Section 7, various
construction methods of FDI attacks targeting state estimation, voltage and frequency
regulations, and protection systems in smart microgrids are reviewed. In Section 8, different
defensive strategies against FDI attacks are addressed. The implementation examples of
cyber-attack construction, impact, and defensive strategy are provided in Section 9. Finally,
future trends of cyber-security in smart microgrids are discussed in Section 10.

2. Cyber–Physical Systems in Smart Microgrids and Challenges
2.1. Cyber–Physical System

The smart microgrids are dominated by power electronics converters used for inter-
facing distributed generations and energy storage and loads. In such systems, the physical,
electrical components are tightly interconnected by information and communication tech-
nologies, and their operations are tightly coupled to cyber system functionality. In Figure 1,
a typical power electronics-intensive smart microgrid with the cyber–physical networks
is shown.
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Figure 1. A typical smart microgrid with cyber-physical systems.

The smart microgrid’s cyber–physical model includes four layers in general; (1) physi-
cal power system layer, (2) sensor and actuator layer, (3) communication layer, and (4) man-
agement and control layer. In the following, brief explanations about layers are provided.

The physical layer contains the microgrid’s power components, such as transformers,
generators, power electronics converters, circuit breakers, and loads.
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The sensor and actuator layer consists of sensors and measurement devices, and
devices to implement the control decisions (made in the management layer). The sensors
and measurement devices are responsible for measuring information about the system’s
state, including voltage, frequency, current, and circuit breaker status. The actuators and
control devices include generator controllers, distributed generation controllers, and relays
of circuit breakers.

The communication layer consists of devices such as routers, switches, and the com-
munication medium and is responsible for information exchange among relevant layers.
In smart microgrids, the communication system can be wired or wireless, depending on
system requirements.

The management layer is a central control system that is responsible for the microgrid
operation under different conditions. This layer receives measurement layer data through
the communication layer and produces control signals for the smart microgrids’ optimal
operation. The control signals are sent to actuators through the communication layer again.

Some studies have been done on the cyber–physical system approach for smart power
system design, modelling, simulation, and verification of cyber–physical systems, real-time
requirements in cyber–physical systems, etc. [18–21]. It should be mentioned that cyber–
physical system is not a new concept, and it has been used in a variety of domains, including
thermal management [22], gaming and social network [23,24], cloud computing [25], and
air-traffic management [26].

From the discussions above and Figure 1, it can be concluded that accurate and optimal
operation of smart microgrids is impossible without the secure and safe communication
infrastructure, distributed computation technologies, and information processing.

2.2. Challenges and Issues

Based on the interaction of the physical and cyber systems, smart microgrids can be
monitored and controlled efficiently and reliably. However, due to the tight interconnection
between cyber and physical components, vulnerabilities are introduced to the system, and
challenges and issues should be studied for their development and seamless operation. In
detail, the smart microgrid’s cyber–physical system contains complex structures, including
distributed sensors and actuators, controllers, and power components and interfaces, and
coordination between those components through high-precision and timely communication
is a must. Therefore, several challenges and issues, such as reliability of communication,
data safety, and mass data processing, should be addressed for smart microgrids. In this
paper, the cyber-attacks are studied in detail due to their significant impacts on smart
microgrids operations.

3. Sample of Recent Cyber-Security Projects

A few examples of currently running projects on the cyber-security of smart grids are
discussed in this section.

3.1. Blockchain-Based Security Framework for the Internet of Thing-Enabled Solar Micro-Inverters

Researchers of the Texas A&M University-Kingsville are investigating threats of cyber-
attacks on the Internet of Things (IoT)-enabled solar micro-inverters [27]. Currently, the
penetration of distributed solar micro-inverters is increasing rapidly, in which they require
communication for power-sharing and distributed hierarchical control [28]. Although the
IoT provides the opportunity for module-to-module communications, it could introduce se-
curity challenges. In this system, the IoT device connected to the solar micro-inverters acts
as a security module. The cloud-based PV management platform supports the PV system,
and the blockchain server provides blockchain service. This system can enhance communi-
cation security, data security, software/firmware security, hardware component security
(supply chain), and cyber-attack detection. The future work includes the blockchain tech-
nology validation for software security, the effectiveness of this security strength under
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cyber-attacks, and designing a novel blockchain platform for PV systems to overcome
potential issues.

3.2. Consequence-Driven Cyber-Security for High Power EV Charging Infrastructure

In this project, led by Idaho National Laboratory (iNL), events with the high con-
sequence for high power EV charging stations are prioritized, in which the focus is on
high-speed charging (higher than 350 kW) and wireless power transfer systems. The high
consequence events are prioritized based upon severity impact and cyber manipulation
complexity. Based on the research results, extreme fast charging thermal system manipula-
tion and wireless power transfer operation with no vehicle present are two events with
higher consequences. It is proven that the spoofed attacks on thermal sensors of extreme
fast chargers cause no cooling of cable and connector. This attack will cause cable failure
and melting. On the other hand, the spoofed attacks on wireless communications will cause
wireless charging operation with no electric vehicle present. In this event, the primary
coil (ground side coil) of the wireless power transfer operates at full current, which could
potentially endanger public safety. As a future work of this project, methods to identify
such cyber-attacks and mitigate them will be provided [29,30].

3.3. Design of Cryptographic Module for Distributed Energy Resources

The National Renewable Energy Laboratory (NREL) is designing a cryptographic
module suitable for distributed generations [31,32]. This module utilizes distributed
cryptography for command and control messages on an operational technology network.
For this project, the current device’s security controls are tested, and the gaps are identified.
Then, the module is designed, developed, and tested. The lab testing setup for the designed
module in NREL contains two virtual machines as a grid controller and a third-party
controller, in which both use the modules across their communications with each other and
the distributed generations site. Another module connected to the distributed generations
site transfers messages to the relevant distributed generation controllers.

3.4. Design for Secure Reconfigurable Power Converters

In this project completed by the University of North Carolina at Charlotte, a secure
power converter is designed. A Trusted Platform Module (TPM) is integrated into the
power converter system, a hardware module that offers different cryptographic functions.
In detail, the TPM provides services including encryption, key provisioning, and data
signing, and the onboard microprocessor of FPGA provides an interface to the TPM [33].

3.5. Securing Vehicle Charging Infrastructure

Lead by Sandia National Laboratories, this project’s primary goal is to protect US
infrastructure and increase energy security since cyber-attacks on electric vehicle charging
could affect nearly all US infrastructure. This project focuses on the vulnerabilities of EV
chargers and analyzes the electric vehicle supply equipment’s risk. In detail, this project
contains two tasks: assess the vulnerability of EV charging and develop a threat model and
study the consequences of vehicle charging vulnerability [34]. In the future, this project
will try to prepare standardized policies for chargers’ infrastructure management, develop
effective defenses, design intrusion detection/prevention systems, and develop response
techniques to prevent further effects [34].

4. Review of Cyber-Security Standards and Protocols

In this section, some recognized and important standards and protocols of cyber-
security are reviewed.

4.1. AMI System Security Requirements (AMI-SEC)

The AMI-SEC is established under UCA International Users Group (UCAIug) to
develop a robust security guideline for the initial AMI (Advanced Metering Infrastructure)
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portion of the Smart Grid. The AMI-SEC supports all of the AMI system’s use cases,
including AMI communications network device, AMI forecasting system, AMI head
end, AMI meter, AMI meter management, and home area network. The AMI-SEC also
recommends a control system and communication protection, including security function
isolation, cryptographic key establishment and management, the transmission of security
parameters, voice-over-internet protocol, and many more.

4.2. NERC CIP

NERC CIP plan is to establish the requirements for a secure operation of North Amer-
ica’s bulk electric system. The NERC CIP plan consists of 9 standards and 45 requirements,
and they are about the Critical Cyber Asset Identification, Security Management Controls,
Personnel and Training, Electronic Security Perimeters, Physical Security of Critical Cyber
Assets, Systems Security Management, Incident Reporting, and Response Planning, and
Recovery Plans for Critical Cyber Assets. The NERC’s standards for governing critical
infrastructure apply to units that significantly impact the bulk power system’s reliability.

4.3. NISTIR 7628

The National Institute of Standards and Technology Interagency Report (NISITR)
7628 presents an analytical framework for organizations to develop effective cyber-security
strategies for their smart grid systems. The organizations in different areas of smart grids,
including utilities that provide energy management services to manufacturers of electric
vehicles and charging stations, can benefit from the methods and supporting information.
This approach acknowledges that the electric grid is changing from a closed system to
complex and highly interconnected systems, which result in multiplying and diversifying
the threats to grid security. The guideline has more than 600 pages within three-volume;
Vol. 1—smart grid cybersecurity strategy, architecture, and high-level requirements, Vol. 2—
privacy and the smart grid, and Vol. 3 supportive analyses and references [35].

4.4. IEC 62351

IEC 62351 provides the security recommendations for different power system com-
munication protocols of TC 57 series, including IEC 60870-5 series, IEC 60870-6 series,
IEC 61850 series, IEC 61970 series, and IEC 61968 series. The different security objectives,
such as authentication of data transfer through digital signatures, intrusion detection,
eavesdropping prevention, and spoofing and playback prevention, are covered. The stan-
dard includes 16 parts covering an introduction to various aspects of the communication
network and system security associated with power system operations. Moreover, terms
and acronyms, specified messages, procedures, and algorithms for securing Manufacturing
Message Specification (MMS) based applications are some of the other titles. Eventually,
addressing end-to-end information security, including security policies, access control, key
management, and others, can be embraced by these titles [36].

4.5. ISO/IEC 27001 and 27002

As the most fundamental standard of information security management, the ISO/IEC
27001 has a broad domain, including system security testing, compliance with security
policies (periodical checks), and technical compliance review (contains operational sys-
tems testing to make sure that implementation of hardware and software controls are
accurate). The auxiliary and practical guidance on the ISO/IEC 27001 implementation is
provided in ISO/IEC 27002. ISO/IEC 27001 and 27002 can be applied to all smart grid
components [37–39].

4.6. GB/T 22239

This standard is a Chinese standard for information systems called “Information
Security Technology—Baseline for Classified Protection of Information System Security”.
This standard defines five security protection abilities for the information system, where
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the system can defend against threats and restore to the previous state. The compliance of
all smart grid components can be tested with this standard [37,40].

4.7. NIST SP 800-82

This standard is about the security of industrial control system, which is recognized
and used worldwide. The standard validates and certifies that the specified security
controls are implemented correctly, and they are operating and producing the desired
outcomes. This standard also provides particular recommendations about vulnerability
and penetration testing tools [37,41].

The standards above and protocols are reviewed and compared in Table 1. For more
information about the cyber-security standards and protocols, please refer to [37].

Table 1. Review of Standards and Protocols of Cyber-Security.

Descriptions
Titles

AMI-
SEC

NERC
CIP

NISTIR
7628

IEC
62351

ISO/IEC 27001
27002 GB/T 22239 NIST SP

800-82

Critical Cyber Asset
Identification 8 4 4 8 4 4 4

Security
Management Controls 8 4 4 8 4 8 4

Personnel and Training 8 4 8 8 4 4 8

Electronic
Security Perimeters 8 4 4 8 4 8 4

Physical Security of
Critical Cyber Assets 8 4 4 8 4 4 4

Systems Security
Management 4 4 4 8 4 4 4

Incident Reporting and
Response Planning 8 4 4 8 8 4 4

Recovery Plans for Critical
Cyber Assets 8 4 4 8 8 4 4

Security guidance for
AMI systems 4 8 8 8 8 8 8

Privacy and the
Smart Grid 8 8 4 8 8 8 4

Security of Power System
Information Exchange 4 8 4 4 8 8 8

In the following, important initiatives involved in smart grid standardization are
listed [37]:

• CEN-CENELEC-ETSI Smart Grid Coordination Group [42]
• Smart Grid Interoperability Panel [43]
• European Commission Smart Grid Mandate Standardization M/490 [44]
• OpenSG SG Security Working Group [45]
• German Standardization Roadmap E-Energy/Smart Grid [46]
• The State Grid Corporation of China (SGCC) Framework [47]
• IEC Strategic Group 3 Smart Grid [48]
• IEEE 2030 [49]
• Japanese Industrial Standards Committee (JISC) Roadmap to International Standard-

ization for Smart Grid
• ITU-T Smart Grid Focus Group
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5. Cyber-Attacks: General Classification

The cyber system in smart microgrids collects, transmits, and processes data to control
physical system operation. The cyber system’s data flow should be efficient, reliable, and
timely to govern physical process operation. The cyber-attacks on smart microgrid data
flow can be classified into three attacks: attacks compromising availability, integrity, and
confidentiality [1,50,51].

5.1. Attacks on Data Availability

The cyber system should guarantee that the data are timely and accessible, which is
crucial for power electronics converters control in the smart microgrids, especially under
islanded mode and transients. The attacks that their primary purpose is to block or delay
the data communications are referred to as attacks on data availability. The denial of service
(DoS) and distributed denial of service (DDoS) are examples of attacks on data availability.
These attacks can be started from one source or several sources by transferring malformed
packets to the target or flooding the network/communication layer by exhausting the
routers’ processing capacity, network bandwidth, or servers [52–54]. Moreover, data time
latency cannot exceed its limit in microgrids. For example, the max latency of protective
relay is in 4 ms, PMU-based situational awareness monitoring is in sub-second, SCADA
system is in seconds, and the energy management system is in minutes [1,55].

5.2. Attacks on Data Integrity

In addition to availability, data in the cyber system should be accurate and trustworthy
over their entire lifecycle and under all operating conditions. Any attack that compromises
data integrity modifies the information flowing in the cyber system. These attacks can
be made by corrupting the measurements or command signals in the communication
network and may lead to microgrid malfunctions and affect its control, including regula-
tion of frequency and voltage, power and energy management, islanding detection and
resynchronization. A typical example of attacks compromising data integrity is False Data
Injection (FDI) cyber-attacks [12,56]. The FDI attack is one of the most challenging threats
for microgrids, and the impacts of FDI on modern power grids can be unacceptable [57–60].
In such attacks, hackers can penetrate in communication network without changing the
system observability, and system operators may be unaware of any attacks [8,9,52]. Those
attacks are also called stealth attacks [10–12]. In this paper, these attacks are studied in
detail due to their importance and disruptive impacts on smart microgrids.

5.3. Attacks on Data Confidentiality

Data confidentiality states that data should be protected from being accessed and com-
prehended by unauthorized parties. Cyber-attacks compromising confidentiality allows
hackers to spy on the communication network to retrieve information about customers
(identity and electricity usage) and microgrid operation and control strategies. Although
these attacks may not have a high impact on microgrids operation, the revealed information
can be used by hackers to attacks data availability and integrity effectively.

The impacts of cyber-attacks on smart microgrids operation and the construction of
cyber-attacks and defensive strategies against them with a particular focus on FDI attacks
are presented.

6. Impacts of Cyber-Attacks on Smart Microgrids

In general, the cyber-attacks can cause significant economic and technical/physical
issues in smart microgrids. In the following, these impacts are reviewed.

6.1. Economic Impacts

Although much recent research has focused on the technical/physical impacts of
cyber-attacks, it is also essential to study such attacks’ potential financial risks. The cyber-
attacks can cause significant economic problems in smart microgrids [61,62], especially in
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grid-connected mode with high penetration of renewable energy resources. It should be
mentioned that optimal economic operation in microgrids’ islanded operation is not as
important as the grid-connected mode (in an islanded mode, other factors such as stability
is more important).

Most deregulated electricity markets consist of a day-ahead market and a real-time
market [57,63]. In the day-ahead market, the load is forecasted, and an optimization
problem is solved to minimize the cost. The optimization problem’s outcome would be
the predicted power generated at each bus (economic dispatch), which is used to define
the locational marginal price (LMP) at each bus. The LMP is the buy/sell cost of power
at different locations within electricity markets. Since FDI cyber-attacks can affect load
forecasting, the day-ahead market is vulnerable to such attacks.

The real-time market uses the state estimation to estimate the power generated and
power load at each bus, which is used to calculate the power flow through each line (for
instance, optimal power flow can be used). Based on each line’s calculated power, the
congestion pattern is achieved (if the estimated power in each line exceeds the maximum
power limit, the line is congested). In the real-time market, real-time LMP is determined
based on the calculated power. It can be seen that the state estimation is involved in conges-
tion pattern calculations and loads and generation estimation. Thus, the FDI cyber-attacks
that change the estimated state has impacts on the real-time market. More information
about the economic impacts of cyber-attacks can be found in [57,62–66].

6.2. Physical/Technical Impacts

In addition to economic impacts, the FDI attacks can have physical/technical impacts
on microgrids. In general, the FDI attacks can impact on transient and steady-state stability
of the microgrids. In terms of steady-state stability, the FDI attacks can impact voltage
control of microgrids (AC or DC voltage control in AC-DC microgrids), energy management
systems and demand power/current management [11,67–70].

In addition to the adverse effects of cyber-attacks on microgrids’ steady-state operation,
the microgrids’ transient and dynamic stability can be impacted by the FDI attacks. For
instance, the FDI can impact on frequency control of the microgrids. Furthermore, rotor
angle stability can be affected by FDI attacks in microgrids [67,71–75]. Moreover, the attacks
can impact on protection system of smart microgrids. More detail of the physical/technical
impacts of cyber-attacks on microgrids in accompaniment with construction strategies of
attacks is discussed in the following section.

7. Construction of Cyber-Attacks in Smart Microgrids

In recent years, much research effort has been devoted to the study of possible FDIA
construction methods. To construct an attack, hackers usually have partial cyber–physical
system information [56,76]. In case that hackers have full network information, the at-
tack would be more effective and destructive. The hacker’s knowledge of the system
and the access degrees determine the level of destructive impacts and the possibility of
detection/mitigation by defenders.

To study the construction of cyber-attacks in power electronics-intensive smart micro-
grids, such microgrids’ control system is reviewed first. In smart microgrids, the multi-layer
control structure is usually used, in which the outer and inner layers are called supervisory
and primary control layers, respectively [77]. The supervisory control center receives
data from the power electronics converters of distributed generations and other power
production resources and power sensors measurement devices and makes decisions based
on defined objectives. The decision signals are then sent to all the local controllers (where
the primary controls are running). In general, the supervisory control can be separated into
tertiary and secondary controls [77,78]. The tertiary control is usually used to determine
each power source (real and reactive powers), and usually, an optimization problem is
solved to achieve a global optimum. It also controls power flows between the primary grid
and the microgrid. The objectives of secondary control include system frequency restora-
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tion, unbalanced voltage compensation, harmonic compensation. The primary control
instantaneously reacts to local events in predefined ways. The supervisory control system
structures can be categorized as centralized, distributed, and master–slave, discussed in de-
tail in [77]. Figure 2 shows the multi-layer control structure of power electronics-intensive
smart microgrids with centralized supervisory control.
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As mentioned above, the FDI attacks can target steady-state and transient operations
of smart microgrids. Among several attacks, the FDI attacks targeting state estimation,
voltage and frequency regulations, and system protection are explained in the following
due to their importance in smart microgrids.

7.1. Cyber-Attacks on State Estimation

The state estimation is used to determine the system operation status, including bus
voltage magnitudes and phase angles from available measurements. Such attacks’ primary
purpose is to introduce errors in estimating state variables in microgrids by manipulating
sensors’ measurement data. The state estimation helps monitor and control microgrids
effectively and efficiently, and it is one of the most critical tasks in microgrids operation
and energy management strategies. The estimated states can also be used for contingency
analysis, stability analysis, load forecasting, optimal power dispatch, bad data detection,
and power markets’ locational marginal pricing [79–81]. Any FDI attacks inducing errors
into estimated states can have disruptive effects on microgrids’ operation and performance.

In general, there are two types of state estimation in power systems: DC state esti-
mation and AC state estimation (for more information about AC and DC state estimation,
please refer to [80] and [82]). Due to simple analytical models, power systems with DC
state estimation have been studied more than AC state estimation in literature [15,83–85].
However, FDI attacks construction targeting AC state estimation is gradually gaining
attention [86–89]. It should be highlighted that for the state estimation and the associated
FDI attack in the smart microgrid, most researches are addressing power transmission
system approaches. A few works on the state estimation and FDI attack in MV power
distribution systems, such as [90,91], are more applicable for the smart microgrids.
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Although research on the construction of FDI attacks mostly focuses on attacks target-
ing state estimation, FDI attacks construction targeting voltage, frequency, and protection
systems have also been studied [16,92,93].

7.2. Cyber-Attacks on Voltage Control

The smart microgrid’s voltage is usually controlled by power electronics-interfaced
distributed generations and rotational-based generators (such as diesel generators). In such
systems, the system’s voltage level and/or reactive power is measured, and the control sys-
tem produces reactive reference powers for the power generations. As another option, the
transformer tap changer is also controlled for microgrid voltage regulation. The FDI attacks
that modify sensor measured voltage and/or reactive power data and control parameters
within the control layers can impact the voltage regulation of microgrid [67,68,70]. More-
over, the hackers may access the microgrid multi-layer control system and modify control
signals among layers (e.g., induce errors into DGs reference power signals and transformer
tap changer signal) [92,94,95]. An implementation example of an FDI cyber-attack targeting
DC microgrid voltage control is presented in Section 9.

7.3. Cyber-Attacks on Frequency Control

The attacks targeting microgrids frequency are referred to as attacks on transient
stability. Like attacks on microgrids’ voltage stability, hackers can introduce errors into
control signals among control layers, modify control parameters and sensor measurements,
or change outputs of power sources to affect microgrid frequency stability. It should
be mentioned that the microgrid frequency control is susceptible to active powers and
frequency measurements, and reference signals. In microgrids, frequency is usually reg-
ulated by rotating machines. Any attacks targeting rotor speed or angle measurements
can affect microgrids’ frequency stability [71–75]. Recently, energy storage systems are
used for transient stability improvement in microgrids [96–98]. In such systems, sensor
measurements are used in the control system to actuate the storage systems to absorb
and/or inject active power from the microgrid. Since energy storage systems are evolving
in microgrids frequency control, the security of measurement and control signals should be
guaranteed to provide stable operating conditions. More discussions on cyber-attacks on
load frequency control can be found in [93,99–102]. In Section 9, an example is provided.

7.4. Cyber-Attacks on Protection System

One of the main challenges of microgrids is protection system design, which should
operate under grid-connected and islanded operation mode (review of classical protection
technical challenges can be found in [16]). Depending on the operation mode, the relay
setting should be adjusted to the proper current level. One of the conventional approaches
is adaptive protection techniques based on the IEC 61850 communication standard. In
such protection systems, a secure, reliable, and fast communication network is necessary.
However, the communication link failures or any FDI cyber-attacks may affect the pro-
tection system performance and lead to disastrous microgrids. In [103], protection and
control systems’ cyber-security is explained, and proper cyber-attack mitigation strategies
are discussed.

8. Defensive Strategies against Cyber-Attacks

The defense strategies against cyber-attacks can be classified into strategies based on
protection and detection/mitigation. In the following, these two groups are discussed
in detail.
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8.1. Defensive Strategies Based on Protection

In the defensive strategies based on protection, meters/sensors are protected against
cyber-attacks [57,63,75,104,105]. Since many smart sensors and meters exist in emerging
smart microgrids, protecting all meters is not cost-effective. Thus, only a set of critical
sensors and corresponding measurements are usually protected [8,58].

It should be mentioned that the number of meters/sensors under attacks is a fun-
damental criterion in FDI cyber-attack detection. In some cases, the number of sensors
is increased to enhance the microgrids’ visibility; however, it increases the microgrid’s
vulnerability for cyber-attacks [69]. In defensive strategies based on protection, the number
of protected sensors (and their locations) can be achieved considering the budget and the
system’s sensitivity. For example, in [8], an optimization problem is formulated to mini-
mize the defender budget and determine the meters’ number and position for protection
against attacks.

8.2. Defensive Strategies Based on Detection/Mitigation

In the detection-based defense strategies, the measured data are analyzed to detect
cyber-attacks and mitigate/reduce their adverse effects on the microgrid operation. In
general, detection strategies can be categorized into static and dynamic [93].

8.2.1. Static Detectors of Cyber-Attacks

The defense strategies that detect attacks on steady-state stability are called static
detectors. One of the well-known static detectors is detectors of attacks on state estimation.
To date, several strategies have been developed to detect/mitigate FDI attacks targeting
state estimation, such as statistical methods [2,106], Kalman filter [107], sparse optimiza-
tion [108], state forecasting [109,110], network theory [111], time-series simulation [69],
machine learning [112–116], generalized likelihood ratio [117], Chi-square detector, and
similarity matching [118]. However, these strategies are used to recover DC state informa-
tion and are suitable for FDI attacks on DC state estimation.

In AC system models that are usually used in most real-world power system, the
performances of such strategies are not satisfactory [89,119]. A few researches have been
done to detect FDI attacks on AC state estimation such as Kullback–Leibler distance [120],
information-network-based state estimation technique [121], transmission lines’ parameters
variation techniques [122], Bayesian detection scheme [57], and discrete wavelet transform
algorithm together with deep neural networks technique [9]. However, more research
is needed.

The defense strategies against attacks targeting voltage regulations in microgrids
can also be categorized as static detectors. For example, the voltage control of smart AC
microgrid with high penetration of PV systems under cyber-attack is addressed in [92], in
which the detection algorithm is embedded into the converters control system. In [123],
supplementary control loops are added to the DGs power converters controllers to defend
against large voltage deviations resulting from cyber-attacks in AC microgrids. A coopera-
tive mechanism to detect cyber-attacks in the DC microgrid distributed controllers with
two control layers is proposed in [11]. This mechanism provides accurate current sharing
and voltage regulation in power electronics-intensive DC microgrids, discussed in the next
section as an example. Furthermore, in [69], the FDI attack detection in DC microgrid is
studied. The detection problem is formalized as identifying a change in sets of inferred
candidate invariants (invariants are defined in terms of bounds over the output voltage
and current of individual power converters).
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8.2.2. Dynamic Detectors of Cyber-Attacks

Information on system dynamics is used in dynamic detection methods to detect cyber-
attacks [124–129]. Various dynamic detectors have been studied in recent years; however,
they mainly focus on linear systems, which cannot effectively detect real-world power
system attacks due to the non-linearity. As an example, load frequency control depends
on power system dynamics, and FDI attacks targeting frequency control are detected by
dynamic detection methods [93,99–102,130]. As another example, an image-processing-
based technique is proposed in [2] to detect FDI attacks in real-time. This method is built
on the dynamics of measurement variations. In [71], the FDI attacks on the power system’s
transient stability are studied, and errors on rotor speed and angle are quantified. An
adaptive control strategy is then proposed to eliminate or minimize the impact of FDIA
attacks on system dynamics. The impact of FDI attacks on frequency control of microgrids
is studied in [131], and complementary control is added to deal with the attack. In [68], a
cyber-attack dependent model of the microgrid is developed and sliding mode observer
theory is used to diagnose cyber-attack on the current component of smart converters
in microgrids.

In Table 2, all the discussions mentioned above and research on cyber-attacks are
reviewed. The correlation between the cyber-attacks and the defensive strategies against
the attacks in smart microgrids is shown in Figure 3.Energies 2020, 13, x FOR PEER REVIEW 14 of 27 
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In the following, implementation examples of FDI attacks’ construction and detec-
tion/mitigation in smart microgrids are provided.
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Table 2. Review of Cyber-Attacks in Smart Power Systems.

Cyber-attacks in
Smart

Microgrids

Impacts of
Cyber-Attacks

Economic Impacts

• Especially in grid-connected mode, optimal economic
operation can be affected.

• FDI cyber-attacks can affect load forecasting and change the
estimated state, which affect the day-ahead market and
real-time market.

Physical/Technical
Impacts

• FDI attacks can impact on transient and steady-state stability
of the microgrids.

• FDI attacks can impact on voltage control of microgrids,
energy management systems, demand power/current
management, etc.

• FDI attacks can impact on frequency control, rotor angle
stability, protection system, etc.

Constructions of
Cyber-Attacks

(main
attack targets)

Attacks on
State Estimation

• Main purpose of attacks is to introduce errors into the state
estimation by manipulating sensors measurement.

• FDI attacks inducing errors into estimated states have
disruptive effects on microgrids operation.

• FDI attacks targeting DC state estimation has been addressed
more than AC (due to simplicity)

Attacks on
Voltage Control

• FDI attacks can modify sensor measured voltage and/or
reactive power data and control parameters within the
control layers and impact the voltage regulation of microgrid.

• FDI attacks may modify control signals among microgrid
multi-layer (for example, induce errors into DGs reference
reactive power signals and transformer tap changer signal).

Attacks on
Frequency Control

• Microgrid frequency control is very sensitive to active powers
and frequency measurements.

• FDI attacks targeting microgrids frequency are referred to as
attacks on transient stability.

• Hackers can induce errors into control signals among control
layers, modify control parameters and sensor measurements,
or change outputs of power sources.

Attacks on
Protection System

• One of the main challenges of microgrids is protection
system design.

• Depend on the operation mode, relays setting should be
adjusted to the proper current level.

• FDI attacks may affect the protection system performance
and may lead to disaster events.

Defensive
Strategies
Against

Cyber-Attacks

Strategies Based
on Protection

• Meters/sensors are protected against cyber-attacks.
• Number of protected sensors and their locations are

determined based on budget, the sensitivity of the
system, etc.

Strategies Based on
Detec-

tion/Mitigation

• Measured data are analyzed to detect attacks and mitigate its
adverse effects on the microgrid.

• Can be classified into static detectors (detect attacks targeting
steady-state stability) and dynamic detectors (information of
system dynamics is used for detection).
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9. Implementation Examples
9.1. Example 1: Cyber-Attacks in Power Electronics-Intensive DC Microgrids

The FDI cyber-attack construction and detection in DC microgrid in [11] are presented
here. The studied DC microgrid is shown in Figure 4, in which N-number of DC power
generators are connected to the DC microgrid through DC/DC converters. The power
converters are controlled to adjust their output voltages to the local primary and secondary
controllers’ reference values.
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In DC microgrids, the secondary controller uses local and neighboring measurements
to globally tune the average voltage and share the currents proportionately to reduce the
circulating currents. Typically, sublayers of secondary control are cooperated to achieve
those objectives in which the first sublayer is responsible for average voltage restoration
while the current sharing is done in the second sublayer.

To regulate average voltage globally in the first sublayer, a voltage observer is used
to estimate the average voltage VDCi (k) for ith converter. This value is updated by a
dynamic consensus algorithm [132], which uses neighboring estimates VDCj(k) ∀ j ∈ Ni
(Ni represents neighbour converters). The estimated average voltage for the ith converter
is provided:

VDCi (k + 1)−VDCi (k) = VDCi

(
k + 1− τi

output

)
−VDCi

(
k− τi

output

)
+∑j∈Ni

aij

(
VDCj(k− τi

input − τ
ij
comm

)
−VDCi

(
k− τi

input

)) (1)

In (1), τi
input, τi

output, and VDCi (k) represent the input and output delays, and the

measured voltage in the ith converter, and τ
ij
comm denotes the communication delay between

the ith and jth converters. Further, aij is the elements of the adjacency matrix of the
communication graph.

In the second sublayer, which is used to share current among converters proportionally,
the ith converter normalized current regulation cooperative input is achieved by

IDCi (k) = ∑j∈Ni
wiaij

(
IDCj

(
k− τi

output − τ
ij
comm

)
/Imax

DCj
− IDCi

(
k− τi

output

)
/Imax

DCi

)
(2)

where IDCj(k) ∀ j ∈ Ni is the measurements of neighboring output current, and wi, IDCi ,
IDCj , Imax

DCi
, and Imax

DCj
denote the desired coupling gain, measured output current in the ith

and jth converters, and maximum output current allowed for the ith and jth converters,
respectively.

To implement the above objectives into the ith converter to regulate the output voltage,
two voltage correction terms are considered as follows:

∆V1
i (k) = KP1

(
V∗DC −VDCi (k)

)︸ ︷︷ ︸
ei

1(k)

+ KI1 ∑k
p=0

(
V∗DC −VDCi (p)

)
(3)
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∆V2
i (k) = KP2

(
I∗DC − IDCi

(
k− τi

input

))
︸ ︷︷ ︸

ei
2(k)

+ KI2 ∑k
p=τi

input

(
I∗DC − IDCi

(
p− τi

input

))
(4)

where KP1, KI1, KP2, and KI2 are the first and second sublayers’ PI controller gains (see
Figure 5). Moreover, global reference current and voltage values are represented by I∗DC
and V∗DC, respectively.
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Figure 5. The ith-converter controller for sensors and communication link attacks’ detection in DC
microgrids [11].

Finally, the correction terms in (3) and (4) are added to the global reference voltage to
obtain the reference value for the local voltage of ith-converter.

V∗DCi
(k) = V∗DC + ∆V1

i (k) + ∆V2
i (k) (5)

In such DC microgrid, using the cooperative-based consensus algorithm, (1) and (2)
shall converge to

lim
k→∞

VDCi (k) = V∗DC; lim
k→∞

IDCi (k) = 0 ∀ i ∈ N (6)

For cyber-attacks in a single sensor/communication link, (6) is modified as follows:

lim
k→∞

VDCi (k) = V∗DC
′; lim

k→∞
IDCi (k) 6= 0 ∀ i ∈ N (7)

This criterion can be used to detect cyber-attacks, including DoS and jamming. How-
ever, the stealth attacks can penetrate the system without operators’ knowledge and can
multiple sensors/communication links (the stealth attack can be crafted so that (6) is
satisfied). It is proven in [11] that if a constant value P exists such that

∑∞
k=0

∣∣∣ua
Vi
(k)
∣∣∣ ≤ P, ∑∞

k=0

∣∣∣ua
Ii
(k)
∣∣∣ ≤ P∀ i ∈ N (8)

Then, the state convergence (6) is not affected in the presence of stealth attacks. In (8),
ua

Ii
(k) and ua

Vi
(k) represent the ith-converter current and voltage attack vectors at the kth

instant.
In the DC microgrid controlled by cooperative systems, it is challenging to detect the

attacked node since the entire system is affected by the intrusion in any node. Considering
Figure 4, each converter output current depends on voltage levels between two different
points. Thus, any stealth attacks on current value (e.g., attacks on current sensors) will result
in voltage variations across the DC microgrids, which leads to errors in current sharing
among converters. Typically, the current sharing error could be a sufficient criterion to
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detect the attacks on current sensors. However, if multiple voltage sensors/communication
links are attacked stealthily, attack detection would not be easy. In more details, the voltages
will be manipulated so that (6) still holds even under attacks.

In [11], the voltage regulation control input is used to provide a strong stealth attack.
This control input signal for the ith-converter is presented as in (9).

ui(k) = ∑j∈Ni
aij

(
VDCj(k)−VDCi (k)

)
︸ ︷︷ ︸

uij(k)

+ biei
1(k). (9)

If a cyber-link or sensor is attacked in the ith controller, the model of attacked control
input would be as in (10) and (11), respectively.

u f
ij(k) = uij

(
k− τi

input − τ
ij
comm

)
+ kua

i (k) (10)

u f
i (k) = ui

(
k− τi

input

)
+ kua

i (k) (11)

where k shows attack presence (when k = 1, there is an attack in the system) and ua
i (k)

represents ith-converter attack vector. From (10) and (11), local investigation of u f
i (k)

can be done in each converter to detect nonzero synchronization error with the residual
output. However, since each residue comparison needs global information, this is not an
appropriate criterion to detect attacks’ node(s). To verify this case, the controller attempt to
adjust the output to a given reference voltage is considered for attack indication.

Using the change in PI output in sublayer 1, a cooperative vulnerability factor (CVF)
is defined in [11] as in (12) for each converter to determine the attacked nodes accurately.

Ci(k) = ci

[
∑j∈Ni

aij

(
∆V1

j

(
k− τ

ij
comm

)
− ∆V1

i (k)
)]

+
[
∑j∈Ni

aij

(
∆V1

j

(
k− τ

ij
comm

)
− ∆V1

i (k)
)]

(12)

where ci is a positive constant value. If the calculated Ci(k) for each node is a positive
value, that node is the attacked node. While the non-attacked nodes have the Ci(k) value of
zero. The proposed CVF in [11] is a proper criterion to detect the attacked node, especially
when multiple sensor/communication links are stealthily attacked. The value of Ci(k) is
cross-coupled with the current sublayer to protect against attack to Ci(k). In Figure 5, the
ith-converter controller to detect stealth attacks on communication links and sensors in DC
microgrids is shown. For more detailed information, please refer to [11].

9.2. Example 2: Cyber-Attacks on Frequency Control of AC Microgrid

In this example, the FDI cyber-attack construction targeting frequency control of AC
microgrid and its detection scheme is discussed, which is obtained from [93]. In this study,
the power system is divided into two areas connected through the tie-line. The schematic
of the two-area power system frequency control is shown in Figure 6. In this figure, each
area can be islanded microgrid, which is connected through the tie-line. Alternatively, area
A can be an AC microgrid connected to the main grid (area B), or otherwise.Energies 2020, 13, x FOR PEER REVIEW 17 of 27 
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Figure 6 shows that area control error (ACE) centers receive measured frequency
and power signals and provide frequency error values to the frequency control centers
(FCCs). Then, the FCCs send out frequency control signals to the power sources (e.g., local
controllers of power electronics converters interfaced distributed generations or governor
of generators) to balance active power consumption. In this example, it is assumed that
hackers attack only area A since it is proven that when both areas are compromised, the
generators on both sides act in the opposite direction to deal with attacks’ negative impacts.

The ACE center signals sent to FCCs are as follows:

ACE = ∆PT + α∆ f = (Pa
T − Pn

T) + α( f a − f n) (13)

where Pa
T and Pn

T represent actual and nominal powers of tie-line, and f a and f n denote
actual and nominal frequency.

In this example, high security is considered for the power components and controllers
(physical system), and hackers could only intrude through communication systems. Fur-
thermore, it is assumed that the channel transmits FCC signals is equipped with advanced
encryption techniques; thus, measured signals can be the only target of hackers. Here,
the measured tie-line interchange power and frequency signals are potential targets of
attacks. It should be mentioned that they are the main variables of interest in frequency
control centers.

In general, the false data injections can be classified into two groups: exogenous
attack in which disturbance signal is added into the measured signals (can be pulse, ramp,
or random signals [133]), and scaling attack where the measured signal is multiplied by
disturbance signal. Considering these two categories, four possible attacks may exist in
the system: exogenous attack on the measured frequency and tie-line power signals, and
scaling attacks on the measured frequency and tie-line power signals. In this paper, the
exogenous attack and scaling attack on the tie-line active power measurement are discussed,
and the other two similar attacks on the measured frequency can be found in [93].

9.2.1. Exogenous Attack on Measurement of Tie-Line Active Power

In this attack, disturbance ZDis is added to the measured tie-line active power signal
in area A while area B is free of attack. Thus, the resultant ACEs would be as follows:

ACEDis_A = ∆PT + ZDis + αA∆ fA = ACEtA + ZDis (14)

ACEB = −∆PT + αB∆ fB (15)

where ACEDis_A is the attacked ACE, which is used in FCC-A to produce frequency control
signals, and ACEtA is the actual measurement value. From (14), since the goal is to keep
ACEDis_A = 0 if ZDis > 0, the value of ACEtA would be negative and f a falls below f n.
It is also clear that when ZDis is a negative value, then ∆PT > 0 and f a > f n. This kind
of attack can deteriorate system stability since low f a may lead to load shedding (or high
f a value may lead to generator tripping) and large ∆PT value may cross the exchange
power limits.

9.2.2. Scaling Attack on Measurement of Tie-Line Active Power

In this attack, the measured tie-line active power signal in area A is scaled by a hacker.
Thus, area A’s ACE value is modified due to the attack, while (15) is still valid for area B,
as follows.

ACEDis_A = kDis∆PT + αA∆ fA
ACEB = −∆PT + αB∆ fB

(16)

Considering that ACEDis_A and ACEB are regulated to zero, (16) has infinite answers
if and only if kDis is equal to kDis = −αi/αj. Otherwise, (16) does not have any solution
(∆ fA = ∆ fB = ∆ fo = 0), which means it is not possible to deteriorate system stability by
this type of attack.
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It should be highlighted that hackers should have full information about the system to
design an effective scaling attack to destabilize the system. In other words, kDis = −αi/αj
should be satisfied to affect the system stability, which requires full information about the
system. Thus, it can be concluded that scaling attacks on sensor measurements of tie-line
active power and system frequency may not affect the system frequency stability. On the
other hand, when comparing exogenous attack on measured line active power and system
frequency signals, it is concluded that tie-line active power measurement is much more
susceptible to attacks (since frequency signal deviation is easily detectable by comparing
with nominal value). Thus, an exogenous attack on active power measurement has the
most destructive effects on the AC microgrid frequency. In [93], the detection method of
such attacks has been addressed in detail.

9.3. Example 3: Cyber-Attacks on State Estimation

In this example, the construction of an FDI attack on state estimation in smart power
systems and designing the protection-based defense strategy are presented. The provided
discussions have been thoroughly obtained from [8]. The defense strategy determines
which meter should be protected and how much budget should be allocated to defend
against attacks.

In the steady-state condition of n + 1 buses power system with m meters measurement
d = [d1, d2, . . . , dm]

T (measurements are bus active power generation minus load, and
branch active power flows), the state estimation problem is to estimate n state variables
x = [x1, x2, . . . , xn]

T which are n bus voltage angles here. The relationship between state
variables and measurements are as follows:

d = r(x) + e (17)

where e is the independent random measurement errors e = [e1, e2, . . . , em]
T (the error

is considered to have Gaussian distribution with diagonal covariance matrix Σ and zero
means) and r is the matrix of the nonlinear function of x, which can be considered as
r(x) = [r1(x), r2(x), . . . , rm(x)]T . In DC power flow, the nonlinear relationship in (17) can
be approximated:

d = Rx + e R =
∂r(x)
∂xT

∣∣∣∣
x=0

=

 ∂ri(x)
∂xj

∣∣∣∣∣
xj=0


m×n

(18)

In which R is the measurement Jacobian matrix.
The purpose of state estimation is to find the estimation of state variables (x̂ is the

estimation of state variable x), which is the best fit to (18). According to (18), the residual of
the observed and estimated measurements would be ∆d = d− d̂ = d− Rx̂, which is used
in the state estimation problem solution. For instance, the weighted least-squares (WLS)
criterion is one way to solve the state estimation problem. In this method, the objective
function of (d− Rx̂)TW(d− Rx̂) is minimized to find x̂ where the weight matrix W is
defined as Σ−1 (here, it is a diagonal matrix that entries are reciprocals of the measurement
errors e variances).

In the state estimation method, the FDI can attack the measurement data. The current
approach to detect FDI attack is that the Euclidean norm of the measurement residual
‖∆d‖2 is calculated and compared with prescribed residual τ. If ‖∆d‖2 > τ, bad measured
data exist in the system.

Here, the malicious measurements are denoted by du = d+u, where u = [u1, u2, . . . , um]
T

is the attack vector. In [56], it is proven that when the attack vector is crafted as

u = Rc (19)
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where c = [c1, c2, . . . , cn]
T is an arbitrary nonzero vector, the malicious measurements du

can bypass the bad data detection system. Thus, errors c can be injected into actual state
estimation values x̂ (it is called x̂u here) without being detected. As explained earlier, such
attacks could affect electricity prices in the power market, power system optimal operation,
and stability.

As discussed earlier, one common method to protect the power system against cyber-
attacks is securing some meter measurements and/or state variables. It should be men-
tioned that the defense budget devoted to the meter determines whether the meter mea-
surement can be compromised or not. In this example, the defense strategy is designed in
which the defense budget is minimized. This strategy determines which meters should be
protected and how much is the defense budget should be deployed on each meter.

Let us assume that the system has a set of state variables as N = {1, 2, . . . , n} and
set of measurement as M = {1, 2, . . . , m}, and defender budget allocation vector is as
b = [b1, b2, . . . , bm]

T (bi is the allocated budget for protecting the meter measurement
di). Thus, the attack cost for a successful compromise of meter measurement di can be
considered as a function of a devoted budget as follows:

Fi = fi(bi) ∀ i ∈ M (20)

where F = [k1, k2, . . . , km]
T denotes the cost vector of attack.

9.3.1. Attack Strategy Formulation

For simplicity, R∗ is defined by using the R matrix as follows:

r∗ij =
{

0, i f rij = 0
1, otherwise

∀ i ∈ M, ∀ j ∈ N (21)

From (21), the jth olumn of R∗ is defined as r∗j ∈ Rm×1, which represents the state
variable j relationship with meter measurements from 1 to m. Considering the R∗ matrix,
to successfully attack the state variable xj without being detected, the attack cost would be
as follows:

q(j) = r∗Tj k = ∑m
i=1 r∗ijki ∀ j ∈ N (22)

Since the attackers will choose the easiest target of state variable with the least cost,
the attacker’s strategy can be considered as

minj∈N q(j)
subjected to (20)–(22)

(23)

9.3.2. Defense Strategy Formulation

In cyber-attacks, the reasonable assumption is that attackers do their best to get
information about the defender’s strategy while defenders do not have any information
about attackers’ strategy. However, attackers more information cannot help them reduce
the least attack cost, and only the probability of a successful attack will be increased.
Therefore, as the best strategy, defenders can maximize the least attack cost by considering
the total defense budget B as in (24).

maxb≥0 minj∈N q(j)

subjected to
{

∑m
i=1 bi ≤ B
(20)–(22)

(24)
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Assume that the attackers have limited resources R. Since the defenders try to keep
the defense budget as low as possible, (24) can be written as follows:

minb≥0 ∑m
i=1 bi

subjected to
{

minj∈N q(j) ≥ R
(20)–(22)

(25)

It should be mentioned that the least attack cost should always be higher than the
attacker’s limited resource R. This optimization problem can determine meters to be
protected and the defence budget to deploy on such meter. More details about this example
can be found in [8].

10. Discussions and Future Trends

The conventional power systems are evolving into smart grids, which compasses
interconnected microgrids. The smart microgrids will play an essential role in the next
generation of the power system. The hybrid AC/DC microgrids are considered to be the
most likely future microgrid structure, in which high penetration of power electronics con-
verters interface distributed generation, energy storages, and loads as well as interlink AC
and DC subgrids. The smart hybrid AC/DC microgrids require a reliable and secure cyber
system and communication network for optimal, uninterruptible, and smooth operation,
and any cyber-attacks may lead to unforeseen incidents in microgrids’ operation. It should
be emphasized that microgrids are more prone to stability issues if a cyber-attack happens
due to their low inertia. Due to the tight coupling of AC and DC subsystems in hybrid
AC/DC microgrids, any cyber incident in one subsystem may have destructive effects on
the other side.

In this Section, some discussions and recommendations about future trends of micro-
grids cyber-attacks are provided:

10.1. State Estimation of AC/DC Microgrids under Cyber-Attack

In a power system, extensive research on the detection/mitigation of cyber-attacks
on DC and AC state estimations has been done. However, in hybrid AC/DC microgrids,
state estimation under cyber-attacks has not been addressed adequately. Thus, the hybrid
AC/DC microgrids should be modelled first for estimating the state information. Then,
appropriate strategies should be developed to detect the attacks and recover the state
information.

10.2. Frequency Control of AC/DC Microgrids under Cyber-Attack

In hybrid AC-DC microgrids, frequency stability is one of the main concerns due to
the low inertia of power electronics-based distributed generations and energy storage. The
presence of cyber-attacks will even make the situation worse. It should be mentioned that
any cyber-attack targeting frequency stability of the AC subsystem may jeopardize the
DC voltage stability in the DC side. Therefore, a proper control strategy design to detect
and mitigate cyber-attacks on frequency control of hybrid microgrids could be the right
research direction for the future.

10.3. Voltage Regulation of AC/DC Microgrids under Cyber-Attack

In hybrid AC/DC microgrids, any voltage variations in the AC or DC side transfer to
the other side through interlinking power electronics converters. Therefore, regulation of
voltage in such a hybrid microgrid is challenging, especially under cyber-attacks, and it is
needed to be considered in the future.

10.4. Electric Vehicles and Cyber-Attacks

Electric vehicles (EVs) and electric vehicle charging stations are increasing rapidly
in modern power systems, in which they can be considered smart microgrids (i.e., EV
charging stations can be considered grid-connected microgrids). Such microgrids are prone



Energies 2021, 14, 27 22 of 27

to cyber-attacks, and recently several research groups are working on cyber-security of
EVs and EVs charging stations (please see Section 3 project examples). The cyber-security
of EVs and their charging station technologies are in their early development stages that
require more study in the future.

10.5. Blockchain and Cyber-Security in Modern Grids

The primary purpose of blockchain technology is to achieve direct peer-to-peer elec-
tronic payments where the trusted third party does not participate. In practice, blockchain
technology is focused on the financial domain, and the Bitcoin system is its most popular
application. Recently, applications of blockchain technology in the power engineering
sector have also been addressed, for example, in IoT and smart homes. A few research types
have been done to secure the smart grids’ operation under cyber incidents by blockchain,
and more investigation is needed in the future.

10.6. Software-Related Techniques and Cyber-Attacks

The worldwide cyber-attacks are not only wake-up calls for power system operators,
but they are for power system asset suppliers that are using digital systems and software to
control their assets. Such suppliers have also begun to make plans to counter cyber-attacks
to their digital control system. For example, power supply manufacturer CUI, which uses
digital software (called software-defined power) to manage and optimize power delivery
intelligently, has started several steps to safeguard its software [6]. Meanwhile, software-
defined networking (SDN) technologies emergence provides opportunities to improve
the security of microgrid operations by offering global visibility, direct controllability, and
programmability [1,6,134]. Although researchers have paid attention to this topic in the
past few years, more investigation is necessary for this field.

11. Conclusions

The cyber-security of smart microgrids have been reviewed in this paper. Since smart
microgrids require cyber systems and communication networks, they are much more
vulnerable to cyber-attacks. In addition, such power electronics-dominated microgrids
have low inertia; thus, cyber-attacks can negatively affect their stability and operation. This
paper has focused on cyber-attacks on data availability, integrity, and confidentiality after
investigating the cyber-physical system in smart microgrids. Due to the importance of
false data injection (FDI) attacks that compromise the data integrity, this paper has studied
various construction methods, impacts, and detection/defensive strategies of FDI attacks
in smart microgrids. Implementation examples support the provided discussions. In this
paper, recent worldwide projects on cyber-security are also presented. Moreover, important
standards and protocols associated with the cyber-security of smart grids are discussed.
Finally, discussion and recommendations about the future research directions on smart
microgrids’ cyber-security are provided.
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