Non-Intrusive Measurements to Incorporate the Air Renovations in Dynamic Models Assessing the In-Situ Thermal Performance of Buildings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Case Studies
2.1.1. PASLINK Test Cell
2.1.2. Single-Zone Building
2.1.3. Office Building Prototype
2.2. Experiment Set Up
- N2O concentration when the Decay experiments are being conducted.
- Indoor and outdoor air temperatures, relative humidity, and concentration of CO2. Two sensors are installed to measure this variable. An accurate and expensive sensor used as reference, and a cheaper and less accurate sensor (Identified as CO2_ref and CO2 respectively in this document).
- Temperature of walls, floor and glass surfaces.
- Energy delivered by the heating system (radiant floor).
- Electric consumption due to computers and lighting
- Whether doors and windows are closed or “not closed”.
- Ground temperature.
- Beam, diffuse, global horizontal, global vertical south and global vertical north solar irradiance.
- Longwave radiation.
2.3. Methodology
2.3.1. Analysis of the Relations between the Air Renovation Rate and Climate Variables
- For both buildings and the Test Cell, for infiltrations and mechanical ventilation, tracer gas measurements based on N2O have been used as reference. The air renovation rate has been obtained using the Decay method [7]. Experimental relations between the air renovation rate and the following variables have been analysed.
- The difference between the indoor and outdoor air temperatures (Ti − Te).
- The wind speed (W).
- The product of the wind speed and the difference between the indoor and outdoor air temperatures (W(Ti − Te)).
- The product of the wind speed raised to two and the difference between the indoor and outdoor air temperatures (W2(Ti − Te)).
- The atmospheric pressure (Patm).
- The absolute value of the variation of wind speed per unit of time(|dW/dt|).
2.3.2. Analysis of Feasibility to Obtain Air Renovation Rate from Wall Mounted CO2 Sensors
3. Results and Discussion
- PASLINK Test Cell: 0.056 renovations/hour.
- Single-zone building: 0.308 renovations/hour.
- Office building without mechanical ventilation: 0.825 renovations/hour.
- Office building with the mechanical ventilation active: 2.12 renovations/hour.
3.1. PASLINK Test Cell. Infiltrations
3.2. Single-Zone Building. Infiltrations
3.3. Office Building Prototype
3.3.1. Infiltrations
3.3.2. Mechanical Ventilation
4. Conclusions
- When the mechanical ventilation is not active: Significant correlation between air renovation rate and the wind speed has been observed in both buildings and the Test Cell. The agreement between the values obtained using N2O and the evolution of metabolic CO2 increases when the starting value of CO2 concentration increases.
- When the mechanical ventilation is active: Large variations have been observed among the different values obtained along the test campaign using N2O tracer gas. However, these values do not show any correlation with any of the considered climate variables. Consequently, the observed spread has been used to estimate an uncertainty of the air renovations rate. The measurements based on CO2 concentrations do not show good agreement to the values obtained using N2O tracer gas. This issue will be further investigated, but in principle it is attributed to the low level of CO2 measured along the analysed test campaign when the mechanical ventilation is active. This explanation is in agreement with previous works carried out regarding the air renovation in the same building [15].
- Regarding infiltrations, the dependencies of the n value with the wind speed and its variation per unit of time in absolute value, can explain some variability of the HLC and some uncertainty when it is assumed as a constant value. Further analysis of this wind dependence is an interesting issue regarding future research works that could lead to a wind dependent HTC reducing the uncertainties of this coefficient in experimental assessments.
- The behaviour observed in the n value for the case of mechanical ventilation leads to conclude that the experimental assessment of an HLC assuming n as constant could lead to some degree of uncertainty. The work presented in this paper has not identified any variable that could contribute to model such variability reducing the associated uncertainty. This issue is identified as a relevant topic regarding future research.
Author Contributions
Funding
Conflicts of Interest
References
- EBC Executive Committtee. Strategic Plan 2019–2024. Energy in Buildings and Communities Technology Collaboration Programm; International Energy Agency: Paris, France, 2019. [Google Scholar]
- Tian, W.; Heo, Y.; de Wilde, P.; Li, Z.; Yan, D.; Park, C.S.; Feng, X.; Augenbroe, G. A review of uncertainty analysis in building energy assessment. Renew. Sustain. Energy Rev. 2018, 93, 285–301. [Google Scholar] [CrossRef] [Green Version]
- Kampelis, N.; Gobakis, K.; Vagias, V.; Kolokotsa, D.; Standardi, L.; Isidori, D.; Cristalli, C.; Montagnino, F.M.; Paredes, F.; Muratore, P.; et al. Evaluation of the performance gap in industrial, residential & tertiary near-Zero energy buildings. Energy Build. 2017, 148, 58–73. [Google Scholar] [CrossRef] [Green Version]
- Annex 71 of the Programme “(EBC)” of the IEA on EBC Annex 71. Building Energy Performance Assessment Based on In-Situ Measurements. 2016–2021. Available online: http://www.iea-ebc.org/projects/project?AnnexID=71 (accessed on 4 December 2020).
- Jiménez, M.J. IEA, EBC annex 58, report of subtask 3, part 1. In Thermal Performance Characterization Based on Full Scale Testing–Description of the Common Exercises and Physical Guidelines; Jiménez, M.J., Ed.; KU Leuven: Leuven, Belgium, 2016; ISBN 9789460189876. Available online: http://www.iea-ebc.org/Data/publications/EBC_Annex_58_Final_Report_ST3a.pdf (accessed on 3 November 2020).
- Marin, M.; Vlase, S.; Paun, M. Considerations on double porosity structure for micropolar bodies. AIP Adv. 2015, 5, 037113. [Google Scholar] [CrossRef] [Green Version]
- Sherman, M.H. On the estimation of multizone ventilation rates from tracer gas measurements. Build. Environ. 1989, 24, 355–362. [Google Scholar] [CrossRef] [Green Version]
- ISO 9972:2015. Thermal Performance of Buildings–Determination of Air Permeability of Buildings–Fan Pressurization Method; ISO: Geneva, Switzerland, 2015. [Google Scholar]
- Olazo-Gómez, Y.; Herrada, H.; Castaño, S.; Arce, J.; Xamán, J.P.; Jiménez, M.J. Data-based RC dynamic modelling to assessing the in-situ thermal performance of buildings. Analysis of several key aspects in a simplified reference case toward the application at on-board monitoring level. Energies 2020, 13, 4800. [Google Scholar] [CrossRef]
- Díaz-Hernández, H.P.; Torres-Hernández, P.R.; Aguilar-Castro, K.M.; Macias-Melo, E.V.; Jiménez, M.J. Data-based RC dynamic modelling incorporating physical criteria to obtain the HLC of in-use buildings: Application to a case study. Energies 2020, 13, 313. [Google Scholar] [CrossRef] [Green Version]
- Remion, G.; Moujalled, B.; El Mankibi, M. Review of tracer gas-based methods for the characterization of natural ventilation performance: Comparative analysis of their accuracy. Build. Environ. 2019, 160, 106180. [Google Scholar] [CrossRef]
- Carrié, F.R.; Leprince, V. Uncertainties in building pressurisation tests due to steady wind. Energy Build. 2016, 116, 656–665. [Google Scholar] [CrossRef]
- Farmer, D.; Johnston, D.; Miles-Shenton, D. Obtaining the heat loss coefficient of a dwelling using its heating system (integrated coheating). Energy Build. 2016, 117, 1–10. [Google Scholar] [CrossRef]
- Marshall, A.; Fitton, R.; Swan, W.; Farmer, D.; Johnston, D.; Benjaber, M.; Ji, Y. Domestic building fabric performance: Closing the gap between the in situ measured and modelled performance. Energy Build. 2017, 150, 307–317. [Google Scholar] [CrossRef]
- Enríquez, R.; Bravo, D.; Díaz, J.A.; Jiménez, M.J. Mechanical ventilation performance assessment in several office buildings by means of Big Data techniques. In Proceedings of the 36th AIVC Conference “Effective Ventilation in High Performance Buildings”, Madrid, Spain, 23–24 September 2015; ISBN 2-930471-45-X. [Google Scholar]
- Baker, P.H.; van Dijk, H.A.L. PASLINK and dynamic outdoor testing of building components. Build. Environ. 2008, 43, 127–128. [Google Scholar] [CrossRef]
- Castaño, S.; Guzmán, J.D.; Jiménez, M.J.; Heras, M.R. LECE-UiE3-CIEMAT. In Report of Subtask 1a: Inventory of Full Scale Test Facilities for Evaluation of Building Energy Performances. IEA EBC Annex 58; Janssens, A., Ed.; KU Leuven: Leuven, Belgium, 2016; ISBN 9789460189906. [Google Scholar]
- Jiménez, M.J.; Porcar, B.; Heras, M.R. Estimation of UA and gA values of building components from outdoor tests in warm and moderate weather conditions. Solar Energy 2008, 82, 573–587. [Google Scholar] [CrossRef]
- Olmedo, R.; Sánchez, M.N.; Enríquez, R.; Jiménez, M.J.; Heras, M.R. ARFRISOL Buildings-UIE3-CIEMAT. In Report of Subtask 1a: Inventory of Full Scale Test Facilities for Evaluation of Building Energy Performances. IEA EBC Annex 58; Janssens, A., Ed.; KU Leuven: Leuven, Belgium, 2016; ISBN 9789460189906. [Google Scholar]
Days | n | r2 | Ti − Te | W | W(Ti − Te) | W2(Ti − Te) | Patm |
---|---|---|---|---|---|---|---|
(N2O) 1 | (N2O) 1 | ||||||
In 2018 | (ren/h) | (·) | (°C) | (m/s) | [m/s] [°C] | [(m/s)2] [°C] | (mbar) |
24/09–26/09 | 0.1022 | 0.9834 | 12.2 | 3.07 | 36.39 | 145.7 | 960 |
27/09–29/09 | 0.0543 | 0.9778 | 16.7 | 1.48 | 22.46 | 83.9 | 957 |
02/10–04/10 | 0.0536 | 0.9917 | 19.4 | 1.05 | 18.20 | 45.9 | 900 |
05/10–07/10 | 0.0503 | 0.9983 | 16.8 | 0.91 | 13.45 | 28.3 | 954 |
08/10–11/10 | 0.0560 | 0.9936 | 19.5 | 1.48 | 28.35 | 90.3 | 949 |
12/10–14/10 | 0.0543 | 0.9829 | 12.7 | 1.38 | 15.94 | 42.4 | 954 |
23/10–25/10 | 0.0458 | 0.9367 | 10.4 | 1.17 | 9.52 | 27.8 | 960 |
26/10–29/10 | 0.0574 | 0.9882 | 16.9 | 1.33 | 23.45 | 72.9 | 941 |
29/10–01/11 | 0.0520 | 0.9979 | 18.8 | 0.98 | 18.11 | 38.6 | 944 |
n | r2 | Ti − Te | W | W(Ti − Te) | W2(Ti − Te) | Patm | |
---|---|---|---|---|---|---|---|
Day | (N2O) 1 | (N2O) 1 | |||||
(ren/h) | (·) | (°C) | (m/s) | [m/s] [°C] | [(m/s)2] [°C] | (mbar) | |
09/02/2016 | 0.74 | 0.9756 | −2.49 | 9.20 | −21.88 | −214.9 | 956 |
10/02/2016 | 0.60 | 0.9125 | −0.79 | 10.27 | −9.58 | −121.6 | 954 |
11/02/2016 | 0.50 | 0.9708 | 0.28 | 9.27 | 2.66 | 25.8 | 951 |
12/02/2016 | 0.97 | 0.9942 | −0.61 | 11.55 | −7.07 | −87.0 | 951 |
15/02/2016 | 0.22 | 0.9776 | 9.44 | 3.75 | 32.07 | 157.8 | 952 |
16/02/2016 | 0.19 | 0.9874 | 12.07 | 2.45 | 25.39 | 78.9 | 960 |
17/02/2016 | 0.31 | 0.9550 | 9.54 | 4.48 | 39.96 | 201.3 | 955 |
18/02/2016 | 0.16 | 0.9965 | 9.57 | 3.04 | 29.71 | 107.1 | 955 |
19/02/2016 | 0.22 | 0.9936 | 9.68 | 4.44 | 42.93 | 213.0 | 958 |
22/02/2016 | 0.16 | 0.9666 | 6.58 | 2.84 | 18.40 | 78.8 | 958 |
23/02/2016 | 0.17 | 0.9976 | 10.42 | 2.21 | 18.26 | 46.1 | 959 |
24/02/2016 | 0.31 | 0.9935 | 6.30 | 4.73 | 26.75 | 131.4 | 952 |
25/02/2016 | 0.22 | 0.9608 | 10.12 | 3.82 | 29.83 | 141.6 | 952 |
n | n | n | r2 | r2 | r2 | Ti − Te | W | W(Ti − Te) | W2(Ti − Te) | Patm | CO2ref.max | Error | CO2max | Error | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Day | (N2O) 1 | (CO2) 1 | (CO2_ref) 1 | (N2O) 1 | (CO2) 1 | (CO2_ref) 1 | (CO2_ref) 1 | (CO2) 1 | |||||||
(ren/h) | (ren/h) | (ren/h) | (·) | (·) | (·) | (°C) | (m/s) | [m/s] [°C] | [(m/s)2] [°C] | (mbar) | (ppm) | (%) | (ppm) | (%) | |
09/02/2017 | 0.72 | 0.07 | 0.72 | 0.9994 | 0.0334 | 0.9639 | 13.03 | 0.85 | 10.5 | 13.5 | 800 | 506 | 0.2 | 426 | 91.0 |
10/02/2017 | 0.83 | 0.57 | 0.78 | 0.9994 | 0.7564 | 0.9864 | 13.83 | 3.18 | 43.5 | 161.5 | 949 | 517 | 5.1 | 436 | 31.4 |
14/02/2017 | 0.88 | 0.64 | 0.82 | 0.9997 | 0.7520 | 0.9923 | 12.47 | 3.46 | 42.6 | 161.7 | 961 | 629 | 6.9 | 470 | 27.3 |
15/02/2017 | 0.77 | 0.38 | 0.78 | 0.9991 | 0.7900 | 0.9909 | 12.96 | 3.37 | 43.0 | 156.5 | 966 | 645 | 2.2 | 458 | 50.1 |
16/02/2017 | 0.84 | 0.38 | 0.74 | 0.9996 | 0.8052 | 0.9913 | 12.91 | 3.22 | 40.9 | 149.3 | 965 | 538 | 11.3 | 454 | 54.3 |
21/02/2017 | 0.86 | 0.48 | 0.78 | 0.9990 | 0.6157 | 0.9888 | 9.77 | 4.10 | 40.0 | 178.0 | 956 | 615 | 9.5 | 430 | 44.8 |
01/03/2017 | 0.69 | 0.05 | 0.59 | 0.9941 | 0.0446 | 0.9677 | 9.67 | 1.26 | 10.9 | 19.8 | 957 | 570 | 14.7 | 427 | 93.3 |
n | n | n | r2 | r2 | r2 | Ti − Te | W | W(Ti − Te) | W2(Ti − Te) | Patm | CO2ref.max | Error | CO2max | Error | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Day | (N2O) 1 | (CO2) 1 | (CO2_ref) 1 | (N2O) 1 | (CO2) 1 | (CO2_ref) 1 | (CO2_ref) 1 | (CO2) 1 | |||||||
(ren/h) | (ren/h) | (ren/h) | (·) | (·) | (·) | (°C) | (m/s) | [m/s] [°C] | [(m/s)2] [°C] | (mbar) | (ppm) | (%) | (ppm) | (%) | |
31/01/2017 | 2.41 | 0.41 | 0.65 | 0.9983 | 0.7064 | 0.9819 | 2.12 | 1.06 | 2.3 | 3.2 | 953 | 537 | 73 | 489 | 83 |
01/02/2017 | 2.41 | 1.10 | 0.76 | 0.9982 | 0.8000 | 0.9872 | 2.08 | 2.19 | 4.5 | 11.6 | 955 | 564 | 68 | 463 | 54 |
02/02/2017 | 2.12 | 0.26 | 0.73 | 0.9963 | 0.5889 | 0.9852 | 6.21 | 1.64 | 10.1 | 18.6 | 953 | 646 | 65 | 516 | 88 |
03/02/2017 | 2.70 | −0.98 | 0.97 | 0.9984 | 0.2534 | 0.9405 | 1.97 | 5.04 | 9.9 | 54.5 | 956 | 543 | 64 | 433 | 136 |
07/02/2017 | 2.61 | 0.63 | 1.05 | 0.9971 | 0.8246 | 0.9941 | 0.30 | 4.61 | 0.8 | 3.7 | 958 | 716 | 60 | 520 | 76 |
08/02/2017 | 2.45 | 0.07 | 0.50 | 0.9959 | 0.0427 | 0.9694 | 5.74 | 3.91 | 22.3 | 98.9 | 800 | 612 | 80 | 486 | 97 |
09/02/2017 | 2.50 | 0.61 | 0.81 | 0.9973 | 0.7653 | 0.9795 | 7.63 | 3.89 | 29.7 | 128.6 | 800 | 615 | 68 | 454 | 76 |
10/02/2017 | 2.31 | 0.30 | 0.91 | 0.9954 | 0.6379 | 0.9789 | 9.50 | 1.76 | 16.9 | 44.5 | 949 | 611 | 61 | 488 | 87 |
13/02/2017 | 3.08 | −0.11 | 1.23 | 0.9993 | 0.0015 | 0.9823 | 6.44 | 3.81 | 24.5 | 111.8 | 947 | 558 | 60 | 436 | 104 |
14/02/2017 | 2.61 | 0.14 | 0.68 | 0.9966 | 0.2700 | 0.9487 | 7.32 | 2.92 | 21.4 | 71.9 | 959 | 613 | 74 | 470 | 95 |
15/02/2017 | 2.41 | 0.14 | 0.69 | 0.9973 | 0.2015 | 0.9894 | 7.77 | 4.32 | 33.6 | 159.1 | 964 | 663 | 71 | 525 | 94 |
16/02/2017 | 2.39 | −0.04 | 0.61 | 0.9959 | 0.0133 | 0.9682 | 9.06 | 5.74 | 52.0 | 323.7 | 965 | 619 | 74 | 446 | 102 |
17/02/2017 | 1.51 | 0.33 | 0.71 | 0.9965 | 0.7170 | 0.9889 | 9.60 | 2.07 | 19.9 | 50.8 | 962 | 640 | 53 | 498 | 78 |
21/02/2017 | 2.41 | 1.34 | 0.60 | 0.9935 | 0.6193 | 0.9612 | 8.13 | 8.48 | 68.9 | 605.3 | 957 | 606 | 75 | 461 | 44 |
22/02/2017 | 2.26 | 0.54 | 0.58 | 0.9955 | 0.7501 | 0.9738 | 5.63 | 5.94 | 33.4 | 207.4 | 954 | 697 | 74 | 473 | 76 |
23/02/2017 | 1.57 | −0.65 | 0.77 | 0.9984 | 0.0542 | 0.9751 | 6.17 | 4.87 | 29.9 | 166.5 | 948 | 654 | 51 | 433 | 142 |
24/02/2017 | 1.54 | 0.09 | 0.52 | 0.9995 | 0.0588 | 0.9776 | 6.92 | 1.39 | 9.5 | 18.8 | 950 | 684 | 66 | 603 | 94 |
02/03/2017 | 2.64 | 0.02 | 0.47 | 0.9980 | 0.0014 | 0.9794 | 1.47 | 1.57 | 2.3 | 4.4 | 955 | 587 | 82 | 461 | 99 |
n | n | n | r2 | r2 | r2 | Ti − Te | W | W(Ti − Te) | W2(Ti − Te) | Patm | CO2ref.max | Error | CO2max | Error | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Day | (N2O) 1 | (CO2) 1 | (CO2_ref) 1 | (N2O) 1 | (CO2) 1 | (CO2_ref) 1 | (CO2_ref) 1 | (CO2) 1 | |||||||
(ren/h) | (ren/h) | (ren/h) | (·) | (·) | (·) | (°C) | (m/s) | [m/s] [°C] | [(m/s)2] [°C] | (mbar) | (ppm) | (%) | (ppm) | (%) | |
31/01/2017 | 2.11 | 0.29 | 1.42 | 0.9979 | 0.7698 | 0.9911 | 6.75 | 2.12 | 14.1 | 32.6 | 954 | 544 | 33 | 489 | 86 |
01/02/2017 | 1.96 | −0.29 | 1.21 | 0.9949 | 0.3562 | 0.9823 | 5.47 | 1.11 | 5.5 | 8.0 | 955 | 529 | 38 | 443 | 115 |
02/02/2017 | 2.00 | 0.12 | 1.10 | 0.9960 | 0.5396 | 0.9894 | 6.08 | 1.03 | 6.2 | 7.8 | 954 | 535 | 45 | 470 | 94 |
06/02/2017 | 2.25 | 0.56 | 0.98 | 0.9949 | 0.7154 | 0.9835 | 2.36 | 3.37 | 6.4 | 24.7 | 960 | 490 | 56 | 470 | 75 |
07/02/2017 | 1.34 | −0.17 | 0.86 | 0.9988 | 0.1874 | 0.9901 | 4.10 | 3.30 | 13.7 | 53.2 | 957 | 519 | 36 | 461 | 113 |
08/02/2017 | 1.33 | 0.43 | 1.04 | 0.9997 | 0.6881 | 0.9916 | 8.91 | 1.65 | 14.0 | 30.0 | 800 | 515 | 22 | 458 | 68 |
13/02/2017 | 0.95 | 0.04 | 0.76 | 0.9826 | 0.0970 | 0.9128 | 8.90 | 2.55 | 22.4 | 69.2 | 951 | 577 | 20 | 409 | 96 |
17/02/2017 | 1.22 | 0.71 | 1.07 | 0.9767 | 0.8458 | 0.9208 | 11.91 | 2.65 | 31.2 | 94.4 | 961 | 545 | 12 | 495 | 42 |
20/02/2017 | 0.95 | 0.51 | 1.38 | 0.9992 | 0.7741 | 0.9104 | 11.29 | 7.22 | 81.3 | 618.8 | 958 | 531 | 44 | 409 | 47 |
22/02/2017 | 1.12 | 0.39 | 0.99 | 0.9844 | 0.7994 | 0.9958 | 8.21 | 3.54 | 29.0 | 121.8 | 952 | 563 | 11 | 473 | 65 |
23/02/2017 | 1.42 | 0.41 | 1.07 | 0.9983 | 0.7682 | 0.9951 | 9.87 | 1.74 | 16.9 | 34.1 | 948 | 559 | 25 | 486 | 71 |
24/02/2017 | 1.36 | 0.30 | 1.33 | 0.9800 | 0.1849 | 0.9935 | 9.48 | 1.02 | 9.3 | 12.4 | 951 | 565 | 2 | 440 | 78 |
02/03/2017 | 1.46 | 0.83 | 1.60 | 0.9965 | 0.3075 | 0.9893 | 6.54 | 1.33 | 7.9 | 13.2 | 954 | 547 | 9 | 439 | 43 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiménez, M.J.; Díaz, J.A.; Alonso, A.J.; Castaño, S.; Pérez, M. Non-Intrusive Measurements to Incorporate the Air Renovations in Dynamic Models Assessing the In-Situ Thermal Performance of Buildings. Energies 2021, 14, 37. https://doi.org/10.3390/en14010037
Jiménez MJ, Díaz JA, Alonso AJ, Castaño S, Pérez M. Non-Intrusive Measurements to Incorporate the Air Renovations in Dynamic Models Assessing the In-Situ Thermal Performance of Buildings. Energies. 2021; 14(1):37. https://doi.org/10.3390/en14010037
Chicago/Turabian StyleJiménez, María José, José Alberto Díaz, Antonio Javier Alonso, Sergio Castaño, and Manuel Pérez. 2021. "Non-Intrusive Measurements to Incorporate the Air Renovations in Dynamic Models Assessing the In-Situ Thermal Performance of Buildings" Energies 14, no. 1: 37. https://doi.org/10.3390/en14010037
APA StyleJiménez, M. J., Díaz, J. A., Alonso, A. J., Castaño, S., & Pérez, M. (2021). Non-Intrusive Measurements to Incorporate the Air Renovations in Dynamic Models Assessing the In-Situ Thermal Performance of Buildings. Energies, 14(1), 37. https://doi.org/10.3390/en14010037