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Abstract

:

Brazil, Russia, China, India, and the Republic of South Africa (BRICS) represent developing economies facing different energy and economic development challenges. The current study aims to predict energy consumption in BRICS at aggregate and disaggregate levels using the annual time series data set from 1992 to 2019 and to compare results obtained from a set of models. The time-series data are from the British Petroleum (BP-2019) Statistical Review of World Energy. The forecasting methodology bases on a novel Fractional-order Grey Model (FGM) with different order parameters. This study contributes to the literature by comparing the forecasting accuracy and the predictive ability of the   F G M   1 , 1     with traditional ones, like standard   G M   1 , 1     and   A R I M A   1 , 1 , 1     models. Moreover, it illustrates the view of BRICS’s nexus of energy consumption at aggregate and disaggregates levels using the latest available data set, which will provide a reliable and broader perspective. The Diebold-Mariano test results confirmed the equal predictive ability of   F G M   1 , 1     for a specific range of order parameters and the   A R I M A   1 , 1 , 1     model and the usefulness of both approaches for energy consumption efficient forecasting.
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1. Introduction


Brazil, Russia, India, China, and South Africa (BRICS countries) belong to the most prominent and fastest developing economies. Although the dynamics of their growth differ across countries, they consume more and more energy. The study aims to forecast energy consumption in Brazil, China, India, Russia, and South Africa at both aggregates and disaggregate levels based on the time series observed in the years 1992–2019.



Energy plays the most crucial role in the development and achieving the sustainable economic growth of any country. The significance of energy is more critical in countries with less reserve or domestic energy sources (oil, gas, coal, hydro, etc.). BRICS is falling in the list of countries spending many energy resources to fulfill their domestic needs in residential, agricultural, and industrial requirements. The financial spending on the import of crude oil is an extra burden on the economy. Therefore, there is a need for correct forecasting about energy consumption.



In the modern era, due to globalization, the relationship among different countries are more tied up with each other in terms of social, political, and economy-wise. There is fierce competition among the developed as well as developing countries. For fulfilling the economic challenges of the 21st century, every nation is trying to achieve a sustainable level of economic growth, so countries need a sustainable supply of energy to run their economies properly. Ultimately, energy requirements lead the energy consumption in the country. However, there is vast potential to address this hot issue because massive flaws have been observed due to the traditional techniques.



The global energy consumption in 2019 amounted to 173,340 tera-watt hours, while BRICS participated in this consumption in 35.79%. Particularly China is the leading energy consumer globally, consuming up to 22.71% of the global magnitude. It can also be observed that global energy consumption tends to decrease annually by 1–2%. However, in Brazil, China, India, and South Africa, energy consumption exhibits positive growth rates. On the other hand, Russia is reducing its energy consumption, and it follows the global decreasing trend.



When looking at the particular energy sources, the global energy consumption consisted of 30.93% oil, 25.30% coal, 22.67% natural gas, 8.00% biofuels and waste, 6.03% hydro, 4.00% nuclear, and 3.07% others in 2019. Taking into account global energy consumption structure, in the paper, the focus is put on the aggregate energy consumptions and traditional energy sources, which are to be limited over time but still play a crucial role in energy consumption and keeps particular countries far from sustainable development goals. Thus, the following disaggregates are included: oil, coal, natural gas, and hydro energy.



The paper’s novelty lies in applying the fractional-order   G M   1 , 1     model (  F G M   1 , 1    , hereafter) proposed by [1] to forecasting energy consumption in BRICS countries at both aggregates and disaggregates levels. This is the first application of this model in the empirical analysis to the authors’ best knowledge. That is why the model needs to compare to well-known forecasting techniques based on the time series analysis, such as a standard grey model   G M   1 , 1       proposed by [2] and Auto Regressive, Integrated, Moving Average (  A R I M A   1 , 1 , 1    ), which was initially proposed by [3]. The model comparison is two-fold. In the first step, standard measures of forecasting accuracy such as mean square error (MSE) and mean absolute percentage error (MAPE). In contrast, in the second one, the models are compared for equal forecasting ability using the Diebold-Mariano test [4].



The rest of the paper has organized as follows. Section 1.1 provides an energy profile of BRICS countries, and Section 1.2 reports the relevant literature review. Section 2 provides materials and methods. Section 3 presents the empirical results. Section 4 provides the discussion of results. The final Section 5 concludes the paper and discusses policy implications.



1.1. Energy Profile of BRICS Countries


In this Section, we briefly present the energy profile of BRICS. There is enormous potential in the energy sector of BRICS. The facts and figures of the following energy for BRICS have been taken from the BRICS energy report, 2020.



Brazil generated 306.8 million tons of oil equivalent (mtoe) of primary energy in 2018, with 14 mtoe of unutilized energy and natural gas reinjection (in 2019: 327 and 17 mtoe, respectively). Production of oil surpassed demand by 52.5%, accounting for most of the Brazilian surplus (in 2019: 64%).



After China and the United States (US), Russia is the world’s third-largest producer and user of energy resources, accounting for 10% of global production and 5% of global consumption. The Russian energy complex, which includes the oil, gas, coal, electricity, and heat supply industries, is a significant source of revenue for the Russian Federation’s budget.



After the US and China, India is the world’s third-largest energy user, producing around 6% of global demand. Between 2010 and 2019, the country’s energy consumption increased by 50%. At the same period, coal accounts for 56% of global primary energy output. India produces just over half of its oil. The level and structure of energy production have changed significantly between 2010 and 2019: the volume of energy production has increased by 40%. The share of conventional biomass replaced by coal in the energy mix has decreased significantly.



China’s energy output grew steadily in 2018, reaching 3.77 billion tons of coal equivalent, up 5.0 percent year on year and the highest amount in the last six years, accounting for 18.7% of global production. In 2018, fossil fuels accounted for 81.8 percent of China’s energy output, with coal accounting for 69.1% and non-fossil accounting for 18.2%. China has surpassed the US as the world’s largest hydropower, wind power, and solar power installed capacity nation. China’s overall energy consumption in 2018 was 4.64 billion tons of coal equivalent, up 3.3 percent year on year. China’s low rate of energy consumption growth helps to sustain the country’s medium-high-speed economic growth.



The Republic of South Africa (RSA) is the continent’s second-largest energy user. South Africa’s total primary energy consumption in 2019 was 135 mtoe, down 5.6 percent from 2010. Coal dominates the energy demand structure, accounting for about 75% of total consumption. South Africa is a net energy exporter, exporting more than 45 mtoe of coal to global markets each year, while having minimal domestic oil and natural gas output and relying on imports for most of these fuels. The structure of energy production has remained nearly unchanged since 2010, but overall production has decreased slightly.




1.2. Literature Review


Many studies explore energy-related issues, but most studies focused on the causal relationship between energy consumption and economic growth using univariate or multivariate analysis. The previous studies found inconsistent results. We can categories the results of earlier investigations into four different groups. (1) Many studies found bidirectional causality, including [5] for Korea. (2) Some studies found unidirectional causality while estimating electricity consumption to GDP. The studies of [6] for Turkey; [7] for Taiwan; [8] for Turkey, France, Germany, and Japan found strong evidence of unidirectional causality. (3) Some authors found evidence of unidirectional causality estimating results from economic growth to electricity consumption; [9] for New Zealand and Australia; [10] for Sweden. (4) The last group of studies found no evidence of causality between electricity consumption and economic growth [11]. The above examples show a strong need for energy consumption forecasting and linking it to economic growth and an energetic sustainable policy in the future.



There is a large plethora of literature available on the issue of energy consumption forecasting. Many studies used   A R I M A   methods for forecasting energy consumption, e.g., [12,13,14,15,16,17,18,19,20,21,22], and some studies were forecasted by comparing the   A R I M A   approach with some other methods. On the other hand, some studies used the grey methods for energy consumption forecasting. Referring only to the BRICS group of countries, there is numerous literature on energy consumption in China. Besides, Brazil and India are sometimes represented; however, Russia and South Africa are rarely the analysis subjects.



In past research, [17] investigated energy demand in the transport sector using   A R I M A  , exponential smoothing, and multi-regression models. On the other hand, the study of [19] forecasted China’s primary energy consumption by comparing the   A R I M A   and grey models. In [20], the authors estimated electricity consumption for Brazil by applying the Spatial   A R I M A   model. There are very few studies that evaluated energy consumption for BRICS by using the   A R I M A   model. Some studies forecasted energy consumption using the   A R I M A   forecasting method like [12,13,14,15,16,17,19] for China, [20] for Brazil, and [22] for South Africa. On the other hand, some studies used the grey Markov method with rolling mechanism and singular spectrum analysis for energy consumption forecasting like [23] for India. Similarly countrywide studies are [19,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81] for China; [15] for the US; [82] for China and India; [83] for BRICS; [84] for China and US, [85,86] for Brazil, and [87] for Asian countries.



The grey forecasting method proposed by [2] has gained popularity among researchers because it is efficient in a small number of observations [17]. Similarly, the grey method is suitable to tackle forecasting in the case of inaccuracy of data. There are numerous applications of grey models; many of them are related to energy consumption.



In [21], the authors analyzed several versions of grey models (e.g., grey model including   G M   1 , 1    ;   G M   1 , n    ; Rolling   G M   1 , 1     Rolling   G M   1 , 1 ,  X n      and Rolling   N O G M N   1 , 1    , and forecasted electricity consumption from 2015 to 2020. The study [32] analyzed electricity consumption for China using the continuous fractional-order grey model and forecasted from 2010 to 2014. In [34], authors analyzed grey   G M   1 , 1    , Gross weight grey model, and   G V G M   1 , 1     for China and forecasted from 2010 to 2020. In [35], authors analyzed energy consumption for China using the improved hybrid grey model (INHGM-Markov) and forecast from 2018 to 2022.



Some researchers developed the model’s extended versions using the standard   G M   1 , 1     grey forecasting model, as [25] proposed an improved version of the seasonal rolling grey prediction model to estimate the accurate forecasting for traffic flow problems. Moreover, [26] proposed fractional-order accumulation techniques and forecasted from 1999 to 2007 for China and from 1999 to 2008 for the US. [27] developed a new time-delayed polynomial grey model, which has shown outstanding results when forecasting China’s natural gas consumption and forecasted from 2005 to 2013 and 2014 to 2020. [28] predicted China’s energy consumption by incorporating genetic programming in the grey prediction approach and forecasted from 2004 to 2007. Similarly, [29] developed a generalized fractional-order grey model using the fractional calculus and forecasted it from 2010 to 2014. [46] forecast coal stockpiles for China using grey spontaneous combustion forecasting models and forecasted from day 11 to 20. [47] analyze the electricity consumption for China using grey prediction with the nonlinear optimization method and forecasted from 2014 to 2020. [48] examined electricity consumption using grey   G M   1 , 1     and combined improved grey (  D C O G M   1 , 1    ) prediction models and forecasted from 2017 to 2021. The results show that   D C O G M   1 , 1     shows better results than the traditional grey     G M   1 , 1     model. [49] analyzed electricity consumption for China using the grey polynomial prediction model and forecasted from 2011 to 2015. [50] analyzed the energy vehicle industry for China using grouping approach-based nonlinear grey Bernoulli model (DGA-based   N G B M   1 , 1    ) and   G M   1 , 1     forecasting from 2018Q1 to 2020Q4. [57] forecast for by using Self-adaptive intelligence grey predictive model and forecasted for 2014. The results indicate that the Self-adaptive grey model shows better results than   G M   1 , 1     and discrete grey (  D G M   1 , 1   )   models. The study [87] used a hybrid dynamic grey model for forecasting electricity consumption for China and the US.





2. Materials and Methods


This Section is divided into three Sections related to data sources description, forecasting models, and forecasting accuracy.



2.1. Data Sources and Descriptive Statistics


The present study is based on the secondary data source consisting of annual observations on the BRICS economy for 1992–2019. The starting date is limited by the case of Russia being founded in 1991 after the dissolution of the Soviet Union. The currents study uses the energy consumption in BRICS and for empirical analysis. The data on energy consumption (EC) at aggregate and disaggregate energy consumption components (oil, gas, coal, and hydroelectric) are taken from British Petroleum (BP-2019) Statistical Review of World Energy. All variables are measured in a million tons of oil equivalent (mtoe) units, and the description of variables is as: (1) Aggregate energy consumption (agg); (2) Oil consumption (oil); (3) Gas consumption (gas); (4) Coal consumption (coal); (5) Hydroelectric consumption (hydro).



To begin the analysis, the time series are presented in Figure A1 in the Appendix. One can notice that in most cases, energy consumption was growing over time. Only in Russia, a decreasing trend is observed in coal energy consumption. Total (aggregate) energy consumption was decreasing in 1992–1998. Oil and gas consumption decreased in 1992–1996; since that time, a growing tendency has been observed.



The descriptive statistics of the selected aggregate and disaggregate energy consumption series of BRICS are provided in Table A1 in the Appendix. The mean value of “agg” ranges from 111.4 (mtoe) in South Africa to 1909.42 (mtoe) in China, in BRICS countries. However, the mean value of “coal” ranges from 13.71 in Brazil to 1298.20 in China. Similarly, the average “gas” is lowest in South Africa with 2.42, while it is highest in Russia with 346.38. On the other hand, average “hydro” is lowest in South Africa with 0.30 and highest in China with 123.78. Finally, average “oil” is lowest in South Africa with 24.55, while it is highest in China with 360.67 mtoe.



As far as variability, measured by the standard deviation, is concerned, the BRICS countries are pretty diversified, according to different energy sources. South Africa has the smallest value (13.51 mtoe), while China has the highest value (919.14 mtoe) for aggregate energy consumption. China exhibits maximum variability for aggregate and disaggregates time series (coal, gas, oil, and hydro). The variability coefficients expressed as standard deviation/mean ratio, amounted from 42.9% for “coal” to 94.7% for “gas”. It is related to the highest energetic expansion of the Chinese economy over the last four decades. India shows the second-highest variability coefficients. The amount from 23.8% for oil to 42.4% for gas. Russia exhibits the most negligible variability (from 4.8% for hydro to 16.9% for oil).



The study testing for normality using Jarque and Bera test [88] indicates that most of the time series satisfied the normal distribution. Only aggregate energy consumption and coal energy consumption in Russia do not fulfill this condition. The departures from normality do not deteriorate the results. In the case of   F G M   1 , 1    , a normal distribution is not assumed. It is necessary for estimating the   A R I M A   1 , 1 , 1     parameters. However, when the number of observations is relatively tiny (T = 28), such deviations are admissible.



The unit root characteristics of the time series are presented in Table A2. Most cases confirmed the unit root hypothesis apart from four series, i.e., Russia’s “agg”, “coal” and “hydro” energy, and South Africa’s “hydro” energy, which were stationary. In the case of China’s “gas” and “oil” the order of integration was bigger than one. In these cases,   A R I M A   1 , 1 , 1     was not applicable.




2.2. Methodology


The current study is based on   F G M   1 , 1       grey model. The model was introduced to the literature in 2019. Its application to energy consumption forecasting is still not recognized by the authors of the paper [1] based on simulation results. In the current study, the   F G M   1 , 1     model is compared to a standard   G M   1 , 1     model, as well as the   A R I M A     p , d , q     widely recognized in the forecasting literature. We focus on model comparison in terms of forecasting ability.



2.2.1. Unit Root Testing and ARIMA (p,d,q) Model


The most recognized representation for nonstationary time series is the   A R I M A   model that can be written in the form:


  ∅  L      1 − L    d     Y t  −  μ t    = θ  L   ε t   



(1)




where   ∅  L   , and   θ  L      are polynomials in the lag operator,  L , defined such that    L n   x t  =  x  t − n    ,    μ t   , is the unconditional mean,  d  is the order of integer differencing, and    ε t    is a white noise process (i.i.d. normally distributed) (for further details, see [3,89]). This model is termed an   A R I M A   p , d , q     to indicate  p  lags in the   A R   and  q  lags in the   M A   terms, and  d  is an integer differencing. To estimate the parameters of the   A R I M A   model, the maximum likelihood method is recommended. The model selection procedure, related to lag parameters  p  and  q , is based on the Akaike information criterion (AIC) and Bayesian information criterion (BIC) [90].   A R I M A   model refers to integrated time series, which become stationary after d-th times differencing. To determine whether a time series is stationary or not, the Augmented Dickey and Fuller test is typically used [91].




2.2.2. Fractional-Order GM (1, 1) Model


The construction of the fractional-order   G M   1 , 1       grey model methodology is explained by [1]. As it is quite a new approach, it is presented in this Section.



Definition 1.

The sequence of raw data series is   X   0    =  x   0     1  ,  x   0     2  . . . . . ,  x   0      n )   ,  where  r ∈  R +   , which is known as   X   r    = (  x   r     1   ,     x   r     2   ,     x   r     1   ,……,     x   r     n  )  is the r th-order accumulating sequence of   X   0    = (  x   0     1   ,     x   0     2   ,……,     x   0     n  )   [55] where   Γ  n    is denoting the gamma function,





    x  ( r )    ( k )  =   ∑   i = 1  k    Γ ( r + k − i )   Γ ( k − i + 1 ) Γ ( r )    x  ( 0 )   ( i ) , k = 1 , 2 … , n   



(2)









Definition 2.

Assume that   X   0    = (  x   0     1  ,  x   0     2  , … … … . ,  x   0      n )    is the sequence of raw data, where  r ∈  R +   , which is known as     X   r    = (  x    − r      1   ,     x    − r      2   , ……,     x    − r      n  )  is the rth order reducing generation sequence of   X   0    =    x   0     1  ,    x   0     2  , … … … ,    x   0     n      [55]. where,





    x  ( − r )    ( k )  =   ∑   i = 0   k − 1     ( − 1 )  i    Γ ( r + 1 )   Γ ( i + 1 ) Γ ( r − i + 1 )    x  ( 0 )   ( k − i )   



(3)









Definition 3.

Assume that   X   r    = (  x   r     1   ,     x   r     2   ,  . .  …,     x   r     n  )  is defined as Definition 1, and   X    − r     = (  x    − r      1   ,     x    − r      2   ,………,     x    − r      n  )   is followed the Definition 2.



Thus,    Z    − r     = (  z   r     2   ,     z   r     3   ,………,     z   r     n   , where


    Z   r    ( k ) =    x   r     k  +  x   r      k − 1    2      ,   k = 2 , 3 , 4 , … … … . , n ,   



(4)









The model formula


   x    r − 1      k  + a  z   r     k  = b  



(5)




is representing the   F G M   1 , 1    . The FGM(1,1) introduced a fractional-order r, which can take non-integer values. The following conditions are distinguished: if r = 1, Equation    5    is representing the   G M   1 , 1    


   x   0     k  + a  z   1     k  = b ,  








Which is called as standard grey   G M   1 , 1     model described in [2] if r = 0, Equation    5    is representing the direct   G M   1 , 1     modeling.





    x    − 1      k  + a  z   0     k  = b   











It is expected that the development coefficient  a  to be negative and the intension parameter  b  to be positive (See, [92] chapter 7, p. 149).




2.2.3. Forecasting Accuracy Measures


The most popular measures of forecast accuracy concentrate on computing forecast errors. There are plenty of such measures, such as MSE and MAPE (See, [93] (p. 309). Their usefulness consists of showing the differences in accuracy of computed forecasts but say nothing about the method of forecasting.



In 1995, ref. [4] derived a testing procedure of equal predictive accuracy. The hypothesis to be tested says that the alternative methods are equally accurate on average. The general idea of Diebold-Mariano’s test relies on two-time series, including actual values and forecasts of a predicted variable, say    y t    and     y ^   i t    , as well as on the loss function depending on the forecast and actual values only through the forecast error, defined as:   g    y t  ,   y ^   i t     = g     y ^   i t   −  y t    = g    e  i t      . The loss function may take many different forms, which is discussed further in this part. What we compare is a loss differential between the two forecasts, coming from two competing models of the form:   d  t  = g    e  1 t     − g    e  2 t      . The forecasting methods are equally accurate if   E   d  t    = 0  , which is assumed under the null hypothesis.



This paper applied the Diebold-Mariano test to compare a standard   G M   1 , 1       model,     A R I M A   1 , 1 , 1    , and   F G M   1 , 1       model estimated for different  r  values. The loss function based on the mean square error was selected for comparison because the differences between forecast errors were relatively low. It is worth emphasizing that such a comparison is possible only if a sufficient number of observations are necessary to estimate the   A R I M A   model.






3. Results


The results of forecasting energy consumption using the   F G M   1 , 1       model are presented in Table 1 for aggregate energy consumption and in Table A3, Table A4, Table A5 and Table A6 for disaggregates energy consumption. All results of aggregate and disaggregate energy consumption is reported with the following values: MAPE, MSE, development coefficient ( a ), and grey input (  b ) .   In the   F G M   1 , 1   ,     different ( r ) values are applied. In the study, r = {− 1.5; − 0.9; − 0.5; − 0.1; − 0.05; − 0.01; 0; 0.01; 0.05; 0.1; 0.5; 0.9; 1; 1.5}.



In Table 1, the results of aggregate energy consumption are reported. The minimum MAPE values were taken as the main criterion of model selection. Additionally, the assumptions for a < 0 and b > 0 were to be fulfilled. For Brazil, the order ( r ) is  r  = 0.9 with the minimum MAPE= 3.43; for China, the order ( r ) is  r  = 0.5 with the minimum MAPE= 10.030; for India, the order ( r ) is  r =1 with the minimum MAPE = 2.163, and for Russia, the order ( r ) is  r  = 1 with the minimum MAPE = 3.632. Finally, South Africa has the least MAPE = 21.565 with the parameters   a = − 0.001  , and   b = 1.376 ,   where the value of  r  = 0.



In Table A4, the results of gas consumption are reported. For Brazil, the order ( r ) is  r = 0.1 with the minimum MAPE = 22.262 with the appropriate sign of grey parameters. For China, the order ( r ) is  r  = 1 with the minimum MAPE = 18.884; for India, the order ( r ) is  r  = 0.1 with the minimum MAPE =7.842, and for Russia, the order ( r ) is  r  = 1 with the minimum MAPE = 3.408. For South Africa, the best model is for the value of  r  = 0.9. It has the least MAPE = 30.042.



In Table A5, the results of coal consumption are reported. For Brazil, the order ( r ) is  r  = 1 with the minimum MAPE = 8.040, for China, the order ( r ) is  r  = 0.5 with the minimum MAPE = 13.971, for India, the order ( r ) is  r  = 1 with the minimum MAPE = 4.489, and for Russia, the order ( r ) is  r  = 1.5 with the minimum MAPE = 12.986. South Africa has the least MAPE = 3.335, where the value of  r  = 0.9.



Finally, in Table A6, the results of hydro energy consumption are reported. For Brazil, the order ( r ) is  r  = 0.9 with the minimum MAPE = 5.552. For China, the order ( r ) is  r  = 1 with the minimum MAPE = 11.418, for India, the order ( r ) is  r  = 1 with the minimum MAPE = 8.642, for Russia, the order ( r ) is  r  = 1.5 with the minimum MAPE = 14.648, and for South Africa, the order ( r ) is  r  = 1.5 with the least MAPE = 122.067.



Summing up, the most frequently   F G M   1 , 1     model with r = 0.9 and r = 1 were supported by the data. Quite often, the following values: r = 1.5 and r = 0.1 were indicated. Moreover, r = 0.5 was shown twice and r = 0 once. It means that the   F G M   1 , 1     model outperformed the   G M   1 , 1     in terms of energy consumption prediction since it allows more flexible fitting to the time series’ actual values. As r = 1 corresponds to the   G M   1 , 1    , one can notice that this model is quite valuable for energy consumption prediction.



As mentioned in Section 2.2.3, the results of forecasting can be compared, and the models’ effectiveness in prediction can be evaluated using the Diebold-Mariano test. The results of the model comparison are presented in Table 2.



The conclusion of model comparison using the Diebold-Mariano test is that the   F G M   1 , 1     for many values of r,   G M   1 , 1    , and   A R I M A   1 , 1 , 1     possess an equal predictive ability for energy consumption forecasting in BRICS countries. This is a universal conclusion, since if the observation number is large, one can rely on both the stochastic time series model like ARIMA and grey type models. As concerns   F G M   1 , 1    , for small negative r values like −1.5, the results are much worse. This conclusion is useful because one can limit the range of possible  r  values between (− 1.00; + 1.00). The two results (China, hydro  r  = 0.00 and India coal,  r  = − 0.05), when the null hypothesis of equal predictive ability was rejected, can be considered random.




4. Discussion


BRICS countries belong to the developing economies group, although China has become a global competitor in some areas [94]. Developing countries desire precise forecasts of both scales of growth and energy consumption. They also need to optimize energy exploitation from different sources and adopt new technologies for renewable energy sources. As the economy grows, energy consumption increases as well. It is a danger in increasing energy consumption over a very long time. According to the law of entropy, the resources are limited, and too much recycling will result in energy waste [95]. Proponents of ecological economics consider the problem of sustainability to be that of sustainable macroeconomic scale, acknowledging the possibility that the economy may become or may already be so large that it places demands on the environment exceeding its carrying capacity [96].



However, there are strict limitations to energy consumption. They divide into global and country-specific limitations. Global recommendations origin is in the United Nations’ 2030 Agenda for the Sustainable Development Goals (SDGs), which all 193 UN member states accepted. Among 17 SDGs, goal 7 assumes access to affordable, reliable, sustainable, and modern energy for all, and goal 13 covers urgent action to combat climate change and its impacts. Country-specific limitations consist of natural resource exploitation, technology for energy production, and transformation and consciousness of the necessity of rationalization. Considering the above, the energy policy of BRICS countries needs continuous monitoring for forecasting accuracy and its structure according to the SDGs requirements. The most important policy recommendation is to shift energy consumption from fossil fuels (oil, gas, coal, oil shales, etc.) to renewable energy consumption. The less usage of fossil fuel will be more beneficial for the environment by providing environmental awareness.



The results of the grey and   A R I M A   models’ comparison presented in the current paper revealed as follows:




	
Fractional Grey Model   F G M   1 , 1     allows a broad spectrum of parameters that adjust to the empirical data. An FGM-based approach is more comprehensive than the standard   G M   1 , 1     model, which is “a special case” of   F G M   1 , 1     for  r  = 1.



	
According to the Diebold-Mariano test results, the estimated   F G M   1 , 1     models taking parameters’ range (−1; 1) confirmed equal predictive ability with   G M   1 , 1     model as well as   A R I M A   1 , 1 , 1     model.



	
Although grey-type models are mostly recommended for short time series, their predictive ability is equal to   A R I M A   models designed for long time series. However, taking values of MSE and MAPE in empirical study,   A R I M A   1 , 1 , 1     model highly outperformed   F G M   1 , 1     in 19 cases on 25. In six cases,   A R I M A   1 , 1 , 1     were not applicable. For Chinese oil and gas consumption, the time series was integrated of higher order than one. The remaining four series were stationary.



	
For some parameter “ r ” values, empirical   F G M   1 , 1     models do not satisfy the grey model assumption, i.e.,   a < 0   and   b > 0  . In such circumstances, it is recommended to estimate the model for another “ r ” parameter value.



	
Grey-type models are helpful for forecasting in the case when only a few observations are available. Still, for long and nonstationary time series, standard time series models perform better.








In the paper [97], the authors provided a methodological comparison of probability models, fuzzy math, grey systems, and rough sets. It appears that grey models are evidently preferred in the case of small samples and incomplete information sets. They concentrate on the law of reality. On the other hand, stochastic models, such as   A R I M A   are designed for large samples and follow historical law. The general conclusion that both types of models possess equal predictive ability indicated by the Diebold-Mariano test allows selecting the proper procedure for a given data set and forecasting perspective. The exact values of MAPE and MSE are less informative because they are valid only for a given sample. Therefore, the presented results are in line with both theory and expectations.




5. Conclusions


The BRICS are emerging economies concerning the production and management of resources and require a consistent supply of having energy resources. The BRICS countries should monitor energy consumption, focusing on the supply-demand gap of energy and its components and facilities provided to local and foreign investors. Therefore, forecasting is quite significant for energetic policy projection. Accurate forecasts of energy consumption are vital when demand grows faster. On the other hand, BRICS’s energy consumption values can be offered as fluctuating and increasing.



This study aimed to predict energy consumption in BRICS. Firstly, this paper focused on forecasting the annual energy consumption for BRICS using two types of models. It compared   A R I M A  , and   F G M   1 , 1       models by estimating the errors (MAPE) and (MSE) in the years 1992–2019. Secondly, the results have revealed that   A R I M A   1 , 1 , 1     outperformed   F G M   1 , 1       when in-sample estimating errors are compared. Thirdly, model comparison using the Diebold-Mariano test confirmed the equal predictive ability of   A R I M A   1 , 1 , 1     and   F G M   1 , 1     unless the FGM parameter ranges (− 1, 1). The results allow concluding that if the number of observations is large enough, stochastic models such as   A R I M A   and grey models such as FGM are helpful for energy consumption forecasting. The procedure enabled narrowing the range of possible parameter values for r in the Fractional   G M   1 , 1    .



Moreover, the empirical findings allow formulating some recommendations. BRICS countries need to follow SDGs concerning energetic policy keeping their economic growth level increasing. It implies a gradual structural change from traditional towards renewable energy sources. A structural change always means a significant limitation of the number of observations; therefore, the   F G M   1 , 1     model is recommended for predicting energy consumption in aggregate and disaggregate levels.
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Table A1. Summary statistics of energy consumption for BRICS in 1992–2019.
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Brazil

	
Russia

	
India

	
China

	
South Africa




	
Variable

	
Agg

	
Oil

	
Gas

	
Coal

	
Hydro

	
Agg

	
Oil

	
Gas

	
Coal

	
Hydro

	
Agg

	
Oil

	
Gas

	
Coal

	
Hydro

	
Agg

	
Oil

	
Gas

	
Coal

	
Hydro

	
Agg

	
Oil

	
Gas

	
Coal

	
Hydro






	
Mean

	
224.48

	
97.12

	
17.87

	
13.72

	
75.63

	
668.91

	
146.39

	
346.38

	
102.32

	
39.16

	
456.45

	
140.38

	
31.60

	
249.51

	
23.24

	
1909.42

	
360.69

	
81.16

	
1298.20

	
123.78

	
111.94

	
24.55

	
2.42

	
81.39

	
0.30




	
Med

	
214.21

	
91.52

	
17.54

	
13.00

	
78.15

	
670.93

	
137.99

	
352.03

	
99.16

	
39.55

	
405.72

	
129.09

	
30.18

	
215.24

	
23.71

	
1892.64

	
346.59

	
45.04

	
1389.66

	
95.99

	
115.44

	
25.47

	
2.91

	
82.57

	
0.26




	
Max

	
296.25

	
129.59

	
36.92

	
17.62

	
95.44

	
819.31

	
238.82

	
390.80

	
156.98

	
42.10

	
813.50

	
244.53

	
51.84

	
444.73

	
34.46

	
3384.43

	
666.52

	
264.26

	
1969.07

	
270.33

	
129.00

	
28.62

	
3.91

	
93.82

	
0.68




	
Min

	
139.15

	
64.37

	
3.19

	
10.68

	
53.34

	
598.74

	
125.21

	
297.00

	
83.93

	
36.20

	
218.18

	
63.79

	
12.41

	
123.67

	
16.16

	
758.40

	
134.64

	
13.68

	
578.80

	
31.21

	
88.12

	
17.92

	
0.80

	
66.35

	
0.03




	
S. D.

	
52.31

	
18.04

	
11.20

	
2.09

	
11.44

	
48.43

	
24.75

	
24.91

	
16.69

	
1.89

	
188.65

	
53.38

	
13.40

	
108.11

	
5.53

	
919.14

	
167.76

	
76.87

	
557.56

	
81.93

	
13.51

	
3.05

	
1.25

	
8.99

	
0.17




	
Ske

	
0.04

	
0.05

	
0.19

	
0.46

	
-0.27

	
1.05

	
2.24

	
−0.26

	
1.75

	
−0.08

	
0.47

	
0.39

	
0.12

	
0.53

	
0.16

	
0.16

	
0.30

	
0.98

	
−0.05

	
0.54

	
−0.33

	
−0.65

	
−0.14

	
−0.19

	
0.98




	
Kurt

	
1.61

	
2.07

	
1.66

	
1.98

	
2.09

	
4.77

	
8.47

	
2.01

	
5.97

	
1.71

	
1.90

	
2.15

	
1.57

	
1.83

	
1.72

	
1.44

	
1.77

	
2.73

	
1.24

	
1.78

	
1.63

	
2.31

	
1.20

	
1.59

	
3.19




	
J-B

	
2.25

	
1.03

	
2.28

	
2.19

	
1.29

	
8.78

	
58.27

	
1.45

	
24.65

	
1.98

	
2.44

	
1.53

	
2.45

	
2.91

	
2.03

	
2.96

	
2.16

	
4.59

	
3.62

	
3.09

	
2.72

	
2.50

	
3.86

	
2.50

	
4.53




	
Prob

	
0.32

	
0.60

	
0.32

	
0.33

	
0.52

	
0.01

	
0.00

	
0.48

	
0.00

	
0.37

	
0.29

	
0.46

	
0.29

	
0.23

	
0.36

	
0.23

	
0.34

	
0.10

	
0.16

	
0.21

	
0.26

	
0.29

	
0.15

	
0.29

	
0.10




	
Obs.

	
28

	
28

	
28

	
28

	
28

	
28

	
28

	
28

	
28

	
28

	
28

	
28

	
28

	
28

	
28

	
28

	
28

	
28

	
28

	
28

	
28

	
28

	
28

	
28

	
28








Note: Med: Median; Max = Maximum; Min=Minimum; S.D. = Standard deviation; Ske = Skewness; Kurt = Kurtosis; J-B = Jarque-Berra; Prob = Probability; Ob s = Observations.
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Table A2. Unit Root (ADF) Testing for BRICS in 1992–2019.
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Brazil

	
Russia

	
India

	
China

	
South Africa




	

	
Variable

	
Agg

	
Oil

	
Gas

	
Coal

	
Hydro

	
Agg

	
Oil

	
Gas

	
Coal

	
Hydro

	
Agg

	
Oil

	
Gas

	
Coal

	
Hydro

	
Agg

	
Oil

	
Gas

	
Coal

	
Hydro

	
Agg

	
Oil

	
Gas

	
Coal

	
Hydro






	
Level

	
Statistic

	
−0.992

	
0.101

	
−0.718

	
−1.575

	
−1.882

	
−3.761

	
−2.499

	
−0.859

	
−3.421

	
−3.403

	
−0.822

	
2.436

	
−0.801

	
2.449

	
−0.598

	
0.227

	
2.157

	
3.298

	
−0.801

	
1.651

	
−1.282

	
−2.214

	
−0.539

	
−1.513

	
−3.760




	
Prob.

	
0.741

	
0.958

	
0.826

	
0.481

	
0.335

	
0.009 *

	
0.127

	
0.785

	
0.020 *

	
0.020 *

	
0.950

	
1.000

	
0.802

	
1.000

	
0.855

	
0.969

	
1.000

	
1.000

	
0.801

	
0.999

	
0.623

	
0.206

	
0.868

	
0.512

	
0.009 *




	
First difference

	
Statistic

	
−4.052

	
−4.186

	
−3.516

	
−5.597

	
−4.586

	
−3.286

	
−4.259

	
−4.843

	
−3.707

	
−5.383

	
−6.050

	
−3.713

	
−3.653

	
−3.373

	
−5.749

	
−2.202

	
−4.722

	
0.605

	
−2.556

	
−6.243

	
−5.892

	
−5.038

	
−4.671

	
−5.908

	
−4.463




	
Prob.

	
0.005 *

	
0.004 *

	
0.018 *

	
0.000 *

	
0.001 *

	
0.026 *

	
0.003 *

	
0.001 *

	
0.011 *

	
0.000 *

	
0.000 *

	
0.010 *

	
0.012 *

	
0.022 *

	
0.000 *

	
0.210 *

	
0.001 *

	
0.986

	
0.116

	
0.000 *

	
0.000 *

	
0.000 *

	
0.001 *

	
0.000 *

	
0.002 *








Note: * indicate the rejection of the null hypothesis of a unit root at the 1% significant levels, respectively; agg = aggregate. ADF test with intercept. 
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Figure A1. Graphical trends of energy consumption for BRICS in 1992–2019. 
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Table A3. Mean absolute percentage error (MAPE) and mean square error (MSE) for oil consumption of BRICS in 1992–2019.
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FGM (1, 1) for Brazil

	
ARIMA(1, 1, 1)




	
r = 0

	
r = 0.01

	
r = 0.05

	
r = 0.1

	
r = 0.5

	
r = 0.9

	
r = 1

	
r = 1.5

	
r = −0.01

	
r = −0.05

	
r = −0.1

	
r = − 0.5

	
r = − 0.9

	
r = −1.5

	




	
MSE

	
49.603

	
49.386

	
115.761

	
52.035

	
61.483

	
42.264

	
47.209

	
554.869

	
50.008

	
54.215

	
66.398

	
55.720

	
57.320

	
13,798.910

	
12.622




	
MAPE

	
5.180

	
5.229

	
3.437

	
5.828

	
6.954

	
5.030

	
5.632

	
17.095

	
5.128

	
5.157

	
5.645

	
5.899

	
6.013

	
115.989

	
2.552




	
a

	
0.053

	
0.055

	
0.060

	
0.062

	
0.024

	
−0.013

	
−0.020

	
− 0.050

	
0.051

	
0.038

	
0.014

	
0.525

	
1.234

	
2.701

	
—




	
b

	
6.992

	
7.501

	
9.428

	
11.640

	
29.519

	
60.981

	
73.023

	
181.164

	
6.471

	
4.276

	
1.513

	
9.415

	
3.614

	
− 4.374

	
—




	

	
FGM (1, 1) for China

	




	
r = 0

	
r = 0.01

	
r = 0.05

	
r = 0.1

	
r = 0.5

	
r = 0.9

	
r = 1

	
r = 1.5

	
r = −0.01

	
r = −0.05

	
r = -0.1

	
r = −0.5

	
r = −0.9

	
r = −1.5

	




	
MSE

	
173.090

	
163.078

	
135.180

	
118.389

	
145.729

	
231.141

	
346.868

	
4,832.628

	
184.703

	
137.248

	
433.358

	
83,239.662

	
4709.281

	
93,920.959

	
NA




	
MAPE

	
3.866

	
3.716

	
3.198

	
2.795

	
3.745

	
4.356

	
5.595

	
14.754

	
4.025

	
3.894

	
6.633

	
80.335

	
23.117

	
90.676

	
NA




	
a

	
−0.032

	
−0.032

	
−0.030

	
−0.029

	
−0.036

	
−0.052

	
−0.056

	
−0.076

	
− 0.033

	
0.004

	
−0.039

	
−0.028

	
1.073

	
1.877

	
—




	
b

	
8.143

	
8.747

	
11.243

	
14.555

	
51.763

	
124.539

	
152.515

	
403.135

	
7.548

	
4.943

	
2.562

	
−2.197

	
28.462

	
0.568

	
—




	

	
FGM (1, 1) for India

	




	
r = 0

	
r = 0.01

	
r = 0.05

	
r = 0.1

	
r = 0.5

	
r = 0.9

	
r = 1

	
r = 1.5

	
r = −0.01

	
r = −0.05

	
r = −0.1

	
r = −0.5

	
r = −0.9

	
r = −1.5

	




	
MSE

	
24.484

	
26.001

	
32.126

	
39.551

	
53.420

	
17.790

	
21.358

	
653.221

	
22.992

	
18.043

	
26.741

	
1694.731

	
445.230

	
19,010.504

	
14.203




	
MAPE

	
3.248

	
3.343

	
3.651

	
4.148

	
5.602

	
2.457

	
3.206

	
15.675

	
3.140

	
2.741

	
3.453

	
33.074

	
15.496

	
96.138

	
2.112




	
a

	
−0.038

	
−0.037

	
−0.032

	
−0.028

	
−0.027

	
−0.042

	
−0.046

	
−0.067

	
−0.039

	
−0.045

	
−0.054

	
0.147

	
1.464

	
2.613

	
—




	
b

	
1.392

	
1.704

	
2.987

	
4.670

	
22.514

	
56.272

	
69.239

	
185.918

	
1.084

	
−0.109

	
−1.493

	
4.815

	
13.837

	
−0.474

	
—




	

	
FGM (1, 1) for Russia

	




	
r = 0

	
r = 0.01

	
r = 0.05

	
r = 0.1

	
r = 0.5

	
r = 0.9

	
r = 1

	
r = 1.5

	
r = −0.01

	
r = −0.05

	
r = −0.1

	
r = −0.5

	
r = −0.9

	
r = −1.5

	




	
MSE

	
188.868

	
212.817

	
371.977

	
751.580

	
235.376

	
339.298

	
282.710

	
189.970

	
168.724

	
112.864

	
73.178

	
53.418

	
3378.958

	
389,209.753

	
58.974




	
MAPE

	
8.593

	
9.093

	
11.887

	
17.409

	
8.047

	
9.725

	
8.781

	
5.566

	
8.143

	
6.758

	
5.526

	
4.440

	
39.446

	
436.351

	
4.332




	
a

	
0.389

	
0.364

	
0.236

	
0.047

	
0.030

	
0.006

	
−0.001

	
−0.034

	
0.412

	
0.484

	
0.549

	
1.111

	
2.091

	
2.527

	
—




	
b

	
53.226

	
51.381

	
37.649

	
8.659

	
41.620

	
115.046

	
140.362

	
361.965

	
54.558

	
56.147

	
53.643

	
22.856

	
−0.617

	
−18.040

	
—




	

	
FGM (1, 1) for South Africa

	




	
r = 0

	
r = 0.01

	
r = 0.05

	
r = 0.1

	
r = 0.5

	
r = 0.9

	
r = 1

	
r = 1.5

	
r = −0.01

	
r = −0.05

	
r = −0.1

	
r = −0.5

	
r = −0.9

	
r = −1.5

	




	
MSE

	
0.322

	
0.322

	
0.352

	
0.439

	
0.999

	
0.419

	
1.011

	
38.694

	
0.326

	
0.389

	
0.687

	
2.363

	
1.411

	
1311.244

	
0.223




	
MAPE

	
1.799

	
1.787

	
1.957

	
2.217

	
3.480

	
2.151

	
3.291

	
17.950

	
1.811

	
1.988

	
3.091

	
5.561

	
3.791

	
138.693

	
1.894




	
a

	
0.072

	
0.075

	
0.082

	
0.084

	
0.035

	
−0.005

	
−0.013

	
−0.045

	
0.068

	
0.040

	
−0.024

	
0.641

	
1.467

	
2.966

	
—




	
b

	
2.149

	
2.323

	
2.927

	
3.561

	
8.411

	
17.103

	
20.436

	
50.270

	
1.964

	
1.058

	
−0.383

	
2.878

	
1.055

	
−1.208

	
—








Note: MSE = Mean Standard Error; MAPE = Mean Absolute Percentage Error. The shaded area indicates the best model for a given country.
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Table A4. Mean absolute percentage error (MAPE) and mean square error (MSE) for gas consumption of BRICS in 1992–2019.
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FGM (1, 1) for Brazil

	
ARIMA(1, 1, 1)




	
r = 0

	
r = 0.01

	
r = 0.05

	
r = 0.1

	
r = 0.5

	
r = 0.9

	
r = 1

	
r = 1.5

	
r = −0.01

	
r = −0.05

	
r = −0.1

	
r = −0.5

	
r = −0.9

	
r = −1.5

	




	
MSE

	
13.971

	
13.862

	
13.461

	
13.031

	
11.422

	
15.033

	
17.749

	
60.883

	
14.085

	
14.589

	
15.360

	
42.822

	
58.652

	
2234.459

	
4.822




	
MAPE

	
22.107

	
22.113

	
22.170

	
22.262

	
24.350

	
29.581

	
31.343

	
43.135

	
22.101

	
22.173

	
22.340

	
31.303

	
66.971

	
278.951

	
9.528




	
a

	
0.008

	
0.007

	
0.004

	
−0.001

	
−0.035

	
−0.062

	
−0.068

	
−0.092

	
0.009

	
0.012

	
0.016

	
0.007

	
0.006

	
0.108

	
—




	
b

	
1.166

	
1.192

	
1.300

	
1.441

	
2.972

	
5.820

	
6.883

	
16.021

	
1.140

	
1.038

	
0.915

	
0.072

	
−0.104

	
−0.090

	
—




	

	
FGM (1, 1) for China

	




	
r = 0

	
r = 0.01

	
r = 0.05

	
r = 0.1

	
r = 0.5

	
r = 0.9

	
r = 1

	
r = 1.5

	
r = −0.01

	
r = −0.05

	
r = −0.1

	
r = −0.5

	
r = −0.9

	
r = −1.5

	
—




	
MSE

	
2386.569

	
2286.868

	
1933.065

	
1576.655

	
422.742

	
236.068

	
233.796

	
455.330

	
2491.238

	
2964.885

	
3703.170

	
22,144.389

	
49,126.530

	
63,696.575

	
NA




	
MAPE

	
60.179

	
58.943

	
54.298

	
49.114

	
26.881

	
19.728

	
18.884

	
19.937

	
61.446

	
66.841

	
74.376

	
175.801

	
310.118

	
473.308

	
NA




	
a

	
−0.108

	
−0.108

	
−0.108

	
−0.109

	
−0.115

	
−0.122

	
−0.124

	
−0.133

	
−0.108

	
−0.107

	
−0.107

	
−0.098

	
−0.054

	
0.067

	
—




	
b

	
0.756

	
0.787

	
0.920

	
1.101

	
3.377

	
8.018

	
9.794

	
25.724

	
0.725

	
0.608

	
0.477

	
-0.092

	
−0.046

	
−0.445

	
—




	

	
FGM (1, 1) for India

	




	
r = 0

	
r = 0.01

	
r = 0.05

	
r = 0.1

	
r = 0.5

	
r = 0.9

	
r = 1

	
r = 1.5

	
r = −0.01

	
r = −0.05

	
r = −0.1

	
r = −0.5

	
r = −0.9

	
r = −1.5

	
—




	
MSE

	
18.215

	
18.125

	
17.824

	
17.565

	
18.099

	
22.225

	
24.800

	
82.087

	
18.312

	
18.766

	
19.530

	
158.415

	
176.382

	
2806.706

	
4.925




	
MAPE

	
8.607

	
8.498

	
8.143

	
7.842

	
8.005

	
10.882

	
12.105

	
22.167

	
8.727

	
9.325

	
10.433

	
45.288

	
49.903

	
178.481

	
4.435




	
a

	
−0.002

	
−0.002

	
−0.001

	
−0.001

	
−0.018

	
−0.040

	
−0.046

	
−0.070

	
−0.003

	
−0.005

	
−0.008

	
0.028

	
0.282

	
0.551

	
—




	
b

	
1.364

	
1.432

	
1.709

	
2.072

	
5.985

	
13.333

	
16.108

	
40.412

	
1.298

	
1.040

	
0.738

	
0.142

	
0.278

	
−0.408

	
—




	

	
FGM (1, 1) for Russia

	




	
r = 0

	
r = 0.01

	
r = 0.05

	
r = 0.1

	
r = 0.5

	
r = 0.9

	
r = 1

	
r = 1.5

	
r = −0.01

	
r = −0.05

	
r = −0.1

	
r = −0.5

	
r = −0.9

	
r = −1.5

	
—




	
MSE

	
1597.445

	
1070.673

	
199.004

	
149.132

	
594.394

	
338.965

	
211.700

	
4671.837

	
1708.874

	
804.480

	
274.693

	
262.158

	
1829.579

	
668,162.502

	
133.125




	
MAPE

	
11.005

	
8.753

	
3.498

	
2.980

	
5.601

	
4.213

	
3.408

	
13.490

	
11.384

	
7.178

	
4.153

	
4.028

	
11.768

	
229.299

	
2.555




	
a

	
−0.042

	
−0.046

	
−0.019

	
0.021

	
0.039

	
0.001

	
−0.008

	
−0.041

	
−0.028

	
0.152

	
0.402

	
0.793

	
1.639

	
2.507

	
—




	
b

	
−13.414

	
−14.730

	
−3.854

	
16.874

	
120.034

	
257.855

	
309.562

	
770.353

	
−8.978

	
43.940

	
99.941

	
45.230

	
9.518

	
−25.102

	
—




	

	
FGM (1, 1) for South Africa

	




	
r = 0

	
r = 0.01

	
r = 0.05

	
r = 0.1

	
r = 0.5

	
r = 0.9

	
r = 1

	
r = 1.5

	
r = −0.01

	
r = −0.05

	
r = −0.1

	
r = −0.5

	
r = −0.9

	
r = −1.5

	
—




	
MSE

	
0.551

	
0.539

	
0.496

	
0.454

	
0.315

	
0.330

	
0.350

	
0.687

	
0.563

	
0.622

	
0.718

	
1.937

	
2.245

	
36.106

	
0.057




	
MAPE

	
48.536

	
47.852

	
45.358

	
42.625

	
31.557

	
30.042

	
30.360

	
34.505

	
49.252

	
52.327

	
56.664

	
93.233

	
100.429

	
353.199

	
13.235




	
a

	
−0.012

	
−0.012

	
−0.012

	
−0.013

	
−0.028

	
−0.050

	
−0.055

	
−0.078

	
−0.012

	
−0.011

	
−0.010

	
0.124

	
0.454

	
0.669

	
—




	
b

	
0.049

	
0.053

	
0.070

	
0.092

	
0.360

	
0.853

	
1.035

	
2.592

	
0.046

	
0.032

	
0.018

	
0.032

	
0.011

	
−0.073

	
—








Note: MSE = Mean Standard Error; MAPE = Mean Absolute Percentage Error. The shaded area indicates the best model for a given country.
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Table A5. Mean absolute percentage error (MAPE) and mean square error (MSE) for coal consumption of BRICS in 1992-2019.
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FGM (1, 1) for Brazil

	
ARIMA(1, 1, 1)




	
r = 0

	
r = 0.01

	
r = 0.05

	
r = 0.1

	
r = 0.5

	
r = 0.9

	
r = 1

	
r = 1.5

	
r = −0.01

	
r = −0.05

	
r = −0.1

	
r = −0.5

	
r = −0.9

	
r = −1.5

	




	
MSE

	
3.022

	
3.040

	
3.128

	
3.245

	
3.726

	
3.068

	
2.980

	
11.746

	
3.007

	
3.095

	
4.226

	
4.271

	
16.223

	
1863.829

	
0.763




	
MAPE

	
8.267

	
8.410

	
8.823

	
9.278

	
11.457

	
8.704

	
8.040

	
19.536

	
8.106

	
8.484

	
12.653

	
13.056

	
28.945

	
319.597

	
4.321




	
a

	
0.012

	
0.018

	
0.038

	
0.054

	
0.033

	
−0.005

	
−0.013

	
−0.044

	
0.006

	
−0.012

	
−0.001

	
0.367

	
0.629

	
0.645

	
—




	
b

	
0.345

	
0.452

	
0.888

	
1.385

	
4.437

	
9.289

	
11.142

	
27.770

	
0.243

	
−0.058

	
−0.012

	
0.727

	
−0.016

	
−0.516

	
—




	

	
FGM(1,1) for China

	




	
r = 0

	
r = 0.01

	
r = 0.05

	
r = 0.1

	
r = 0.5

	
r = 0.9

	
r = 1

	
r = 1.5

	
r = −0.01

	
r = −0.05

	
r = −0.1

	
r = −0.5

	
r = −0.9

	
r = −1.5

	




	
MSE

	
40,148.271

	
39,558.183

	
37,475.784

	
35,439.618

	
31,570.931

	
37,702.083

	
41,820.481

	
133,382.202

	
40,767.469

	
43,544.982

	
47,717.402

	
17,5312.752

	
90,654.063

	
1,102,950.215

	
1980.428




	
MAPE

	
15.554

	
15.364

	
14.691

	
14.165

	
13.971

	
14.936

	
15.868

	
22.104

	
15.761

	
16.716

	
18.127

	
39.026

	
28.406

	
94.467

	
2.691




	
a

	
0.006

	
0.006

	
0.006

	
0.005

	
−0.016

	
-0.041

	
−0.047

	
−0.072

	
0.006

	
0.005

	
0.003

	
0.097

	
0.706

	
1.851

	
---




	
b

	
58.656

	
61.412

	
72.762

	
87.674

	
246.587

	
538.901

	
648.459

	
1604.314

	
55.931

	
45.376

	
33.035

	
21.642

	
43.347

	
−19.890

	
---




	

	
FGM(1,1) for India

	




	
r = 0

	
r = 0.01

	
r = 0.05

	
r = 0.1

	
r = 0.5

	
r = 0.9

	
r = 1

	
r = 1.5

	
r = −0.01

	
r = −0.05

	
r = −0.1

	
r = −0.5

	
r = −0.9

	
r = −1.5

	




	
MSE

	
413.770

	
375.372

	
273.808

	
216.300

	
257.278

	
177.617

	
143.883

	
1153.488

	
459.400

	
746.177

	
1537.331

	
9666.674

	
3228.482

	
73,129.170

	
62.304




	
MAPE

	
8.160

	
7.632

	
6.039

	
5.535

	
7.020

	
5.436

	
4.489

	
8.385

	
8.732

	
11.729

	
17.242

	
45.917

	
25.595

	
115.115

	
2.511




	
a

	
−0.040

	
−0.040

	
−0.038

	
−0.036

	
−0.037

	
−0.050

	
−0.054

	
−0.072

	
−0.041

	
−0.043

	
−0.047

	
0.126

	
1.237

	
2.362

	
---




	
b

	
1.905

	
2.296

	
3.950

	
6.213

	
32.779

	
85.160

	
105.423

	
289.759

	
1.524

	
0.102

	
−1.420

	
6.772

	
20.189

	
−2.474

	
---




	

	
FGM(1,1) for Russia

	




	
r = 0

	
r = 0.01

	
r = 0.05

	
r = 0.1

	
r = 0.5

	
r = 0.9

	
r = 1

	
r = 1.5

	
r = −0.01

	
r = −0.05

	
r = −0.1

	
r = −0.5

	
r = −0.9

	
r = −1.5

	




	
MSE

	
20.822

	
19.540

	
15.492

	
13.169

	
64.766

	
57.719

	
35.647

	
410.340

	
22.203

	
28.623

	
38.245

	
74.944

	
578.569

	
156,299.051

	
NA




	
MAPE

	
3.764

	
3.646

	
3.250

	
2.842

	
6.480

	
5.514

	
4.183

	
12.986

	
3.880

	
4.453

	
5.221

	
7.576

	
23.016

	
398.090

	
NA




	
a

	
0.253

	
0.245

	
0.210

	
0.141

	
0.095

	
0.026

	
0.015

	
−0.027

	
0.261

	
0.293

	
0.334

	
0.866

	
1.898

	
2.453

	
---




	
b

	
23.099

	
23.192

	
22.979

	
18.459

	
56.429

	
104.897

	
123.841

	
294.931

	
22.971

	
22.239

	
21.062

	
10.176

	
−2.168

	
−12.251

	
---




	

	
FGM(1,1) for South Africa

	




	
r = 0

	
r = 0.01

	
r = 0.05

	
r = 0.1

	
r = 0.5

	
r = 0.9

	
r = 1

	
r = 1.5

	
r = −0.01

	
r = −0.05

	
r = −0.1

	
r = −0.5

	
r = −0.9

	
r = −1.5

	




	
MSE

	
14.173

	
13.693

	
12.783

	
13.175

	
23.058

	
14.400

	
17.494

	
392.652

	
14.761

	
17.875

	
36.789

	
31.934

	
27.484

	
19,716.100

	
11.116




	
MAPE

	
3.040

	
2.989

	
3.146

	
3.517

	
5.101

	
3.335

	
3.565

	
17.534

	
3.102

	
4.134

	
6.564

	
5.632

	
5.657

	
164.637

	
2.96




	
a

	
0.036

	
0.042

	
0.061

	
0.071

	
0.037

	
−0.003

	
−0.011

	
−0.044

	
0.028

	
−0.006

	
0.041

	
0.670

	
1.486

	
2.630

	
---




	
b

	
3.818

	
4.591

	
7.336

	
10.128

	
28.091

	
57.857

	
69.193

	
170.402

	
3.015

	
−0.081

	
2.354

	
9.554

	
2.946

	
−4.523

	
---








Note: MSE = Mean Standard Error; MAPE = Mean Absolute Percentage Error. The shaded area indicates the best model for a given country.
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Table A6. Mean absolute percentage error (MAPE) and mean square error (MSE) for hydroelectric consumption of BRICS in 1992–2019.
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FGM (1, 1) for Brazil

	
ARIMA(1, 1, 1)




	
r = 0

	
r = 0.01

	
r = 0.05

	
r = 0.1

	
r = 0.5

	
r = 0.9

	
r = 1

	
r = 1.5

	
r = −0.01

	
r = −0.05

	
r = −0.1

	
r = −0.5

	
r = −0.9

	
r = −1.5

	




	
MSE

	
26.193

	
25.638

	
24.188

	
23.534

	
26.283

	
29.985

	
39.439

	
422.779

	
26.844

	
30.436

	
33.004

	
49.510

	
43.965

	
11,437.767

	
12.919




	
MAPE

	
4.903

	
4.871

	
4.786

	
4.766

	
5.250

	
5.552

	
6.888

	
20.785

	
4.951

	
5.228

	
5.451

	
7.822

	
7.371

	
134.446

	
3.7851




	
a

	
0.067

	
0.071

	
0.079

	
0.081

	
0.035

	
−0.006

	
−0.014

	
−0.047

	
0.064

	
0.041

	
0.006

	
0.509

	
1.221

	
2.431

	
—




	
b

	
6.286

	
6.809

	
8.695

	
10.716

	
25.763

	
52.191

	
62.277

	
152.041

	
5.741

	
3.346

	
0.511

	
6.738

	
2.384

	
−3.319

	
—




	

	
FGM (1, 1) for China

	




	
r = 0

	
r = 0.01

	
r = 0.05

	
r = 0.1

	
r = 0.5

	
r = 0.9

	
r = 1

	
r = 1.5

	
r = −0.01

	
r = −0.05

	
r = −0.1

	
r = −0.5

	
r = −0.9

	
r = −1.5

	




	
MSE

	
1,102,950.215

	
344.024

	
316.631

	
289.252

	
199.725

	
215.014

	
240.196

	
832.985

	
360.018

	
397.743

	
458.891

	
4067.114

	
10,319.203

	
36,363.546

	
97.298




	
MAPE

	
94.467

	
18.552

	
17.499

	
16.520

	
13.636

	
11.436

	
11.418

	
16.457

	
19.201

	
20.629

	
22.744

	
66.711

	
113.149

	
193.771

	
8.923




	
a

	
1.851

	
−0.041

	
−0.042

	
−0.044

	
−0.061

	
−0.077

	
−0.081

	
−0.097

	
−0.040

	
−0.039

	
−0.038

	
−0.033

	
0.098

	
0.458

	
—




	
b

	
−19.890

	
3.993

	
4.499

	
5.175

	
13.017

	
28.589

	
34.593

	
88.877

	
3.751

	
3.289

	
2.750

	
−0.035

	
0.723

	
−0.147

	
—




	

	
FGM (1, 1) for India

	




	
r = 0

	
r = 0.01

	
r = 0.05

	
r = 0.1

	
r = 0.5

	
r = 0.9

	
r = 1

	
r = 1.5

	
r = −0.01

	
r = −0.05

	
r = −0.1

	
r = −0.5

	
r = −0.9

	
r = −1.5

	




	
MSE

	
5.671

	
5.531

	
5.410

	
5.421

	
6.653

	
5.422

	
5.055

	
21.686

	
6.019

	
21.591

	
352.601

	
15.608

	
47.200

	
3145.920

	
4.534




	
MAPE

	
8.768

	
8.602

	
8.617

	
8.788

	
10.103

	
9.148

	
8.642

	
13.992

	
9.057

	
15.380

	
56.726

	
16.589

	
30.760

	
234.639

	
8.354




	
a

	
−0.062

	
−0.057

	
−0.039

	
−0.022

	
0.002

	
−0.021

	
−0.027

	
-0.053

	
−0.068

	
−0.090

	
−0.113

	
0.429

	
0.861

	
1.203

	
—




	
b

	
−0.786

	
−0.666

	
−0.173

	
0.449

	
5.315

	
12.772

	
15.549

	
40.178

	
−0.903

	
−1.325

	
−1.647

	
1.988

	
0.707

	
−0.538

	
—




	

	
FGM (1, 1) for Russia

	




	
r = 0

	
r = 0.01

	
r = 0.05

	
r = 0.1

	
r = 0.5

	
r = 0.9

	
r = 1

	
r = 1.5

	
r = −0.01

	
r = −0.05

	
r = −0.1

	
r = −0.5

	
r = −0.9

	
r = −1.5

	




	
MSE

	
9.288

	
22.673

	
3.967

	
4.429

	
11.002

	
5.421

	
3.322

	
77.324

	
5.413

	
3.266

	
2.991

	
7.240

	
23.523

	
9454.585

	
NA




	
MAPE

	
6.744

	
10.793

	
4.074

	
4.359

	
7.240

	
5.056

	
4.248

	
14.648

	
4.782

	
4.036

	
3.762

	
5.829

	
11.862

	
242.602

	
NA




	
a

	
−0.006

	
−0.058

	
−0.018

	
0.103

	
0.062

	
0.010

	
0.001

	
−0.036

	
0.047

	
0.174

	
0.240

	
0.653

	
1.509

	
2.536

	
—




	
b

	
−0.221

	
−2.277

	
−0.493

	
6.097

	
17.020

	
33.298

	
39.591

	
96.269

	
1.718

	
5.609

	
6.485

	
3.787

	
0.662

	
−2.922

	
—




	

	
FGM (1, 1) for South Africa

	




	
r = 0

	
r = 0.01

	
r = 0.05

	
r = 0.1

	
r = 0.5

	
r = 0.9

	
r = 1

	
r = 1.5

	
r = −0.01

	
r = −0.05

	
r = −0.1

	
r = −0.5

	
r = −0.9

	
r = −1.5

	




	
MSE

	
0.049

	
0.047

	
0.041

	
0.036

	
0.024

	
0.026

	
0.028

	
0.049

	
0.050

	
0.054

	
0.054

	
0.026

	
0.454

	
28.255

	
NA




	
MAPE

	
54.051

	
51.839

	
50.271

	
51.327

	
58.643

	
67.637

	
72.447

	
122.067

	
56.466

	
63.976

	
67.613

	
78.740

	
293.018

	
1968.815

	
NA




	
a

	
−0.005

	
−0.002

	
0.011

	
0.030

	
0.067

	
0.014

	
0.003

	
−0.040

	
-0.008

	
−0.016

	
−0.022

	
0.013

	
0.040

	
0.035

	
—




	
b

	
−0.002

	
−0.001

	
0.005

	
0.016

	
0.136

	
0.269

	
0.317

	
0.729

	
-0.003

	
−0.007

	
−0.009

	
−0.007

	
−0.007

	
−0.006

	
---








Note: MSE = Mean Standard Error; MAPE = Mean Absolute Percentage Error. The shaded area indicates the best model for a given country.
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Table 1. Mean absolute percentage error (MAPE) and Mean Square Error (MSE) for Aggregate Energy Consumption of BRICS in 1992–2019.
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FGM (1, 1) for Brazil

	
ARIMA

(1, 1, 1)




	
r = 0

	
r = 0.01

	
r = 0.05

	
r=0.1

	
r = 0.5

	
r = 0.9

	
r = 1

	
r = 1.5

	
r = −0.01

	
r = −0.05

	
r = −0.1

	
r = −0.5

	
r = −0.9

	
r = −1.5

	




	
MSE

	
115.761

	
114.048

	
113.330

	
121.564

	
183.547

	
104.364

	
121.952

	
2365.346

	
118.233

	
137.248

	
194.597

	
120.572

	
153.293

	
71,846.171

	
34.952




	
MAPE

	
3.437

	
3.467

	
3.843

	
4.299

	
5.652

	
3.430

	
3.887

	
15.476

	
3.464

	
3.894

	
5.659

	
4.182

	
5.294

	
114.571

	
1.689




	
a

	
0.016

	
0.018

	
0.024

	
0.028

	
0.009

	
−0.021

	
0.027

	
−0.054

	
0.014

	
0.004

	
−0.012

	
0.771

	
1.475

	
2.876

	
—




	
b

	
9.516

	
10.424

	
14.011

	
18.400

	
57.183

	
125.064

	
150.880

	
381.851

	
8.604

	
4.943

	
0.586

	
36.399

	
13.890

	
−7.802

	
—




	

	
FGM (1, 1) for China

	




	
r = 0

	
r = 0.01

	
r = 0.05

	
r = 0.1

	
r = 0.5

	
r = 0.9

	
r = 1

	
r = 1.5

	
r = −0.01

	
r = −0.05

	
r = −0.1

	
r = −0.5

	
r = −0.9

	
r = −1.5

	




	
MSE

	
39,766.001

	
38,854.842

	
35,862.192

	
33,235.534

	
30,342.711

	
38,666.280

	
44,284.071

	
192,619.194

	
40,755.833

	
45,700.224

	
55,315.626

	
934,292.685

	
192,632.280

	
253,5304.295

	
1455.956




	
MAPE

	
11.649

	
11.426

	
10.681

	
10.145

	
10.030

	
10.567

	
11.432

	
17.974

	
11.882

	
12.919

	
14.596

	
62.912

	
29.165

	
96.097

	
1.889




	
a

	
−0.021

	
−0.021

	
−0.020

	
−0.020

	
−0.033

	
−0.052

	
−0.056

	
−0.077

	
−0.021

	
−0.022

	
−0.025

	
0.019

	
0.842

	
2.014

	
—




	
b

	
57.208

	
60.395

	
73.612

	
91.213

	
288.417

	
665.437

	
808.421

	
2071.191

	
54.069

	
41.990

	
28.009

	
7.239

	
106.628

	
−4.462

	
—




	

	
FGM (1, 1) for India

	




	
r = 0

	
r = 0.01

	
r = 0.05

	
r = 0.1

	
r = 0.5

	
r = 0.9

	
r = 1

	
r = 1.5

	
r = −0.01

	
r = −0.05

	
r = −0.1

	
r = −0.5

	
r = −0.9

	
r = −1.5

	




	
MSE

	
305.050

	
264.233

	
181.024

	
169.925

	
458.723

	
179.881

	
125.988

	
4767.086

	
358.196

	
775.327

	
2398.166

	
27,525.071

	
7235.069

	
231,705.058

	
75.811




	
MAPE

	
3.463

	
3.065

	
2.463

	
2.918

	
5.302

	
3.199

	
2.163

	
10.946

	
3.921

	
6.467

	
11.662

	
41.465

	
20.290

	
106.842

	
1.514




	
a

	
−0.042

	
−0.041

	
−0.038

	
−0.035

	
−0.034

	
−0.047

	
−0.051

	
−0.070

	
−0.043

	
−0.048

	
−0.054

	
0.131

	
1.543

	
2.960

	
—




	
b

	
2.785

	
3.621

	
7.118

	
11.814

	
64.392

	
165.641

	
204.588

	
556.371

	
1.965

	
−1.147

	
−4.601

	
13.565

	
48.380

	
−1.380

	
—




	

	
FGM (1, 1) for Russia

	




	
r = 0

	
r = 0.01

	
r = 0.05

	
r = 0.1

	
r = 0.5

	
r = 0.9

	
r = 1

	
r = 1.5

	
r = −0.01

	
r = −0.05

	
r = −0.1

	
r = −0.5

	
r = −0.9

	
r = −1.5

	




	
MSE

	
2557.965

	
3397.955

	
10,340.732

	
889.763

	
2634.297

	
2009.022

	
1210.561

	
13,152.140

	
1928.408

	
758.559

	
309.188

	
594.381

	
16,285.304

	

	
NA




	
MAPE

	
6.689

	
7.659

	
15.072

	
3.786

	
5.938

	
4.659

	
3.632

	
11.189

	
5.825

	
3.619

	
2.245

	
3.203

	
18.722

	
293.588

	
NA




	
a

	
0.230

	
0.161

	
−0.038

	
−0.042

	
0.044

	
0.005

	
−0.003

	
−0.037

	
0.294

	
0.456

	
0.516

	
0.916

	
1.861

	
2.592

	
—




	
b

	
149.005

	
107.228

	
−27.610

	
−29.666

	
237.035

	
525.883

	
632.457

	
1,579.718

	
185.251

	
252.662

	
241.844

	
94.585

	
12.318

	
−61.080

	
—




	

	
FGM (1, 1) for South Africa

	




	
r = 0

	
r = 0.01

	
r = 0.05

	
r = 0.1

	
r = 0.5

	
r = 0.9

	
r = 1

	
r = 1.5

	
r = −0.01

	
r = −0.05

	
r = −0.1

	
r = −0.5

	
r = −0.9

	
r = −1.5

	




	
MSE

	
314.658

	
313.896

	
314.996

	
321.056

	
365.344

	
322.015

	
312.152

	
809.537

	
316.329

	
347.810

	
469.286

	
497.888

	
1777.788

	
166,344.037

	
11.193




	
MAPE

	
21.565

	
21.750

	
22.218

	
22.419

	
23.788

	
22.161

	
21.932

	
31.946

	
21.368

	
22.720

	
28.334

	
29.611

	
52.934

	
444.068

	
2.294




	
a

	
−0.001

	
0.003

	
0.018

	
0.033

	
0.027

	
−0.008

	
−0.015

	
−0.046

	
−0.005

	
−0.013

	
−0.002

	
0.336

	
0.587

	
0.604

	
—




	
b

	
1.376

	
1.962

	
4.654

	
8.259

	
33.693

	
72.221

	
86.774

	
216.973

	
0.845

	
−0.527

	
−0.133

	
5.297

	
−0.143

	
−3.801

	
—








Note: MSE = Mean Standard Error; MAPE = Mean Absolute Percentage Error. The shaded area indicates the best model for a given country. In Table A3, the results of oil consumption are reported. For Brazil, the order ( r ) is  r  = 0.9 with the minimum MAPE = 5.030 with the appropriate sign of grey parameters. For China, the order ( r ) is  r  = 0.1 with the minimum MAPE = 2.795. For India, the order ( r ) is  r  = 0.9 with the minimum MAPE = 2.457. For Russia, the order ( r ) is   r     = 1.5 with the minimum MAPE = 5.566. Finally, South Africa has the least MAPE = 2.151 ,  where the value of   r     = 0.9.
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Table 2. Diebold-Mariano test results (p-values) for comparison of GM (1, 1) and FGM (1, 1).






Table 2. Diebold-Mariano test results (p-values) for comparison of GM (1, 1) and FGM (1, 1).





	
GM(1,1)

	
Brazil

	
China

	
India

	
Russia

	
South Africa




	
FGM(1,1)

	
Agg

	
Oil

	
Gas

	
Coal

	
Hydro

	
Agg

	
Oil

	
Gas

	
Coal

	
Hydro

	
Agg

	
Oil

	
Gas

	
Coal

	
Hydro

	
Agg

	
Oil

	
Gas

	
Coal

	
Hydro

	
Agg

	
Oil

	
Gas

	
Coal

	
Hydro






	
r = 0

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
0.044

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1




	
r = 0.01

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1




	
r = 0.05

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1




	
r = 0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1




	
r = 0.5

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1




	
r = 0.9

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1




	
r = 1.5

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1




	
r= − 0.01

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1




	
r = − 0.05

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
0.040

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1




	
r = − 0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1




	
r = − 0.5

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1




	
r = − 0.9

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1




	
r = − 1.5

	
0.020

	
0.022

	
>0.1

	
0.024

	
0.021

	
0.016

	
0.019

	
>0.1

	
0.048

	
0.040

	
0.027

	
0.038

	
0.024

	
0.024

	
0.026

	
0.015

	
0.012

	
0.015

	
0.015

	
0.024

	
0.023

	
0.029

	
0.039

	
0.020

	
0.000




	
ARIMA (1, 1, 1)

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
NA

	
NA

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
NA

	
>0.1

	
>0.1

	
NA

	
NA

	
>0.1

	
>0.1

	
>0.1

	
>0.1

	
NA








Note: Rejecting the null hypothesis is highlighted with the shaded area; agg = aggregate.
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