Analysis of Performance of the Wind-Driven Pulverizing Aerator Based on Average Wind Speeds in the Conditions of Góreckie Lake
Abstract
:1. Introduction
2. Pulverization Aeration Method
3. Characteristics of Góreckie Lake
4. Materials and Methods
5. Results
- -
- blade width is 0.061 (m);
- -
- blade height is 0.082 (m);
- -
- pulverization wheel diameter is 1.8 (m).
6. Conclusions
- Supplying the aerator with a wind turbine leads to a stable average monthly performance of the pumped lake water, which can significantly affect the planning of the reclamation process.
- As the average wind speed increases, the volumetric flow rate through the pulverizing unit of the aerator also increases, and with it the efficiency of the pulverization and oxygenation of the bottom waters of the reservoir.
- The method of assessing the efficiency of the wind-driven pulverizing aerator based of average wind speeds is suitable for determining the volumetric flow rate of the pulverizing unit, which can significantly facilitate the planning of restoration of water reservoirs.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kajak, Z. Eutrophication of Lakes, ed.; PWN: Warsaw, Poland, 2001. (In Polish) [Google Scholar]
- Osuch, E.; Osuch, A.; Podsiadłowski, S.; Piechnik, L.; Chwirot, D. Project of coagulant dispenser in pulverization aerator with wind drive. J. Ecol. Eng. 2017, 18, 192–198. [Google Scholar] [CrossRef]
- Osuch, E.; Osuch, A.; Podsiadłowski, S.; Rybacki, P.; Adamski, M.; Ratajczak, J. Assessment of the condition of the Samołęskie Lake waters. J. Ecol. Eng. 2016, 17, 108–112. [Google Scholar] [CrossRef]
- Szal, D.; Gruca-Rokosz, R. Anaerobic Oxidation of Methane in Freshwater Sediments of Rzeszów Reservoir. Water 2020, 12, 398. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Ma, M. Impacts of Climate Change and Anthropogenic Activities on the Ecological Restoration of Wetlands in the Arid Regions of China. Energies 2016, 9, 166. [Google Scholar] [CrossRef] [Green Version]
- Paseka, S.; Kapelan, Z.; Marton, D. Multi-Objective Optimization of Resilient Design of the Multipurpose Reservoir in Conditions of Uncertain Climate Change. Water 2018, 10, 1110. [Google Scholar] [CrossRef] [Green Version]
- Döll, P.; Douville, H.; Güntner, A.; Schmied, H.M.; Wada, Y. Modelling freshwater resources at the global scale: Challenges and prospects. Surv. Geophys. 2016, 37, 195. [Google Scholar] [CrossRef] [Green Version]
- Harper, D. Eutrophication of Freshwaters: Principles, Problems and Restoration; Chapman and Hall: London, UK, 1992. [Google Scholar]
- Osuch, E.; Podsiadłowski, S.; Osuch, A.; Przygodziński, P. Effluent management on unsewered rural area. J. Res. Appl. Agric. Eng. 2017, 62, 59–61. [Google Scholar]
- Podsiadłowski, S.; Osuch, E.; Przybył, J.; Osuch, A.; Buchwald, T. Pulverizing aerator in the process of lake restotation. Ecol. Eng. 2018, 121, 99–103. [Google Scholar] [CrossRef]
- Tong, L.; Xu, X.; Ying Fu, Y.; Li, S. Wetland Changes and Their Responses to Climate Change in the “Three-River Headwaters” Region of China since the 1990s. Energies 2014, 7, 2515–2534. [Google Scholar] [CrossRef] [Green Version]
- Mleczko, M.; Mróz, M. Wetland Mapping Using SAR Data from the Sentinel-1A and TanDEM-X Missions: A Comparative Study in the Biebrza Floodplain (Poland). Remote Sens. 2018, 10, 78. [Google Scholar] [CrossRef] [Green Version]
- Gołdyn, R.; Podsiadłowski, S. Metody zrównoważonej rekultywacji jezior. Wielkop. Ecol. Bull. 2009, 3, 2–4. (In Polish) [Google Scholar]
- Lossow, K. Lake protection and restoration—Theory and practice. Ecological ideas. Sketches Ser. 1998, 13, 55–71. (In Polish) [Google Scholar]
- Podsiadłowski, S. Method of precise phosphorus in activation in lake waters. Limnol. Rev. 2008, 8, 3–8. [Google Scholar]
- Rybacki, P.; Wolna-Maruwka, A.; Osuch, A.; Grześ, Z.; Niewiadomska, A. Seasonal variability in chemical and microbiological status of bottom sediments in Lake Rusałka at removal of cyanobacterial blooms from its surface. Pol. J. Environ. Stud. 2020, 29, 1323–1330. [Google Scholar] [CrossRef]
- Osuch, A.; Rybacki, P.; Osuch, E.; Adamski, M.; Buchwald, T.; Staszek, Ż. Assessment of the quality of waters of the Łomno lake. Inżynieria Ekol. 2016, 46, 24–30. [Google Scholar] [CrossRef]
- Shoshany, M.; Karnibad, L. Remote Sensing of Shrubland Drying in the South-East Mediterranean, 1995–2010: Water-Use-Efficiency-Based Mapping of Biomass Change. Remote Sens. 2015, 7, 2283–2301. [Google Scholar] [CrossRef] [Green Version]
- Kamarudin, M.K.A.; Wahab, N.A.; Juahir, H.; Wan, N.M.F.N.; Toriman, M.E.; Ata, F.M.; Azmee, S.H. The potential impacts of anthropogenic and climate changes factorson surface water ecosystem deterioration at Kenyir Lake, Malaysia. Int. J. Eng. Technol. 2018, 7, 67–74. [Google Scholar] [CrossRef]
- Osuch, E.; Osuch, A.; Rybacki, P.; Przybylak, A. Analysis of the Theoretical Performance of the Wind-Driven Pulverizing Aerator in the Conditions of Góreckie Lake—Maximum Wind Speed Method. Energies 2020, 13, 502. [Google Scholar] [CrossRef] [Green Version]
- Kowalczewska-Madura, K.; Dondajewska, R.; Gołdyn, R.; Messyasz, B. Internal phosphorus loading from the bottom sediments of a dimictic lake during its sustainable restoration. Water Air Soil Pollut. 2018, 229, 280. [Google Scholar] [CrossRef] [Green Version]
- Kowalczewska-Madura, K.; Gołdyn, R. Antropogenic changes in water quality in Swarzędzkie Lake (West Poland). Limnol. Rev. 2006, 6, 147–154. [Google Scholar]
- Sadecka, Z.; Waś, J. Non-invasive methods for improving the quality of water reservoirs—Perspective. In Sewage Treatment and Sewage Sludge Treatment; Oficyna Wyd: Łódź, Poland, 2008. (In Polish) [Google Scholar]
- Klapper, H. Technologies for lake restoration. J. Limnol. 2003, 62, 73–90. [Google Scholar] [CrossRef] [Green Version]
- Gołdyn, R.; Podsiadłowski, S.; Dondajewska, R.; Kozak, A. The sustainable restoration of lakes-towards the challenges of the water framework directive. Ecohydrol. Hydrobiol. 2014, 14, 68–74. [Google Scholar] [CrossRef]
- Osuch, E.; Osuch, A.; Podsiadłowski, S.; Rybacki, P.; Mioduszewska, N. Use of Wind Energy in the Process of Lake Restoration. In Renewable Energy Sources: Engineering, Technology, Innovation; Wróbel, M., Jewiarz, M., Szlęk, A., Eds.; Springer Proceedings in Energy; Springer: Cham, Switzerland, 2020; pp. 551–559. [Google Scholar]
- Konieczny, R. Monitoring of Operating Parameters of the Pulverizing Water Aerator System. Ph.D. Thesis, Institute of Technology and Life Sciences, Raszyn, Poland, 2013. [Google Scholar]
- Konieczny, R. Determination of the ecological effect of the pulverized water wind aerator in the conditions of the Great Rudnickie Lake. In Research Papers of Wrocław University of Economics; Wrocław University of Economics: Wrocław, Poland, 2017; Volume 470, pp. 52–61. ISSN 1899-3192. (In Polish) [Google Scholar]
- Schoden, F.; Siebert, A.; Keskin, A.; Herzig, K.; Straus, M.; Schwenzfeier-Hellkamp, E. Building a Wind Power Plant from Scrap and Raising Public Awareness for Renewable Energy Technology in a Circular Economy. Sustainability 2020, 12, 90. [Google Scholar] [CrossRef] [Green Version]
- Kahraman, C.; Cevik Onar, S.; Oztaysi, B. A Comparison of Wind Energy Investment Alternatives Using Interval-Valued Intuitionistic Fuzzy Benefit/Cost Analysis. Sustainability 2016, 8, 118. [Google Scholar] [CrossRef] [Green Version]
- Rosinśska, J.; Kozak, A.; Dondajewska, R.; Gołdyn, R. Cyanobacteria blooms before and during the restoration process of a shallow urban lake. J. Environ. Manag. 2017, 198, 340–347. [Google Scholar] [CrossRef] [PubMed]
- Dondajewska, R.; Kowalczewska-Madura, K.; Gołdyn, R.; Kozak, A.; Messyasz, B.; Cerbin, S. Long-Term Water Quality Changes as a Result of a Sustainable Restoration—A Case Study of Dimictic Lake Durowskie. Water 2019, 11, 616. [Google Scholar] [CrossRef] [Green Version]
- Kozak, A.; Budzyńska, A.; Dondajewska-Pielka, R.; Kowalczewska-Madura, K.; Gołdyn, R. Functional Groups of Phytoplankton and Their Relationship with Environmental Factors in the Restored Uzarzewskie Lake. Water 2020, 12, 313. [Google Scholar] [CrossRef] [Green Version]
- Rosińska, J.; Kozak, A.; Dondajewska, R.; Kowalczewska-Madura, K.; Gołdyn, R. Water quality response to sustainable restoration measures–Case study of urban Swarzędzkie Lake. Ecol. Indic. 2018, 84, 437–449. [Google Scholar] [CrossRef]
- Kozak, A.; Gołdyn, R.; Dondajewska, R.; Kowalczewska-Madura, K.; Holona, T. Changes in Phytoplankton and Water Quality during Sustainable Restoration of an Urban Lake Used for Recreation and Water Supply. Water 2017, 9, 713. [Google Scholar] [CrossRef] [Green Version]
- Gołdyn, R.; Szeląg-Wasielewska, E.; Kowalczewska-Madura, K.; Dondajewska, R.; Budzyńska, A.; Podsiadłowski, S.; Domek, P.; Romanowicz-Brzozowska, W. Functioning of the Lake Rusałka ecosystem in Poznań (western Poland). Oceanol. Hydrobiol. Stud. 2010, 39, 65–80. [Google Scholar] [CrossRef] [Green Version]
- Osuch, A.; Rybacki, P.; Podsiadłowski, S.; Osuch, E.; Przygodziński, P. A system for precise dosing of coagulant in a pulverized pulverized aerator using fuzzy inference. Inżynieria Ekol. 2017, 18, 210–217. (In Polish) [Google Scholar] [CrossRef] [Green Version]
- Siepak, J.; Burchardt, L.; Pełechaty, M.; Osowski, A. Hydrochemical Research in the Wielkopolski National Park; UAM Poznań: Poznań, Poland, 1999; (In Polish). ISBN 83-908178-4-5. [Google Scholar]
- Kolendowicz, L.; Hanke, J.; Kaczmarek, L.; Lorenc, M. Changes in the Water Level of the Góreckie Lake (Wielkopolski National Park) in the Years 2002–2007 against the Background of Fluctuations in the Water Level of the Wielkopolska Fossil Valley and Atmospheric Conditions; Instytut Geografii i Gospodarki Przestrzennej: Kraków, Poland, 2008. (In Polish) [Google Scholar]
- Sobczyński, J.; Joniak, T. Differences in composition and proportion of phosphorus fractions in bottom sediments of lake Góreckie (Wielkopolska National Park). Environ. Prot. Eng. 2009, 35, 89–95. [Google Scholar]
- Sobczyński, J.; Joniak, T. What threatens the ecosystem of góreckie lake in wielkopolski national park? In Wielkopolski National Park in Natural Studies; Walna, B., Kaczmarek, L., Lorenc, M., Dondajewska, R., Eds.; AMU Poznań: Poznań, Poland, 2009; pp. 51–62. [Google Scholar]
- Brzęk, G. Limnology Studies on Water Reservoirs of the Wielkopolski National Park near Poznań; Monographic Work on the Nature of the Wielkopolski National Park near Poznań; PTPN Press: Poznań, Poland, 1948; Volume II, p. 2. (In Polish) [Google Scholar]
- Dąmbska, I.; Burchard, L.; Hłądka, M.; Niedzielska, E.; Pańczakowa, J. Hydrobiological Studies of the Lakes of the Wielkopolski National Park; Poznań Society of Friends of Sciences, Biology Commission Work; PWN: Warsaw, Poland, 1981. (In Polish) [Google Scholar]
Average Wind Speed (m*s−1) | ||||||
---|---|---|---|---|---|---|
Hourly Interval | 3 March 2018 | 4 April 2018 | 7 June 2018 | 28 August 2018 | 29 September 2018 | 29 November 2018 |
0:00 a.m.–1:00 a.m. | 0.399 | 0.555 | 0.857 | 0.488 | 0.149 | 1.097 |
1:00 a.m.–2:00 a.m. | 0.559 | 0.536 | 0.746 | 0.451 | 0.724 | 1.294 |
2:00 a.m.–3:00 a.m. | 0.488 | 0.941 | 0.520 | 0.492 | 0.698 | 1.354 |
3:00 a.m.–4:00 a.m. | 0.430 | 0.797 | 0.725 | 0.381 | 0.721 | 1.418 |
4:00 a.m.–5:00 a.m. | 0.531 | 1.053 | 0.685 | 0.316 | 0.781 | 1.248 |
5:00 a.m.–6:00 a.m. | 0.574 | 1.116 | 0.696 | 0.318 | 0.916 | 1.365 |
6:00 a.m.–7:00 a.m. | 0.732 | 0.887 | 1.438 | 0.361 | 1.464 | 0.968 |
7:00 a.m.–8:00 a.m. | 0.952 | 1.764 | 2.482 | 0.312 | 1.612 | 1.114 |
8:00 a.m.–9:00 a.m. | 1.507 | 1.620 | 3.342 | 0.724 | 1.451 | 1.102 |
9:00 a.m.–10:00 a.m. | 1.870 | 1.301 | 2.759 | 0.615 | 1.761 | 1.254 |
10:00 a.m.–11:00 a.m. | 1.534 | 1.405 | 2.553 | 0.701 | 1.942 | 1.164 |
11:00 a.m.–12:00 a.m. | 1.129 | 1.423 | 2.297 | 0.887 | 1.897 | 1.487 |
0:00 p.m.–1:00 p.m. | 1.250 | 1.354 | 2.442 | 0.821 | 1.891 | 1.547 |
1:00 p.m.–2:00 p.m. | 2.366 | 2.638 | 2.558 | 0.951 | 1.839 | 1.624 |
2:00 p.m.–3:00 p.m. | 1.403 | 3.454 | 2.060 | 1.216 | 1.761 | 1.247 |
3:00 p.m.–4:00 p.m. | 1.556 | 3.590 | 2.587 | 1.600 | 2.231 | 1.258 |
4:00 p.m.–5:00 p.m. | 1.280 | 3.710 | 2.105 | 1.467 | 2.287 | 1.698 |
5:00 p.m.–6:00 p.m. | 0.954 | 4.342 | 1.932 | 1.612 | 2.474 | 0.888 |
6:00 p.m.–7:00 p.m. | 0.651 | 4.011 | 1.752 | 1.441 | 1.861 | 0.924 |
7:00 p.m.–8:00 p.m. | 0.646 | 3.535 | 1.766 | 0.758 | 1.876 | 1.214 |
8:00 p.m.–9:00 p.m. | 0.849 | 4.117 | 0.926 | 0.651 | 1.210 | 0.964 |
9:00 p.m.–10:00 p.m. | 0.639 | 4.504 | 0.428 | 0.875 | 0.845 | 0.824 |
10:00 p.m.–11:00 p.m. | 0.587 | 4.909 | 0.688 | 0.561 | 0.712 | 0.634 |
11:00 p.m.–12:00 p.m. | 0.708 | 3.691 | 0.409 | 1.834 | 1.411 | 0.417 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Osuch, A.; Osuch, E.; Podsiadłowski, S.; Rybacki, P. Analysis of Performance of the Wind-Driven Pulverizing Aerator Based on Average Wind Speeds in the Conditions of Góreckie Lake. Energies 2021, 14, 2796. https://doi.org/10.3390/en14102796
Osuch A, Osuch E, Podsiadłowski S, Rybacki P. Analysis of Performance of the Wind-Driven Pulverizing Aerator Based on Average Wind Speeds in the Conditions of Góreckie Lake. Energies. 2021; 14(10):2796. https://doi.org/10.3390/en14102796
Chicago/Turabian StyleOsuch, Andrzej, Ewa Osuch, Stanisław Podsiadłowski, and Piotr Rybacki. 2021. "Analysis of Performance of the Wind-Driven Pulverizing Aerator Based on Average Wind Speeds in the Conditions of Góreckie Lake" Energies 14, no. 10: 2796. https://doi.org/10.3390/en14102796
APA StyleOsuch, A., Osuch, E., Podsiadłowski, S., & Rybacki, P. (2021). Analysis of Performance of the Wind-Driven Pulverizing Aerator Based on Average Wind Speeds in the Conditions of Góreckie Lake. Energies, 14(10), 2796. https://doi.org/10.3390/en14102796