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Abstract: This article presents the development, simulation and validation of the uncertainty cost
functions for a commercial building with climate-dependent controllable loads, located in Florida,
USA. For its development, statistical data on the energy consumption of the building in 2016 were
used, along with the deployment of kernel density estimator to characterize its probabilistic behavior.
For validation of the uncertainty cost functions, the Monte-Carlo simulation method was used to
make comparisons between the analytical results and the results obtained by the method. The
cost functions found differential errors of less than 1%, compared to the Monte-Carlo simulation
method. With this, there is an analytical approach to the uncertainty costs of the building that can be
used in the development of optimal energy dispatches, as well as a complementary method for the
probabilistic characterization of the stochastic behavior of agents in the electricity sector.

Keywords: uncertainty cost; electricity demand; controllable load; probability density estimator;
probability density function; expected value

1. Introduction

The economic dispatch of electrical energy is an activity of great relevance within
the sector. In this, the fulfillment of the energy, technical and economic expectations of
the different agents that participate in the entire process of energy production, transport
and consumption are sought. For this reason, when an energy dispatch is carried out, it is
sought to be optimal, to meet the objectives of the different agents, taking into account the
efficient use of infrastructure resources and with minimal associated costs.

Due to the above, several efforts have been presented around the world, focused on
achieving an optimal energy dispatch. However, the development of these methodologies
faces several challenges associated with the different variables that must be taken into
account in the dispatch. One of them has to do with the inclusion of agents that bring
characteristics of randomness and uncertainty in their behavior. This represents a challenge,
since this type of behavior is incompatible with the development of optimal energy dispatch
methodologies with analytical and deterministic approaches.

The agents that bring uncertainty variables within the energy system are mainly
focused on renewable energy generators, such as solar and wind, and on controllable
loads such as electric vehicles or environmental thermal control devices. For the case of
generation, the randomness occurs due to renewable energy sources, which depend on
solar irradiation [1] and wind speed [2], respectively. Regarding the loads, the uncertainty
is present due to the ambient temperature conditions [3–5] and the transportation needs in
a given place [6–12]. These types of phenomena are non-deterministic, so it is not possible
to directly obtain a certain value and, therefore, try to define the exact behavior of the
agents that base their behavior on them.
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Now, with the inclusion of these agents in the development of the activities of the
energy sector, it is necessary that they also be taken into account when carrying out the
economic dispatch of energy, and, moreover, that methodologies be developed so that this
dispatch is optimum.

A recent methodology that seeks the inclusion of agents with random behavior in the
economic dispatch is the development of uncertainty cost functions. This methodology
allows us to obtain analytical cost equations, starting from probability density functions
that describe the stochastic nature of these agents. With these equations, it is possible to
carry out analytical economic dispatches that include all types of agents and that seek the
optimization of both objectives and resources in all the main activities of the energy sector.
The main characteristics of the uncertainty cost functions are detailed below.

In the past, different works have been developed that have sought to obtain un-
certainty cost functions for both generating agents and demand agents, as can be seen
in [10–15]. Most share the characteristic that, to obtain the analytical equations, prede-
termined probability density functions were assumed or approximated to characterize
the random behaviors of the different agents of the sector under study in each work [16].
Although these equations obtained in this way are very useful when taking into account
stochasticity in the economic dispatch, in several cases, they tend to skew certain behaviors
of the agents they represent. This is because assuming or approximating random consump-
tion or generation curves to probability distributions can eliminate characteristics of the
analyzed curves [16–20].

Therefore, the need to find another way to characterize the consumption or generation
curves of the agents that give stochasticity to the energy system has become evident, in
order to obtain more precise representations of these agents in the development of economic
dispatches. In the next sections, the state of the art, the methodological development, the
results obtained and the conclusions are described, about an alternative method found to
obtain more representative probability distributions of stochastic agents (controllable loads
in the case of this work) and, as an ultimate goal, the uncertainty cost functions associated
with its stochastic behavior.

2. Material and Methods
2.1. Uncertainty Cost

The costs of uncertainty associated with the economic dispatch of energy refer to the
economic sanctions or penalties that may occur, due to the underestimation or overestima-
tion of the energy that needs to be delivered or received at a specific point in the electrical
system [12]. These situations of underestimation or overestimation are generally presented
by the inclusion of agents of random behavior in the electrical network. As mentioned
above, this type of behavior does not allow obtaining predetermined values of energy to
be delivered, as in the case of non-conventional generators, or of energy to receive, such
as controllable loads. For this reason, to dispatch these agents, it is necessary to obtain
an estimate of the energy they can generate or consume. In an economic dispatch with
these conditions, cases of non-compliance in the committed energy can occur, both on the
generation side and on the demand side, which in turn will lead to economic sanctions.

In its basic form, the costs of under- or overestimation can be represented by the
following equations.

Ce,u,i(Pe,i, Pe,s,i) = Ce,u,i (Pe,i − Pe,s,i) (1)

Ce,o,i(Pe,i, Pe,s,i) = Ce,o,i (Pe,s,i − Pe,i) (2)

where Ce,u,i is the coefficient of costs for underestimating the energy to be consumed or
delivered at node i; Ce,o,i is the cost coefficient for overestimating the energy to be consumed
or delivered at node i; Pe,i is the real power delivered or demanded at node i; and Pe,s,i is
the power programmed to deliver or consume at node i.

As can be seen from both equations, the costs are derived from the difference present
between the programmed energy and the actual energy dispatched.
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When applying these equations to the agents with stochastic behavior, the probability
density functions that describe this behavior must be taken into account and that allow
obtaining expected values of generated or consumed energy [10,12]. Therefore, it is nec-
essary to use integrals of expected value in the cost equations for its overestimation or
underestimation, having as the main variable the real energy demanded or delivered by the
random agents. Considering this, the uncertainty cost equations for agents with stochastic
behavior are presented below.

Uncertainty Costs for Overestimating

E[Ce,o,i(Pe,i, Pe,s,i)] =
∫ Pe,s,i

0
Ce,o,i (Pe,s,i − Pe,i) fPe,i (Pe,i) dPe,i (3)

Uncertainty Costs for Underestimating

E[Ce,u,i(Pe,i, Pe,s,i)] =
∫ Pe,∞

Pe,s,i

Ce,u,i (Pe,i − Pe,s,i) fPe,i (Pe,i) dPe,i (4)

where fPe,i (Pe,i) is the probability density function used to describe the behavior of the
stochastic agent and Pe,∞ is the maximum scheduled demand that can be delivered to the
controllable load by the system.

2.2. Agents of the Electricity Sector with Stochastic Behavior

As mentioned in Section 2.1, the uncertainty cost functions appear in agents that
participate in the electric power dispatch process and that follow a random generation
or consumption behavior, that is, not susceptible to being established in a deterministic
way. This group of agents includes generators whose main source of energy production
is a renewable resource. Renewable energy resources, such as the wind or the sun, are
randomly time-varying, so anything that is directly related to them will have this same
uncertainty characteristic. The foregoing also applies to another type of agent such as
controllable loads. Electric vehicles that are connected within a distribution network in
a city or automatic environmental conditioning devices within residential or commercial
places, are examples of controllable loads that follow random behaviors associated with
phenomena such as the need for mobility of people or the setting of the comfort temperature
in a climate-dependent location, respectively.

As shown above, to obtain the uncertainty cost functions of these agents, it is necessary
to use the probability density functions of the base phenomena of the agents behavior.
In [12], it is possible to observe the procedure to obtain the uncertainty cost functions for
photovoltaic and wind power generators. For wind generation, the probability density of
wind speed [12] was taken into account, which in [11,15] appears as a Rayleigh distribution.
Regarding photovoltaic generation, the behavior of solar irradiance was taken into account,
which in [12] is assumed with a log-normal distribution. The above is true for specific
regions, as specified in [21]. The process then focused on developing expected value
integrals of the uncertainty costs taking into account these probability distributions, as
detailed in Section 2.1.

Continuing with the characterization of non-conventional generation agents, in [13],
you can see the determination of the uncertainty costs of run-of-river plants operating in a
microgrid environment. As in [12], the behavior of these plants is subject to their source
of generation, which in this case is the flow of the river from which they are supplied. In
the literature [22–24], it is seen that an approximation can be made to the flow behavior
through a Gumbel probability density. The remaining part of the process to characterize
the uncertainty costs is followed, as in [12].

In the case of controllable loads, in [10], an approximation is made to their uncertainty
costs through the analysis of integrals of expected value, taking into account probability
distributions inherent to the behavior of controllable demand. The authors of [10–13]
considered that the controllable loads can follow normal or beta distributions, so, in [10],
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the mathematical analysis is performed with these distributions. As a result, analyti-
cal expressions were obtained that can be integrated in the development of an optimal
energy dispatch.

2.3. Climate-Dependent Controllable Loads

The work carried out in [10] considers the uncertainty cost functions for controllable
loads, particularly those associated with electric vehicles. As a complementary effort, the
work detailed in this report sought to achieve the uncertainty costs for climate-dependent
controllable loads found in commercial environments. Therefore, we proceed to detail this
type of loads.

Over the years, several studies have been developed that have tried to establish a
consistent relationship between energy consumption and the ambient temperature of the
place where one lives. As can be intuitively understood, non-linearity occurs due to the
search for an ambient temperature that offers comfort in the place where it is inhabited,
through the use of ambient conditioning devices. Therefore, if the temperature is below or
above the optimal comfort temperature, generally, electrical devices such as air conditioners
or heaters will be used to reach it again. This will be reflected in energy consumption,
which will have a minimum point that corresponds to the optimal comfort temperature
and maximum points related to temperatures far from the optimum [16].

Continuing with the work developed (see, e.g., [16–18]), it can be seen that this non-
linear relationship between ambient temperature and energy consumption is susceptible
to being represented by a mathematical expression, when you have statistical data for the
two variables. This is possible thanks to techniques such as linearization of the relationship
through the use of variables exogenous to the model, multilinear regression and the use
of dummy variables to weight the impact of different phenomena on the relationship to
be analyzed.

With this, it is possible to show the existence of controllable loads that are closely
related to climate and temperature, such as environmental conditioning devices, which
will act to maintain an ambient temperature that is considered comfortable.

The main contribution of the proposed study is its applicability in the calculation
of uncertainty cost functions (UCF) and determining the probability functions required
to calculate the UCF using kernels. In this way, the cost functions of uncertainty of
controllable loads through the investigation of probability distributions and the analytical
development of integrals of expected value were determined, for their application in an
efficient energy dispatch.

3. Methodology for Probability Density Estimation

This section presents information on how to approximate or obtain the probability
density functions that represent the behavior of stochastic agents. These are necessary to
be able to develop the uncertainty cost functions of the latter.

3.1. Parametric Probability Density Functions

As mentioned in previous sections, to find the uncertainty costs of a random agent,
it is necessary to have a probability density function that best describes the agent’s be-
havior. Doing a check on the different works that have addressed the issue of uncertainty
costs [10–15], it can be seen that most of them have used standard parametric probability
density functions. These functions can be normal, beta, Rayleigh, Gumbell distributions,
etc. They are known as parametric because, with 1–3 parameters for each function, it is
possible to define them in their entirety.

It is important to mention that, to define the type of density function that best suits an
agent and its base parameters, it is necessary to have statistical information on its behavior.
Once this information is available, it is possible to approximate the probability density
functions to the consumption or generation curve of the agent in question, through the use
of software tools, such as the application of adjustment of the probability distribution of
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MatLab, among others. These tools allow the histogram of the statistical data of a random
agent and the different probability density curves to be approximated to the histogram,
with their parameters based on and calculated from the statistical data of the agent, to be
viewed in the same graph. Bearing this in mind, the possibility is presented of seeing the
density function that most closely approximates the agent. Figure 1 shows the behavior in
one year of the controllable loads of the building that is part of the study of this article (the
data come from a random building from over 1000 buildings over a three-year timeframe
given by American Society of Heating, Refrigerating and Air Conditioning Engineers
(ASHRAE) in the competition “ASHRAE—Great Energy Predictor” [25]; additionally, in
Section 6, you can find more information on these loads) and the different probability
densities that were chosen to represent it.

As shown in Figure 1, the density functions that would most represent the agent’s
behavior would be the normal, Gamma or inverse Gaussian functions (the data are
from [10–15]). It is also seen that functions such as Weibull or Rayleigh would not be
very useful in this case. Following the methodology developed in [10–15], one could
think of using some of the densities closest to the agent to calculate its uncertainty costs.
Although the above would represent a good approximation of costs, if you pay more
attention to the past graph, you can see that there are sections of the histogram that are
oversized or that are not covered by the closest density functions. Then, the uncertainty
costs calculated with these functions will omit certain agent-specific details associated with
these missing parts of their behavior.

Figure 1. Comparison between agent behavior histogram and assumed probability density functions.

3.2. Nonparametric Probability Density Functions

As mentioned above, although it is possible to try to approximate the behavior of
a stochastic agent through parametric probability density functions, this causes certain
statistical data characteristic of the agent to be omitted. To obtain analytical uncertainty
cost functions that can be used in the development of efficient economic dispatches, it is
necessary to use a methodology that allows obtaining probability densities closer to the
random behavior of the agent.

A methodology used to estimate probability densities, given a set of statistical data, is
the application of a kernel density estimator. This methodology consists of approximating
a probability density curve to the behavior data of a stochastic agent, through the use of
a function composed of a summation of kernel functions, which seek to represent each
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datum in the final density function. The composite function is known as the kernel density
estimator. Here is an overview of the methodology mentioned above.

3.2.1. Kernel Density Estimator and Kernel Distribution

A kernel density estimator is a function that represents a special type of probability
density known as a kernel distribution. This is characterized by being nonparametric,
that is, it is not defined by one or more parameters. The kernel distribution is used when
parametric density functions cannot properly describe the behavior of statistical data of a
random variable, or when we want to avoid assumptions about their distribution [19].

If we have a series of n observations of an independent and identically distributed
random variable (iid) of the form {x1, x2, ..., xn}, whose probability density f (x) is un-
known, a kernel density estimator f̂ (x) can be used, which will approximate f (x) by the
sum of functions K(xi, t) (kernel function), assigned to each observation of the series. The
above is summarized in the following expression:

f̂ (t) =
1
n

n

∑
i=1

K(xi, t) (5)

In more detail with respect to the previous expression, it can be seen that the estimator
f̂ (x) consists of an average of core functions (K(xi, t)) which will have as main and individ-
ual parameter, each observation that belongs to the series [20]. It is worth mentioning that
the kernel function is symmetric and generally smooth, with an arbitrary own parameter h,
known as bandwidth, that controls the amount of smoothness which is wanted in the final
estimated probability density curve [26]. The expression for K(xi, t) is shown below:

K(xi, t) =
1
h

Kkernel

(
xi − t

h

)
(6)

From this expression, it should be noted that Kkernel is a parametric probability density
function that can be arbitrarily selected, as long as it meets the following characteristics:

1. Kkernel(x) is symmetric.
2.

∫ ∞
−∞ Kkernel(x) dx = 1.

3. limx→−∞Kkernel(x) = limx→∞Kkernel(x) = 0.

When reviewing these characteristics, especially the second one, it can be seen that
we are talking about a probability density function. Then, it should be clarified that, in its
most common practical applications, the estimator uses a symmetric Kkernel(x); however,
recently we have seen the use of asymmetric functions as a kernel for the recreation of
probability density functions [20]. Qualitative characteristics of the use of one or the other
are detailed below.

3.2.2. How the Density Estimator Works

When there is a series of observations of a random variable, of the form {x1, x2, ..., xn},
the density estimator will take each xi data as a main parameter of a small density function,
graphically creating “ bumps ” of the form of the Kkernel(x) function at each xi. Then, all
these functions will be averaged and weighted to obtain the final density function of the set
of observations [26]. Next, a graphical example of the operation of the estimator presented
in [26] is shown.

Figure 2 shows a dataset located at the points xi = {0.1, 0.15, 0.2, 0.5, 0.7, 0.8}, which
are represented by the black bars. Each of these points is assigned a proper density function
(Kkernel(x)), which follows the behavior of a normal distribution in this case (purple curves).
Then, the sum of these density functions typical of each point will lead to obtaining the
estimated density curve for the dataset, represented by the brown curve.
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Figure 2. Graphic representation of the operation of the density estimator (simulated and modified
from [26]).

3.2.3. Bandwidth h and Kernel Functions

As can be seen from Equation (6), the density estimator has two customization ele-
ments that can be adjusted as required in different applications. These elements are the
bandwidth h and the kernel function Kkernel(x).

In the configuration of a probability density estimator, the choice of the bandwidth
parameter h plays an important role. This parameter is known by this name because it
determines how much information of the base data series is reflected in the density function
obtained from the estimator. It can be interpreted as a noise modulator in the final density
curve [20].

A very small value of h can lead to the density curve obtained by the estimator
showing insignificant or insignificant details. On the other hand, a very large value
of h can cause a very smooth effect on the final curve, which could obviate important
characteristics contained in the data information [20]. Figure 3 shows an example of the
effect of choosing h.

Figure 3. Effect of different values of h on the estimated density curve (simulated and modified from [26]).
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Regarding the kernel function Kkernel(x), it is worth mentioning that symmetric func-
tions are the most used in the most common practical applications; however, recently there
has been an increase in the use of asymmetric functions [20]. The main difference between
the use of one or the other has to do with the form that the kernel function takes depending
on the location point of the data of the base series. As shown in Figure 2, symmetric
functions, e.g., the normal distribution, have shapes that do not vary depending on where
they are. On the other hand, asymmetric functions show different shapes for the different
points of the data series.

The most common symmetric kernel functions are:

Gaussian or Normal Kkernel(x) =
1√
2π

e
−x2

2 (7)

Uni f orm Kkernel(x) =
1
2

I(−1 ≤ x ≤ 1) (8)

Epanechnikov Kkernel(x) =
3
4

max{1− x2, 0} (9)

Apart from these functions, there are other symmetric and asymmetric functions
that can be used as kernels of the density estimator. Weglarczyk [20] presented different
kernel functions.

4. Methodology for Cost of Uncertainty
4.1. Methodology for Cost of Uncertainty from Underestimating Electricity Demand

Looking at the uncertainty cost of underestimation equation below, you can see that
the expression is quite similar to the cost of overestimation equation, except for the order
of the addends Pe,i and Pe,s,i. Therefore, the methodology for obtaining the cost function
for underestimation is the same as that used in the previous section.

E[Ce,u,i(Pe,i, Pe,s,i)] =
∫ Pe,∞

Pe,s,i

Ce,u,i (Pe,i − Pe,s,i) fPe,i (Pe,i) dPe,i (10)

Again, the density estimator with normal kernel function detailed in Section 6.2
is used:

fPe,i (Pe,i) =
1√

2πnh

n

∑
j=1

e−
(Pe,i−µj)

2

2h2 (11)

With this, the process of determining the cost function of the underestimation is:

E[Ce,u,i(Pe,i, Pe,s,i)] = Ce,u,i

[∫ Pe,∞

Pe,s,i

Pe,i fPe,i (Pe,i) dPe,i −
∫ Pe,∞

Pe,s,i

Pe,s,i fPe,i (Pe,i) dPe,i

]

Ce,u,i

∫ Pe,∞

Pe,s,i

Pe,i
1√

2πnh

 n

∑
j=1

e−
(Pe,i−µj )

2

2h2

 dPe,i −
∫ Pe,∞

Pe,s,i

Pe,s,i
1√

2πnh

 n

∑
j=1

e−
(Pe,i−µj )

2

2h2

 dPe,i


Ce,u,i

 1√
2πnh

∫ Pe,∞

Pe,s,i

Pe,i

 n

∑
j=1

e−
(Pe,i−µj )

2

2h2

 dPe,i − Pe,s,i
1√

2πnh

∫ Pe,∞

Pe,s,i

 n

∑
j=1

e−
(Pe,i−µj )

2

2h2

 dPe,i


Ce,u,i

 1√
2πnh

n

∑
j=1

∫ Pe,∞

Pe,s,i

Pe,i e−
(Pe,i−µj )

2

2h2 dPe,i − Pe,s,i
1√

2πnh

n

∑
j=1

∫ Pe,∞

Pe,s,i

e−
(Pe,i−µj )

2

2h2 dPe,i


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Next, the proposed indefinite integrals are calculated, with which the following expres-
sion is obtained (solving the integrals through the error function identities of Appendix A,
the expected value of the cost function is obtained):

Ce,u,i√
2πnh

[
n

∑
j=1

(
−h2 e−

(µj−Pe,i)
2

2h2 −
√

π

2
h µj er f

(
µj − Pe,i√

2 h

))∣∣∣∣∣Pe,s,i
Pe,∞

−Pe,s,i

n

∑
j=1

(
−
√

π

2
h er f

(
µj − Pe,i√

2 h

))Pe,∞

Pe,s,i

]

Ce,u,i√
2πnh

[(
−h2

n

∑
j=1

e−
(µj−Pe,i)

2

2h2

∣∣∣∣∣Pe,s,i
Pe,∞ −

√
π

2
h

n

∑
j=1

µj er f
(

µj − Pe,i√
2 h

)∣∣∣∣∣Pe,s,i
Pe,∞

)

+Pe,s,i

√
π

2
h

n

∑
j=1

er f
(

µj − Pe,i√
2 h

)∣∣∣∣∣Pe,s,i
Pe,∞

]

E[Ce,u,i(Pe,i, Pe,s,i)] =
Ce,u,i√
2πnh

[
−h2

n

∑
j=1

(
e−

(µj−Pe,∞)2

2h2 − e−
(µj−Pe,s,i)

2

2h2

)
−
√

π

2
h

n

∑
j=1

µj

(
er f
(

µj − Pe,∞√
2 h

)
− er f

(
µj − Pe,s,i√

2 h

))
+Pe,s,i

√
π

2
h

n

∑
j=1

(
er f
(

µj − Pe,∞√
2 h

)
− er f

(
µj − Pe,s,i√

2 h

))]
Finally, taking into account that all the terms of the expression carry the sum ∑n

j=1,
it is possible to combine it to obtain the uncertainty cost function to be underestimated,
as follows:

E[Ce,u,i(Pe,i, Pe,s,i)] =
n

∑
j=1

Ce,u,i√
2πnh

[
Pe,s,i

√
π

2
h
(

er f
(

µj − Pe,∞√
2 h

)
− er f

(
µj − Pe,s,i√

2 h

))

−
√

π

2
h µj

(
er f
(

µj − Pe,∞√
2 h

)
− er f

(
µj − Pe,s,i√

2 h

))
−h2

(
e−

(µj−Pe,∞)2

2h2 − e−
(µj−Pe,s,i)

2

2h2

)]
(12)

4.2. Uncertainty Cost for Overestimating Electricity Demand

As mentioned in Section 2.1, the determination of the analytical cost function for
overestimating the electricity demand can be calculated by means of the following equation.

E[Ce,o,i(Pe,i, Pe,s,i)] =
∫ Pe,s,i

0
Ce,o,i (Pe,s,i − Pe,i) fPe,i (Pe,i) dPe,i (13)

With the above, we proceed to calculate the expected value of the cost to be overesti-
mated. First, the separation of the integral is performed on the addends of the expression.

E[Ce,o,i(Pe,i, Pe,s,i)] = Ce,o,i

[∫ Pe,s,i

0
Pe,s,i fPe,i (Pe,i) dPe,i −

∫ Pe,s,i

0
Pe,i fPe,i (Pe,i) dPe,i

]
Then, the replacement of the density function fPe,i (Pe,i)

Ce,o,i

∫ Pe,s,i

0
Pe,s,i

1√
2πnh

 n

∑
j=1

e−
(Pe,i−µj )

2

2h2

 dPe,i −
∫ Pe,s,i

0
Pe,i

1√
2πnh

 n

∑
j=1

e−
(Pe,i−µj )

2

2h2

 dPe,i



Ce,o,i

Pe,s,i
1√

2πnh

∫ Pe,s,i

0

 n

∑
j=1

e−
(Pe,i−µj )

2

2h2

 dPe,i −
1√

2πnh

∫ Pe,s,i

0
Pe,i

 n

∑
j=1

e−
(Pe,i−µj )

2

2h2

 dPe,i


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Ce,o,i

Pe,s,i
1√

2πnh

n

∑
j=1

∫ Pe,s,i

0
e−

(Pe,i−µj )
2

2h2 dPe,i −
1√

2πnh

n

∑
j=1

∫ Pe,s,i

0
Pe,i e−

(Pe,i−µj )
2

2h2 dPe,i


Next, the indefinite integrals are calculated, with which the following expression

is obtained:
Ce,o,i√
2πnh

[
Pe,s,i

n

∑
j=1

(
−
√

π

2
h er f

(
µj − Pe,i√

2 h

))∣∣∣∣∣0Pe,s,i

−
n

∑
j=1

(
−h2 e−

(µj−Pe,i)
2

2h2 −
√

π

2
h µj er f

(
µj − Pe,i√

2 h

))∣∣∣0Pe,s,i

]
Subsequently, a reorganization of terms is carried out:

Ce,o,i√
2πnh

[(
h2

n

∑
j=1

e−
(µj−Pe,i)

2

2h2

∣∣∣∣∣0Pe,s,i +

√
π

2
h

n

∑
j=1

µj er f
(

µj − Pe,i√
2 h

)Pe,s,i

0

)

−Pe,s,i

√
π

2
h

n

∑
j=1

er f
(

µj − Pe,i√
2 h

)∣∣∣0Pe,s,i

]
Afterwards, the points of the definite integral are replaced in the variable Pe,i

E[Ce,o,i(Pe,i, Pe,s,i)] =
Ce,o,i√
2πnh

[
h2

n

∑
j=1

(
e−

(µj−Pe,s,i)
2

2h2 − e−
µ2

j
2h2

)
+

√
π

2
h

n

∑
j=1

µj

(
er f
(

µj − Pe,s,i√
2 h

)
− er f

(
µj√
2 h

))
−Pe,s,i

√
π

2
h

n

∑
j=1

(
er f
(

µj − Pe,s,i√
2 h

)
− er f

(
µj√
2 h

))]
Finally, taking into account that all the terms of the expression carry the sum ∑n

j=1,
it is possible to combine them to obtain the uncertainty cost function for overestimation,
as follows:

E[Ce,o,i(Pe,i, Pe,s,i)] =
n

∑
j=1

Ce,o,i√
2πnh

[
h2

(
e−

(µj−Pe,s,i)
2

2h2 − e−
µ2

j
2h2

)
+

√
π

2
h µj

(
er f
(

µj − Pe,s,i√
2 h

)
− er f

(
µj√
2 h

))
−Pe,s,i

√
π

2
h
(

er f
(

µj − Pe,s,i√
2 h

)
− er f

(
µj√
2 h

))]
(14)

Please note that the uncertainty cost functions for the analytical method does not
depend of Pe,i, since in the mathematical development fPe,i (Pe,i) is used, i.e., the probability
density function used to describe the behavior of the stochastic Pe,i.

In this way, the main contributions of the proposed methodology are:

• Probability distributions able to handle the behavior of controllable loads in a residen-
tial, industrial or commercial context, by means of the applications proposed in the
literature review are found.

• The characteristic equations of the uncertainty costs of controllable loads by means of
the analytical development of integrals of expected value are obtained .

• An efficient energy dispatch that considers optimization of the costs of uncertainty of
controllable loads is performed.

5. Simulation and Validation of Uncertainty Cost Functions

The validation of the cost functions (12) and (14), obtained in the previous section,
was carried out from the methodology used in [10], with the exception of obtaining the
density function probability, which is the result of the application of the density estimator
in the series of statistical data of Building 944, as mentioned above.
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5.1. Matlab Kernel Density Estimator

The numerical simulation software tool Matlab has an application with its own inter-
face for the analysis of statistical data from the fitting of probability curves. This application
is known as Distribution Fitter, and it is capable of fitting parametric or nonparametric
density curves to statistical dataset that is to be analyzed and supplied as input to the
system. Information about the use of this tool can be found in [27].

Using the Distribution Fitter, it was possible to obtain the probability density function
based on the statistical data of Building 944, by using the density estimator with a normal
type kernel function. Figure 4 shows the density curve obtained through the estimator and
its comparison with parametric density functions. As can be seen, the estimator curve (red)
has a more faithful fit to the data from Building 944, compared to the other functions, even
with the normal function and the gamma function. This makes it the optimal option to
represent the building’s probability density function.

In addition, it should be mentioned that the Distribution Fitter automatically provided
the value of the h bandwidth, which was 3.08079. As mentioned above, this value can be
arbitrarily selected, so that a more or less smooth curve can be obtained, as required. With
this value of h together with the dataset for Building 944, it is possible to simulate the cost
functions (12) and (14).

Figure 4. Probability density function obtained from the density estimator for demand (kW) in
Building 944.

5.2. Monte-Carlo Simulation

Similar to the methodology used in [10], to validate the uncertainty cost functions
found, simulations were carried out with the Monte-Carlo simulation method. With this, a
comparison could be made between the costs obtained from the analytical functions and
those obtained from the simulations.

We next describe the validation algorithm. In a first stage, the random obtaining of
the energy consumption values with nonparametric probability was carried out using the
Monte-Carlo simulations. Then, we proceeded to determine if the consumption values fall
into the categories of overestimation or underestimation. In case they did not enter either
of the two categories, we went back to the first stage. Then, the uncertainty cost vector was
formed, from which its mean value was obtained. In the final stage, this mean value was
compared with the analytical calculation from the cost functions found, and the percentage
error was found.

It is worth mentioning that Matlab’s Distribution Fitter application offers the possibility
of exporting the data of its density curve fits to the workspace, with which the characteristics
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of the nonparametric probability density function of Building 944 could be included in the
simulation code.

In this way, the main steps used to perform the Monte-Carlo simulation are as follows:

1. A demand value is established that represents the power programmed by a network
operator, normally from an economic dispatch model.

2. A Monte Carlo scenario is generated through a random value generated for a random
generator according to the probability distribution (Section 2).

3. Given the value of the previous point, the value of the available demand is determined.
4. In this Monte Carlo scenario, the cost is evaluated: if it is in underestimated, the corre-

sponding equation is used, and, similarly, if it is in overestimated, the corresponding
equation is used.

5. Steps 2–4 are repeated several times.
6. A cost histogram is obtained where all Monte-Carlo scenarios are considered.
7. The expected value of the total accumulated cost is calculated, this quantity is the

expected value of the uncertainty cost function and it is compared with the analyti-
cal value.

6. Data of the Controllable Load in Study

For the development of the work, statistical data in which hourly records of energy
consumption and ambient temperature of buildings of different uses were evidenced, in
Florida, USA, for the year 2016. In a first effort, a data treatment was carried out so that
daily consumption and temperature records could be obtained in order to facilitate their
manipulation. For the case of this article, the data of a building identified with the number
944 (hereinafter, Building 944) were used (a random building from over 1000 buildings
over a three-year timeframe given by American Society of Heating, Refrigerating and Air
Conditioning Engineers (ASHRAE) in the competition “ASHRAE—Great Energy Predic-
tor”), due to its purpose for commercial use and the dependency relationship between
energy consumption and ambient temperature, which is detailed below.

6.1. Climate Dependence

First, the dependence of the energy consumption data of the load under study, with
respect to its ambient temperature, was determined. For the case of Building 944, when
plotting its energy consumption data against its ambient temperature data, it was possible
to visualize, in the first instance, the non-linear relationship with a “v” shape, which is
characteristic in loads that present dependence between its consumption and ambient
temperature. As mentioned in [17], this type of behavior is the result of the use of climate-
controllable loads such as heaters or air conditioners (room temperature control devices),
which will activate to reach the temperature of comfort. Figure 5 presents the graph.

Then, as mentioned in Section 2.3, it is possible to obtain a mathematical expression
that reflects the dependence of electricity demand on the ambient temperature for a con-
trollable load. The necessary procedures that were carried out for the development of the
expression for Building 944 are detailed below.

Multivariate regression

To obtain the mathematical expression of the dependence of the energy consumption
on the ambient temperature, the multivariate regression method was used. This method
consists of expressing a variable (energy consumption in this case), as the result of the
weighted sum of the different variables that may be related to this [17]. Next, the variables
used to carry out the multivariate regression are detailed.
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Figure 5. Demand of power electricity vs. temperature curve behavior, Building 944.

Exogenous temperature variables

After visualizing the non-linear behavior of the relationship between energy consump-
tion and ambient temperature in the building, we proceeded to linearize the curve by
associating exogenous temperature variables to the expression. These variables are the
Cooling Degree Days and the Heating Degree Days (CDD and HDD, respectively) [17].
These variables are related to temperature through the following expressions:

CDD = max{0, Tamb − Topt}

HDD = max{0, Topt − Tamb}

Below, when reviewing the previous equations, it can be seen that, when one “acts”,
the other will be at 0, because the room temperature Tamb will be on one side or the other
of the optimal temperature Topt. With this, the points of the curve below Topt are covered
by HDD and the points of the curve above Topt are covered by CDD.

Trend and seasonality variables

As can be seen in previous works [16,17], the behavior of energy consumption can
present trends and seasonality related to the time series. The above refers to repetitive
patterns or increases and decreases in the time series, sustained over time. These effects
are reflected in the electricity demand due to certain behaviors that occur in consumption
and that depend on the day of the week or the time of the year in which a certain demand
record occurs. To take these effects into account, dummy variables (variables that take
values of 1 when a condition is met and 0 otherwise) were introduced in the expression that
represent the days of the week, the months of the year, holidays and the days immediately
preceding holidays. As explained in previous works [16,17], these variables are taken into
account to see the impact of both trend and seasonality on the expression.

Autoregression

Another effect that can occur in the treatment and analysis of time series is autore-
gression, as mentioned in [18]. This refers to the relationship that a datum in the series
may have with previously recorded data. In this work, it is the dependence of the energy
consumption that occurs in a day, with the consumption that has occurred in previous
days. In [28], the presence of autoregression in time series related to electricity demand is
evidenced, for which lag’ variables were introduced to be able to observe the dependence
of the series up to three days ago.
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Structure of the regression expression

Taking into account the above variables, below you can see the equation used to
characterize the relationship between consumption and temperature of Building 944.

DE = C + e ∗ t + a ∗ CDD(Tamb) + b ∗ HDD(Tamb) +
7

∑
i=1

di ∗ Dai+

12

∑
j=1

mj ∗Mesj + h1 ∗ Hol + h2 ∗ HolT−1 +
3

∑
k=1

lk ∗ Lagk

where C is a constant; t is the variable time; e is the coefficient of the variable time; D is
the Day; Mes is the Month; Hol is the Holiday; a is the coefficient of the variable CDD; b is
the coefficient of the variable HDD; di is the coefficient of the variable Day i of the week;
mj is the coefficient of the variable Month j of the year; h1 is the coefficient of the Holiday
variable; h2 is the coefficient of the variable Day before holiday; and lk is the coefficient of
the variable lag k.

With the expression complete, it is possible to construct the regression equation using
the Matlab functionality of multiple linear regression “regress”. With this, in terms of the
similarity of the replicated data from the found expression and the base data of Building
944, a correlation of R2 of 0.9154 was obtained. Nevertheless, a high value of the correlation
coefficient of 0.9154 does not yet prove the adequacy of the regression model; indeed, both
F-test and t-test yielded p-values < 0.05 for several buildings (Table 1), which means the
null hypotheses is rejected. In this way, the presented results of the multidimensional
regression model do not justify the conclusions about the influence of temperature on
the electricity demand (consumption), but this study assumes that, for the buildings of
ASHRAE “ASHRAE—Great Energy Predictor” [25], there is a direct influence [29–33].

Over the years, several studies have been developed that have tried to determine a
consistent relationship between demand and ambient temperature, in order to establish
the former as a dependent variable. Taking into account characteristics of the behavior of
ambient temperature such as randomness, seasonality and trends, the methods to find its
relationship with electricity demand have used statistical (regression) and probabilistic
(expected value functions) tools.The proposal is a linear multiple regression statistical
procedure to validate this assumption for the set of ASHRAE buildings. Initially, there
were hourly data on both demand and the building’s ambient temperature. These were
averaged to obtain daily data. Once we have the daily data, we proceed to obtain the
characteristic curve of the behavior between electricity demand and temperature. The
curve is characterized by having a “V” shape. Intuitively, it is understood that, when a
place is inhabited, there will be an optimal comfort temperature (minimum point), and
that, when the temperature is far from the optimal one, electrical devices (heaters or air
conditioners, depending on the case) are used to return to the temperature again comfort,
thus increasing demand at extreme points of temperature.

Additionally, this assumption comes from the comparison of the adjusted model
found for the analyzed buildings with and without autoregression effect over ASHRAE
buildings (Table 1).

As shown in Table 1, in most cases, the models found through the multiple regressions
have a high degree of similarity to the data examined for each building. Most of the
models have an R2 adjustment above 0.8, so the results simulated based on these have a
relationship greater than 80% of similarity to the input data of the regressions. Furthermore,
it is noteworthy that several models (5) have an R2 close to or above 0.9 (90%).
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Table 1. Analyzed ASHRAE buildings with and without autoregression.

Building R2 without AR R2 with AR p-Value for F-Test p-Value for t-Test

892 0.67119 0.699674 0.057 0

944 0.909277 0.915403 0 0

970 0.907186 0.930692 0.999 0

982 0.89748 0.918719 0 0

984 0.529493 0.717893 0.999 0

1115 0.891994 0.915112 0 0

1118 0.765109 0.878194 1 0

1120 0.924841 0.949972 0 0

1197 0.477236 0.901832 1 0

It is also worth mentioning the impact of the autoregression phenomenon on the
models. The results of a first comparison reveal that in all the analyzed cases there is an
improvement in the similarity in the models when autoregression is considered as a de-
scriptive variable of energy consumption in buildings. This shows a dependence of energy
consumption dependent on consumption in past days, speaking only of statistical data.

In particular, the variation that occurred in Buildings 984 and 1197 is highlighted
by considering the effect of autoregression on the models. As shown in Table 1, the first
goes from an R2 of 0.529493 to one of 0.717893 and the second from an R2 of 0.477236 to
one of 0.901832. This implies that the behavior of the buildings is strongly influenced by
autoregression, to the point that the found models initially have a low similarity relationship
and then one with a high descriptive capacity of their behavior. This confirmed the
relevance of the expression developed and therefore the dependence of the consumption
data with respect to the ambient temperature of Building 944.

6.2. Building 944 Probability Density Function

After characterizing the dependence of energy consumption with respect to ambient
temperature, the work focused on consulting probability distributions to be able to repre-
sent the statistical data of energy consumption of Building 944. After a literature review,
the kernel density estimator described in Section 3.2.1 is reached. Thus, to perform the
representation of the probability density of Building 944, the Gaussian kernel function of
the Equation (7) was chosen.

To proceed with the calculation of the expected value integral of the uncertainty cost
functions, it is first necessary to establish the probability density function fPe,i (Pe,i) that
describes the behavior of Building 944. As mentioned above, for this density function,
the density estimator with a normal type kernel function is used, applied in the statistical
data of Building 944. Obtaining the expression of the estimator to be used is achieved
by replacing function (7) in Equation (6) and finally in expression (5). This leads to the
probability density function for Building 944, represented by the following equation.

fPe,i (Pe,i) =
1√

2πnh

n

∑
j=1

e−
(Pe,i−µj)

2

2h2 (15)

where µj is the data series for Building 944; n is the total of data in the series; and Pe,i is the
real energy demand as an integration variable.
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7. Results and Discussion

In this section, the results obtained from simulation and validation are shown, for
different conditions of dispatched power and maximum power that can be dispatched.
This is to check the operation of the equations obtained, subjected to different conditions.
Together, an analysis of the results is developed. It should be remembered that the power
dispatched or scheduled power is Ps and the maximum power to dispatch is Pe,∞. For these
cases, the minimum, average and maximum consumption values of Building 944 are taken
into account, identified as min944 = 8 kWh (Case 1), mean944 = 128.2749 kWh (Case 2)
and max944 = 577 kWh (Case 3), respectively.

The results shown below are from 25 simulations for each case. It is worth mentioning
that, for each simulation, 10,000 generations of random numbers were carried out for the
consumption of Building 944, part of the Monte-Carlo simulation method.

7.1. Case 1

In Table 2 is shown the case 1 where Ps = min944 and Pe,∞ = max944.

Table 2. Case 1 Results.

No. Simulation Analytic Functions [$] Monte-Carlo [$] Error [%]

1 36,072.6 36,137.22 0.178829

2 36,072.6 36,050.66 0.060865

3 36,072.6 36,039.28 0.092459

4 36,072.6 36,090.44 0.049432

5 36,072.6 36,098.55 0.071874

6 36,072.6 36,008.41 0.178269

7 36,072.6 36,092.01 0.053771

8 36,072.6 36,029.81 0.118759

9 36,072.6 36,152.23 0.220251

10 36,072.6 36,007.75 0.180094

11 36,072.6 36,081.87 0.02568

12 36,072.6 36,126.22 0.148435

13 36,072.6 36,189.79 0.323822

14 36,072.6 36,073.91 0.003618

15 36,072.6 36,051.01 0.059894

16 36,072.6 36,076.51 0.010837

17 36,072.6 36,120.46 0.132505

18 36,072.6 36,073.58 0.002728

19 36,072.6 36,030.64 0.116449

20 36,072.6 36,037.09 0.098528

21 36,072.6 36,127.66 0.152397

22 36,072.6 36,103.9 0.086697

23 36,072.6 36,080.71 0.022481

24 36,072.6 36,095.15 0.062464

25 36,072.6 36,082.2 0.0266
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7.2. Case 2

In Table 3 is shown the case 2 where Ps = mean944 and Pe,∞ = max944.

Table 3. Case 2 Results.

No. Simulation Analytic Functions [$] Monte-Carlo [$] Error [%]

1 7115.163 7049.649 0.929327

2 7115.163 6999.377 1.654234

3 7115.163 7123.705 0.119909

4 7115.163 7003.204 1.598682

5 7115.163 7054.541 0.859343

6 7115.163 7178.322 0.879848

7 7115.163 7153.225 0.532096

8 7115.163 7220.486 1.458668

9 7115.163 7170.19 0.767442

10 7115.163 6986.23 1.845533

11 7115.163 7074.522 0.574472

12 7115.163 7230.857 1.599998

13 7115.163 7209.265 1.305292

14 7115.163 7134.508 0.271147

15 7115.163 7057.038 0.823645

16 7115.163 7059.236 0.79226

17 7115.163 7189.986 1.040647

18 7115.163 7101.062 0.198582

19 7115.163 7085.249 0.422207

20 7115.163 7069.38 0.647635

21 7115.163 7226.585 1.541837

22 7115.163 7112.49 0.037587

23 7115.163 7136.004 0.292049

24 7115.163 7113.682 0.020829

25 7115.163 7104.051 0.156421

7.3. Case 3

In Table 4 is shown the case 3 where Ps = max944 and Pe,∞ = max944.
The coefficient of costs for underestimating the energy ce,u,i is 30 USD/MW and the

cost coefficient for overestimating the energy ce,o,i is 70 USD/MW using the data from
previous studies [10–12]. The reason for large differences in costs for Cases 1–3 (USD
36,072.6, 7115.2 and 314,107.4, respectively) is that for the extreme case (Cases 1 and 3) the
uncertainty cost increase due the probability distribution of the real demand (Pe,i: the real
power delivered or demanded at node i). Pe,s,i (power programmed to deliver or consume
at node i) is the set value for the controllable load to be determined by a optimization
problem of economic dispatch, where there are decision variables not only of the power
to be injected for the generation agents but also the controllable demand values to be
schedules, that is to say, it is a exogenous variable assumed in the regression model.
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Table 4. Case 3 Results.

No. Simulation Analytic Functions [$] Monte-Carlo [$] Error [%]

1 314,107.4 313,879.4 0.07265

2 314,107.4 314,280.1 0.054924

3 314,107.4 314,133.1 0.008178

4 314,107.4 314,038.3 0.022014

5 314,107.4 314,319.7 0.067513

6 314,107.4 314,210.6 0.032829

7 314,107.4 314,169.5 0.019739

8 314,107.4 314,103.5 0.001266

9 314,107.4 314,069.1 0.012208

10 314,107.4 314,275.2 0.053363

11 314,107.4 313,977.7 0.041311

12 314,107.4 314,042.7 0.020603

13 314,107.4 313,985.6 0.03882

14 314,107.4 314,227.9 0.038319

15 314,107.4 314,052.4 0.01752

16 314,107.4 314,166.2 0.018694

17 314,107.4 314,226.6 0.037919

18 314,107.4 314,059.5 0.015256

19 314,107.4 314,039 0.021782

20 314,107.4 313,847.1 0.08294

21 314,107.4 314,411.9 0.096821

22 314,107.4 314,161 0.017051

23 314,107.4 314,066.3 0.013106

24 314,107.4 313,958.9 0.047306

25 314,107.4 314,226 0.037736

7.4. Analysis of Results

The results obtained for Cases 1–3 show that the percentage differentials are minimal.
Figures 6–8 present detailed graphical comparisons between the analytical functions and
the Monte Carlo method for these cases. Visually, it can be seen that the values tend to be
quite similar, in some simulations almost the same. It should be mentioned that Cases 1–3
have in common that the maximum energy to dispatch is equal to the record of maximum
energy consumed by Building 944.

Table 5 presents the average error in the 25 simulations for Cases 1–3. These errors
do not exceed 1%, which confirms that the analytical functions found represent a good
approximation to the uncertainty costs modeled from the Monte-Carlo simulation method.
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Figure 6. Comparison between analytical functions and Monte Carlo Case 1.

Figure 7. Comparison between analytical functions and Monte Carlo Case 2.

In general, the previous simulation cases show that the equations found present an
optimal behavior, as long as it is ensured that the maximum energy to be dispatched Pe,∞
is large enough to cover the demand, in this case, feeding Building 944. This is related to
the uncertainty cost function for underestimation that depends on the value of Pe,∞, as can
be seen in Equation (12).
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Figure 8. Comparison between analytical functions and Monte Carlo Case 3.

Table 5. Summary statistical values Cases 1–3.

Case Average Error [%] Mean Variance Std Dev.

1 0.071818 0.090601 0.005621 0.076522

2 0.564646 0.650946 0.354767 0.607905

3 0.016921 0.017571 0.000351 0.019133

8. Conclusions

It is possible to determine uncertainty cost functions for agents in the electricity sector
with specific characteristics from a probability density function that describes their behavior
and the analytical development of integrals of expected value. The probability density
estimator represents a very useful tool for approximating probability density functions
for future use in analytical procedures. In this paper, the relationship between electrical
demand and room temperature is considered, which is susceptible to linearization based
on the inclusion of exogenous variables such as cooling degree days (CDD) and heating
degree days (HDD).

In this way, the phenomenon of autoregression has a considerable effect on the time se-
ries used in this study. Its inclusion in the models obtained from multiple linear regressions
makes it possible to obtain models closer to the data recorded for the different cases.

Through the uncertainty cost functions found, it is possible to obtain the costs of an
agent in the electricity sector, as long as statistical data on their behavior are available.
Additionally, the functions found represent a good approximation to the behavior of the
uncertainty costs of the analyzed controllable load, since they present errors of less than
1%, compared to the Monte-Carlo simulations.

There is an intrinsic dependence between the analytical functions found and the
maximum value of demand that could be scheduled to the controllable load. The inclusion
of “dummy” variables that represent conditions external to the relationship to be analyzed
allows a model adjustment more faithful to the reality of the recorded data.
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Appendix A

ERROR FUNCTION IDENTITIES

b∫
a

e−t2 · dt =
√

π

2
(er f (b)− er f (a)) (A1)

b∫
a

e−(t−k)2 · dt =
√

π

2
(er f (b− k)− er f (a− k)) (A2)
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