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Abstract: The increasing demand for renewable energy devices over the past decade has motivated
researchers to develop new and improve the existing fabrication techniques. One of the promising
candidates for renewable energy technology is metal halide perovskite, owning to its high power
conversion efficiency and low processing cost. This work analyzes the relationship between the
structure of metal halide perovskites and their properties along with the effect of alloying and
other factors on device stability, as well as causes and mechanisms of material degradation. The
present work discusses the existing approaches for enhancing the stability of PSC devices through
modifying functional layers. The advantages and disadvantages of different methods in boosting
device efficiency and reducing fabrication cost are highlighted. In addition, the paper presents
recommendations for the enhancement of interfaces in PSC structures.

Keywords: perovskite solar cell; hole transport layer; electron-transporting layer; thin film; solvent
additives; structure modification

1. Introduction

Halide perovskite solar cells (PSCs) are promising for practical use [1,2], due to high
power conversion efficiency (PCE) of 25.5% [3,4]. Despite the variety of PSC research [5–8],
PSC technology is seldom used for industrial applications, partially because of the instabil-
ity of the perovskite structure layer and low reproducibility of PSCs [9,10]. The structural
flaws and limited light absorption of the photoactive perovskite layer are the main factors
that affect the PCE value in PSCs [11,12]. The characteristics of PSCs largely depend on the
energy level alignment and carrier transport properties between the photoactive perovskite
layer and carrier transport layer [11]. Therefore, most research effort is spent on surface
morphology, crystallization control, energy level alignment, and conductivity of the per-
ovskite photoactive and carrier transport layers [7]. High carrier mobility and equalization
of conductivity levels promote the effective migration of photogenerated charge carriers,
reducing their recombination at the interface [13–15]. In addition, solar modules based on
PSCs are more practical and ergonomic, which inspires architects and designers to innovate
when integrating these technologies into building architecture [16,17].

One way to improve the photoelectric performance and stability of perovskite devices
is to enhance the quality of the perovskite light-absorbing layer by improving its structure,
reducing the defects, and increasing grain sizes. This becomes possible thanks to the syner-
gistic progress in interface modification, material synthesis, and device fabrication [18,19].
Because interfaces are decisive in charge transport and charge recombination, many studies
have also focused on interface modification [20,21]. The aim of this paper is to provide
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an analytical review of the advances in the photovoltaics sector over the past 5 years that
tackle the structure of the photoactive layer and its interfacial properties, resulting in higher
stability and higher photovoltaic efficiency of PSCs.

The first section of the analytical review discusses the device architecture and work
principles of PSCs. The second section looks at the latest methods for obtaining perovskite
films and modifying the perovskite structure. The third section is devoted to the analysis
of recent advances in the field of cathode and anode interface modification that help to
improve PSC stability and efficiency. The main conclusions of the review analysis are
presented in the fourth section.

1.1. The Structure of a PSC Device

Usually, a PSC includes a perovskite light-absorbing layer that is sandwiched between
a hole transport layer (HTL) and an electron transport layer (ETL). The finishing layers
of cell are the transparent conductive oxide (TCO) and the metal (Au, Al) electrodes (see
Figure 1a) [22].
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Figure 1. Layered structures of planar and mesoporous perovskite solar cells (a). Processes of
photovoltaic energy conversion at different steps in the operational device (b), where (1)—charge
dissociation; (2)—charge diffusion; (3)—charge transport; (4)—charge extraction; (5)—charge recom-
bination. Adapted from [22,23].

The PSCs come in two basic structures, as depicted in Figure 1a: the planar and the
mesoporous. The mesoporous structure involves a porous ETL that is usually TiO2 [24].
The planar structure is separated into two types [23]:

(1) n-i-p configuration, where ETL (n-type semiconductor) is deposited on the TCO
substrate, and HTL (p-type semiconductor) is located above the perovskite layer;

(2) p-i-n configuration, in which HTL is deposited at TCO surface and ETL on top of the
perovskite layer.

From the configuration perspective, the planar structure is the most suitable for com-
mercialization. Mesoporous structures require high annealing temperature and processing
time, which leads to an increase in cost and complexity in the production of cells [24].
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Planar structures are more simplified with lower annealing temperatures and, accordingly,
lower material costs. Nevertheless, the presence of hysteresis in the current-voltage charac-
teristics and insufficient stability of cells and their lower PCE as compared to a mesoporous
structure inhibit the commercialization of planar PSCs. A solution to these problems re-
quires, among other things, an understanding of the relation between a perovskite structure
and ionic compositions, as well as interface engineering [25,26].

Direct and inverted configurations differ in the polarity of the solar cell. In the
direct structure, electrons are collected in the TCO electrode (Figure 1b). For inverted
structure, the TCO electrode collects holes. Both configurations have good photoelectric
properties and high PCE [27]; however, greater degradation of ETL is registered in inverted
configurations [28]. Therefore, a direct structure is more acceptable due to better structural
stability and PSC efficiency.

The chemical structure of perovskite absorbers is represented by a basic formula ABX3,
where A is an organic cation (methylammonium CH3NH3

+, formamidinium NH2CHNH2
+,

etc.) or inorganic cation (Cs+, Rb+, K+, etc.); B is a metal cation with a larger ionic radius
(Pb2+, Sn2+, etc.); and X is a halide anion with a smaller ionic radius (I−, Br−, Cl−) [29].
Depending on the composition and stoichiometry, the perovskite material exhibits a variety
of crystal structures, ranging from cubic, tetragonal, or hexagonal to rhombohedral or
orthorhombic phases [28–30].

The alignment of energy levels of perovskite at the interface with other materials
that make up the device, such as the photoactive layer (perovskite) and the electrodes
(anode/cathode), is a prerequisite for effective charge separation (Figure 1b) and high
performance of the PSCs. The most suitable ETLs for PSC devices are low work function
(WF) metal oxides (TiO2, ZnO, Ta2O5, Al2O3, ZrO2), whereas the high-WF metal oxides
(MoO3, NiO, CuO, V2O5) can act as HTLs [23]. These materials are easy and inexpensive to
process as compared to pure metals. The most common method for adjusting energy levels
is the introduction of a dipolar layer between the perovskite and the charge transfer layers,
for example, by functionalizing the surface [31]. This concept is based on changing the WF
of transparent conducting oxides and the position of the Fermi level of the oxides with
respect to the charge transfer levels of the semiconductor. Organic substances and salts
are also widely used as interfacial layers [32–35]. For example, p-type nickel oxide (NiO)
was intercalated with cesium carbonate (Cs2CO3) to function as a hole and as an electron
transport layers for planar PSCs [36]. The treatment with cesium carbonate increases the
energy conversion efficiency of inverted and conventional planar PSCs. Functionaliza-
tion of the electron layer of ZnO with dipolar molecules improves charge transport and
decreases contact resistance [37]. In addition, surface treatment with polyethylene oxide
(PEO) reduces the energy level mismatch at the carbon/perovskite interface [38].

The theoretical efficiency limit of PSCs with a single-junction structure is established at
33% [39], whereas the silicon solar cells exhibit the maximum efficiency of 29.1% [40]. The
certified efficiency record of PSCs is 25.5%, which is higher than that of thin film CdTe solar
cells (22.1%) and polycrystalline silicon solar cells (22.3%) [41]. Due to the lower defect
density, the MAPbI3 perovskite single crystals help in achieving efficient PSCs with PCE
exceeding 21% [42], and the all-inorganic CsPbI3 perovskites were reported to reach a PCE
over 18%. This makes them suitable for the fabrication of efficient device structures with a
PCE of more than 12% [43]. The high performance of PSCs is achieved through various
coating engineering approaches and the use of composite materials. Figure 2 shows the
chronological progress of PCE PSCs over the last 5 years (2015–2020). Certified PCE values
are compiled from data on PSC efficiency tables [44–50].

According to Figure 2, one can see that РCЕvalue from 2015 to 2020 increased from
20.1% to 25.5%. Achievements of smooth growth of РCЕare realized by changing the
composition of the material from MAPbI3 to FAPbI3 and using their compositions to
stabilize the α-phase of FAPbI3 at ambient temperature [44,45]. In addition to modifying
the composition, the development of interfaces also contributes to improving PSC stability.
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Besides changing perovskite composition, film deposition methods play an important role
in increasing PCE.
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Lead-based PSCs are the most useable devices with high PCE [42,45]. However, lead
toxicity and resultant chemical instability of perovskite materials are serious problems [51].
After reviewing recent studies [52], it was found that there are several scenarios for the
recycling of lead from PSC waste, one of which allows the use of lead in PSCs with
negligible environmental impact with others leading to a catastrophic negative impact of
lead on the environment, including pollution of water and soil in landfills [53]. Currently,
there are many studies [54] devoted to the search for perovskite materials based on low-
toxicity elements (Sn, Bi, Sb, Ge, and Cu) or completely organic materials, which will
provide alternative approaches to the implementation of high PCE and less harm to the
environment in the near future.

1.2. PSC Working Principles

The capacity of PSCs to convert solar power into electricity is largely dependent
on the photoactive materials properties and the device architecture. With a p-n junction
photoactive material, the theoretical maximum limit of PCE approaches 33% at 1.4 eV
bandgap, as shown in [55]. However, for real unijunction solar cells, the recorded efficiency
is much lower than this upper limit (see Figure 3), which is explained by the influence of
various factors (structural defects, impurities, etc.) [56]. As can be seen from Figure 3, the
maximum PCE limit reduces as the energy bandgap shifts to 1.4 eV.

First, it was assumed that there were no losses, all photons with energy E > Eg
were absorbed, and the material emitted as a black body with chemical potential µ > 0.
Then it was decided to calculate the limits [55]. It was also assumed that each absorbed
photon generates one electron in the external circuit, and therefore the efficiency of internal
quantum equals 1. Hence, a solar cell can be considered as a body that emits blackbody
radiation φbb and absorbs solar radiation φsun. The fluxes of absorbed and emitted photons
are dependent on the absorbance (a(E)) that is equal to 1 for E > Eg and 0 for E < Eg.
Knowing the absorbance, one can determine the short-circuit current density by solving
the following equation [57]:

Jsc = q
∫ ∞

Eg
a(E)φsundE (1)

where: E—the photon energy and q—the elementary charge.
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The absorption efficiency η is defined as ratio of generated Frenkel excitons to the
total number of incident photons:

η =
JA
sc

Jmax
sc

(2)

where: Jmax
sc —the maximum current density that is extracted from a device. It depends on

wavelength, as shown below:

Jmax
sc =

q
hc

∫ λ2

λ1

PAM(λ)λdλ (3)

where: PAM—AM 1.5 G solar irradiance, h—Planck’s constant, c—the light speed in vac-
uum. JA

sc—current density generated by the PSCs at short circuit when all the photons
adsorbed within an active layer add to a photocurrent. It can be also expressed in terms
of wavelength:

JA
sc =

q
hc

∫ λ2

λ1

AactPAM(λ)λdλ (4)

where: Aact—the photoactive layer absorption.
In a real PSC, some of the absorbed solar energy is dissipated thanks to the resistance

against the charge flow. Therefore, a PSC is modeled by equivalent circuit that takes
this resistance into account. There are two types of resistance: series resistance, which
can arise from the properties of the active layer and electrode, and contact resistance,
which originates between electrodes and the active layer. It is widely accepted that for a
single-junction PSC with a minimum leakage current, the current is expressed in terms
of voltage:

J = Js

(
exp

(
q(V − JARs)

nkBT

))
− Jph, (5)

where: Jph is the photogenerated current, Js—the reverse supersaturation current, n is the
ideality factor determining the quality of device; and Rs is series resistance.

The first term of Equation (5) shows thermally generated currents and electrode injec-
tion current and the second term represents the photogenerated current. Using Equation (5)
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one can thus obtain all the necessary parameters of a solar cell [58], as well as the open
circuit voltage, often expressed as:

VOC =
nkBT

q
ln
( Jph

J0
+ 1
)

(6)

When n = 1, the current recombination is insignificant in the depletion region, and
diffusion current dominates in a device. When n = 2, a recombination current is prevailing.
Because both the diffusion current and the recombination current within a device are
known, the ideality factor will vary from 1 to 2.

The key parameters used to evaluate the quality and performance of a PSC are
open circuit voltage (VOC), short-circuit current density (Jsc), fill factor (FF), and PCE. For
example, in 2019, the highest recorded PCE of 24.2% was achieved with VOC = 1.1948 V,
Jsc = 24.16 mA/cm2 and FF = 0.84 [49] compared to VOC = 1.059 V and FF = 0.77 and
PCE value = 20.1% for 2014. Normally, the functional layers keep changing in real-life
operating conditions, which leads to the emergence of various dynamic phenomena in the
current–voltage curves, such as hysteresis and transient behavior [59,60].

As shown above, the energy levels of charge transport layers and crystal structure
of the photoactive layer are some of the critical factors for efficient generation of photon-
induced charges. The composition and morphology of the layers are also important factors.
For example, the energy level alignment is sensitive to the layer thickness and can be tuned
by incorporating various interface modifications of the perovskite film. The crystallinity
of the perovskite layer can be controlled by using solvent additives [61]. A crucial role
in thin-film solar cell fabrication is given to buffer layers or barrier layers that protect
the active layers against the adverse effects of oxygen and humidity, align the energy
level discrepancy between electrodes and active layers, and facilitate the charge transfer
process [51]. The present review aims to study the recent modifications in the structure
of the active layer and their effect on the photoelectric efficiency and PSC stability. The
state-of-the-art report assesses advances in this field and can serve as a methodological
guide to modifying the structure of perovskite solar cells.

2. Perovskite Structure Stability Methods

The main factor affecting the stability and efficiency of a photoelectric device is the
crystallinity of the photoactive layer. It largely depends on the photoactive layer materials
and methods for the preparation of the photoactive film. The alloying elements and solvent
additives have been reported to improve the perovskite crystallinity [60]. This section
provides a review of the novel approaches to perovskite film fabrication and improvement
of the perovskite film crystallinity.

2.1. Methods for Making Perovskite Films

The core methods in perovskite film preparation are solution processing (SP) and
vacuum deposition (VD). SP methods are better than VD as they are economical and
compatible with the production of other active layers. To date, many options and stepwise
procedures have been used in the fabrication of perovskite films, resulting in variation in
both the film quality and PCE. The most commonly used VD procedures are sequential
vapor deposition and dual-source VD processes. In SP, the most popular methods are
single-step spin coating, two-step spin coating, vacuum deposition, and vapor-assisted
solution processing (VASP) (Figure 4). Below is a description of the features of each of the
popular methods for producing perovskite film with an assessment of the advantages and
disadvantages of each.
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Figure 4. Various methods of making perovskite film: one-step spin-coating, two-step spin-coating,
dual-source vacuum deposition (DSVD), and vapor-assisted solution processing (VASP).

The single-step spin-coating process involves the dissolving of organic halide molecules
and metal halide for perovskite crystals. For this, CH3NH3I (MAI), CH3NH3Cl (MACl), or
NH2CHNH2I (FAI) are mixed with PbI2 in C3H7NO (DMF), (CH3)2SO (DMSO), or C4H6O2
(GBL). Once the mixing is complete, it is deposited onto the substrate by spin coating and
annealed at 90 ◦C (Figure 4) [61]. Using this method, however, film properties such as
morphology and uniformity are difficult to control [6]. The perovskite films produced in
such a way typically possess enlarged crystal grains and rough film morphologies, which
can lead to the suppression of the carrier extraction processes in the PSC device. However,
using an anti-solvent dripping technique during spin-coating, the perovskite precursor
solution results in pure and stable crystal phases of polycrystalline perovskite films with
highly reproducible efficiencies of more than 22% [62]. This method is quite simple and
affordable, and the high quality of the film mainly depends on the purity of the precursors
and the quality of the substrate [63].

In the two-step spin-coating process, PbI2 is deposited onto the substrate, then MAI
undergoes spin coating on dried PbI2 film. The film color changes from yellow to brown.
The film is then annealed at 90 ◦C for 10 min to enhance film morphology [64]. Sometimes,
instead of the second step, the PbI2 film is immersed into the organic salt solution [65]. The
two-step method was developed to improve and control the morphology of the film in MAI
deposition. It involves the diffusion of cations (CH3NH3) into the PbI2 matrix with the
formation of a perovskite film. The main disadvantage of this method is that it produces
a dense film (MAPbI3) on the top PbI2 layer, preventing the perovskite formation within
the PbI2 layer. To overcome this, one will need larger film thickness and more time [66].
The use of this technique also guarantees a high cell performance with high values of
photovoltaic characteristics, namely Jsc, VOC, and FF.

The VD methods allow the precursor deposition in a vacuum at low temperatures.
Multiple simultaneous precursor depositions or deposition of one precursor at a time is
possible. The advantage of VD is that it improves the purity of the resulting material and
reduces contamination from solvents, which makes it possible to control thickness and
uniformity of a film. The low temperature of fabrication allows the use of various types of
substrates, i.e., textiles and flexible substrates. DSVD produces high-density perovskite
films of arbitrary thickness that can be controlled in real time [67,68]. However, this method
is more expensive compared to other methods when obtaining similar cell performance
metrics (Table 1).
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The vapor-assisted solution processing (VASP) method is a stepwise procedure in
which a PbI2 film is precipitated from the solution by centrifugation and then placed in
a chamber filled with CH3NH3I vapor at 150 ◦C for two hours, which saturates the PbI2
matrix with CH3NH3 [69]. The perovskite film obtained by using this method is dense and
shows no sign of current leakage. It also exhibits a uniform morphology, which helps to
reduce the scattering of charge carriers, thereby improving device performance and charge
recombination. The advantages of VASP are that high-purity films are highly reproducible
and compatible with large areas; there is accurate control over film morphology and
thickness and high PCE (>19%) [67–69] (Table 1).

Table 1. Photoelectric properties of perovskite-based devices fabricated using different deposition methods.

Perovskite Deposition Method PCE, % Jsc, mA/cm2 Voc, V FF Reference

MAI-PbI2 Single-step deposition 19.50 23.40 1.08 77.00 [61]
MAI-PbI2 Single-step deposition 24.82 26.35 1.16 80.90 [6]

MAI-PbI2-DMSO Single-step deposition 19.71 23.8 1.08 76.20 [70]
MAI-PbI2 Two-step sequential deposition 20.13 23.81 1.10 76.75 [64]
MAI-PbI2 Two-step sequential deposition 19.27 23.48 1.12 73.66 [65]
FA-PbI3 Two-step sequential deposition 22.4 24.4 1.17 78.89 [66]

MAI-PbI2 Vacuum deposition 19.4 23.11 1.09 77 [67]
MAI-PbI2 Vacuum deposition 19.1 24.3 1.15 79.8 [68]

FA1–xMAxPbI3 Vacuum deposition 18.8 22.5 1.1 75.1 [71]
(FAPbI3·xMACl)/DMF·NMP Vapor-assisted solution processing 19.78 24.79 1.07 74.60 [72]

FA-PbI3 Vapor-assisted solution processing 21.4 25.2 1.12 77.5 [73]
MAI-PbI2 Vapor-assisted solution processing 19.46 20.89 1.16 80.4 [74]

It seems that the one- and two-step depositions are the best ways to achieve the
highest PCE (Table 1), and the vapor deposition creates better uniformity and density of
the film in comparison with SP method. Vapor deposition produced films do not have
holes that cause performance-reducing current leakage. Films produced by DSVD exhibit
higher photocurrent and open circuit voltage due to better uniformity and fewer impurities.
However, the two-step solution-based sequential deposition is more preferable in terms of
device fabrication cost [66].

In addition to the above methods, there are other alternative technologies. For exam-
ple, in recent years, the method of contactless inkjet printing has gained popularity. This
technology offers the deposition of layers with simultaneous control of the structure of
printed perovskite solar cells [75]. The results of [76] showed that the method of inkjet
printing makes it possible to control the thickness of the perovskite layer in the range of 175
to 780 nm, which in turn makes it possible to control the morphology of the structure by ad-
justing the distance between the drops of the inkjet printer cartridge. In addition, according
to the test results, printed solar cells based on Cs0,1(FA-MA)0.9Pb(IxBrx−1)3 demonstrate
РCЕ12.9%, which represents a significant improvement over similar formulations obtained
by other methods (Table 1). One of the latest alternative technologies for the production of
hybrid perovskite solar cells is blade-coating, which also makes it possible to control the
layer thickness [77]. However, unlike the previous methods, the crystallization process of
the perovskite film strongly depends on the method and conditions of coating. The results
of studying the MAPbI3 perovskite obtained by the blade-coating method showed [78]
that the morphology and composition of the coatings are determined by the rate of solvent
removal. This, in turn, affects the РCЕvalue, which reaches up to 15%. In another work, it
was shown [79] that a PSC with an area of 1.96 cm2 obtained by this method is capable of
reaching РCЕof up to 18.3%, which is less than the efficiencies for films obtained by two-
step sequential deposition (Table 1). Study of the features of film crystallization processes
with alternative methods of preparation is ongoing, and understanding these processes
can significantly expand their future possibilities for large-scale production of perovskite
solar cells [80].
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2.2. Additives for Enhanced Crystallinity

In addition to choosing deposition methods, it is possible to enhance the perovskite
film crystallinity and morphology using a variety of additives. Dai et al. [81] hold that
the incorporation of a few solvent additives to the perovskite precursor solution improves
film crystallinity and device performance. Polar aprotic solvents are widely used when
preparing MAI solutions and lead halides (see Section 1). Some organic solvents, such as
C6H5Cl, C6H5, and C8H10, are an excellent choice for conducting organic polymers and
buffer layer materials, even though they exhibit poor solubility [82].

The integration of acetonitrile (ACN) in the FAI/MABr/MACl precursor by sequential
deposition for Cs/FA/MA perovskite films has been reported to reduce surface defects,
improve the crystal grain size, and enhance device efficiency from 13.06% to 15.64% [83].
In addition, ACN-containing devices showed more stable behavior in air, thermal, and
humidity stability tests.

The DMF additives were reported to positively affect the morphology of MAPbI3
perovskite films [84–86]. When introducing methyl ammonium chloride (MACl) and
DMF as co-additives in a two-step sequential process, the polar solvent facilitates easy
penetration of MAI into the PbI2 layer [85], and MAC1 induces MAPbI3 to crystallize in
the pure α-phase. The result of the synergistic effect between these two additives is a
pure α-phase perovskite film, with uniform morphology, enhanced VOC = 1.181 V, and
PCE = 19.02%. Oseni et al. [87] show that the use of DMSO instead of DMF for the creation
of the first PbI2 layer in a two-stage processing method provides smoother films with
uniform sized grains and reduced PbI2 residue.

Arias-Ramos et al. [88] report that using a mixture of ethyl acetate (EA) and 4-tert-
butylpyridine (tBP) as an anti-solvent in the preparation of CH3NH3PbI3 perovskite film at
high relative humidity of approximately 60% contributes to the formation of perovskite
surface with improved uniformity and higher hydrophobic capacity. The presence of tBP
in EA enables the device to reach 18.04% of PCE and retain over 80% of its initial efficiency
after 180 days of storage in high humidity conditions.

Perovskite films fabricated from the CH3NH3PbI3–xClx perovskite precursor solution
containing 1-chloronaphthalene (CN) additive were reported to be smoother and more
uniform with fewer pinholes and voids and with better surface coverage as compared to
conventional films [89]. Bis(trifluoromethane)sulfonimide lithium salt (Li-TFSI) is often
used as a p-dopant to increase the concentration of holes in the Spiro-MeOTAD layer and
gain higher PCE. PSCs fabricated with spiro(TFSI) 2 show enhanced stability in an inert
atmosphere [89].

The above findings suggest that improvements to film deposition technology and
the use of various additives enhance film morphology, resulting in better stability and
efficiency of the device.

3. Impact of Interface Modification on PSC Performance

As noted in Section 1, another channel for PCE losses in PSCs is often found at the
interface between the extracting layers and perovskite surface, which leads to charge carrier
recombination. PSC surface recombination velocity depends on the surface state, which
can be 2.9 cm/s for high-purity perovskite single crystals [90]. However, in polycrystalline
perovskite films with inhomogeneous morphology and insignificant levels of traps, surface
recombination is substantial in charge extraction and device efficiency [91]. Hence, the
interfacial modifications in PSCs define the processes of charge extraction and transport,
thereby determining the overall performance of the operational device. To this end, they
mainly seek to achieve an effective passivation of surface traps with inhibited surface
recombination. For this, it is important that the interfaces between the photoactive and
charge transporting layers (ETL and HTL) allow for the passivation of surface traps and
suppression of charge carrier recombination. The present review focuses on the new
front-end approaches to the surface trap passivation from the past 5 years.
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When fabricating PSCs by thermal annealing, sites may form near the film surface
region, occupied by either halide or metal ions. The undersaturated surface ions originating
as a result of this process are a trapping center and migrate under electric field action,
resulting in a loss of charge carriers and VOC. So far, considerable work has been conducted
to obtain an effective surface trap passivation through incorporating interlayers [92].

3.1. ETLs Interfacial Modifications

In PSCs with p-i-n device structure, the most common ETLs are those based on
fullerene derivatives, such as PCBM, which can improve electron collection and passivate
electron traps. However, fullerene’s passivation ability seems inefficient. Therefore, a poly-
mer polymethyl methacrylate (PMMA) was integrated into the PCBM matrix to enhance
film quality and trap passivation [93]. By optimizing concentration and molecular weight
of PMMA, the PSCs can reach 30% efficiency. The incorporation of PMMA additives was
reported to affect the surface potential of PCBM and reduce charge recombination losses,
as well as space charge effects [94,95]. In addition, the PMAA additive promotes the forma-
tion of a dense and uniform morphology with fewer surface traps. Such features enhance
the reliability and stability of the ETL, as well as the protection of the active perovskite
layer. For example, a PMMA/PCBM mixture with a ratio of 1:2 promotes the effective
defect passivation at the interface between the ETL and triple-cation perovskite (Cs0.05
(FA0.85MA0.15)0.95Pb (I0.85Br0.15)3), thereby increasing VOC to 1.17 V and PCE to 18.63%.
This method improves the stability of PSCs and helps to retain 82% of its initial efficiency
after 768 h of storage at room temperature [96].

Some research efforts were devoted to introducing a trace of NH4Cl to the sol–gel-
derived ZnO precursor to reduce ZnO film WF, tune perovskite film surface morphology,
and thus suppress trap state density in CsPbIBr2 films [97]. The resultant CsPbIBr2 films
were characterized by the presence of high crystallinity and micron-size grains. For optimal
NH4Cl-modified ZnO, a dramatic improvement in VOC from 1.08 to 1.27 V strengthened
the efficiency of CsPbIBr2 PSC to 10.16%, the highest value among pure-CsPbIBr2 PSCs
at a low fabrication temperature of 160 ◦C. Furthermore, NH4Cl-modified ZnO ETL was
reported to significantly reduce hysteresis and improve device stability [97].

The introduction of sodium heparin (HS) at the MAPbI3/TiO2 interface was reported
to increase trap passivation and device stability [98]. The incorporated HS layer also re-
duced the hydrophobicity of TiO2 and the number of pinholes within the TiO2 layer. These
modifications lead to higher perovskite crystallinity. The HS interfacial layer enables the
device to maintain 85% of its initial efficiency after 70 days of storage in ambient condition.

The interface modification of ETL improves the perovskite film morphology and
increases trap passivation, resulting in higher PCE (Figure 5). The maximum efficiencies
correspond to devices containing a PMMA-modified PCBM layer. PSCs modified with or-
ganic semiconductors, such as an n-type organic molecule, a homologous perylenediimide
tetramer (HPDT), a n-butylamine iodide (BAI), or down conversion materials, for example
Eu(TTA)2(Phen)MAA, also exhibit high performances.

3.2. Interfacial Modifications in НTLs

The commonly used materials for HTLs are small organic molecules and polymers
with tailorable WFs and surface properties, such as poly (3,4-ethylenedioxythiophene)
polystyrene sulfonate (PEDOT:PSS) [104]. So far, considerable work has been conducted
on strategies that facilitate charge extraction at the HTL/perovskite interface through the
introduction of additives, buffer layers, etc. Various conductive polymers (PTAA, P3HT,
PCBTDPP, etc.) and conjugated polyelectrolytes (PEDOT:PSS, P3CT, CPE-K, etc.) are used
as HTLs in PSCs because of their benefits in reducing fabrication and processing costs [105].
However, the interface modification of HTL increases trap passivation. Typically, HTLs are
both organic and inorganic materials.
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Xu et al. [106] proposed a novel method for HTL modification that uses copper (I)
thiocyanate (CuSCN) as a dopant for PEDOT:PSS. The resulting film had larger crystals,
and the PCE increased to 15.3% with an open circuit voltage of more than 1.0 V. The
long-term device stability also improved. This suggests that the doping of CuSCN in
PEDOT:PSS HTLs is an effective way to obtain stable high-performance PSCs. The PE-
DOT:PSS layer can also be modified with vanadium pentoxide (V2O5) [107]. The V2O5
modified layer averts the acidic PEDOT:PSS film from etching the ITO electrode and main-
tains the PSC structure stability. The 4.7-diphenyl-1.10-phenanthroline (Bphen) modified
layer was reported to prevent the photoactive layer film from direct connection with the
Ag electrode, which improved the storage stability of the device. With this method, the
PCE rose from 11.08% to 15.49%. Another widely used HTL in PSC structures is NiOx.
Lian et al. [108] modified the NiOx layer with different polymers, namely polystyrene,
poly (methyl methacrylate) (PMMA), and poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine]
(PTAA) to optimize the NiOx/perovskite interface. As a result, PSCs with modified
PMMA and PTAA films achieved high VOC values of up to 1.19 V and high conversion
efficiencies of 21.56%, the highest values possible. In some cases, HTLs can be enhanced
with the 3-(cyclohexylamino)-2-hydroxy-1-propanesulfonic acid (CAPSO) [109], NiOx
nanoparticles [110], Cu1.8S nanoparticles [111], etc., leading to better performances and
longer lifetime.

4. Conclusions

This paper presents a detailed report on the progress made in perovskite solar cells
so far along with changes in device performances and the challenges of perovskite fab-
rication to create a better understanding of the problem and assist in the search for new
fabrication techniques. It seems that the major challenges in the development of PSCs are
currently associated with the insufficient stability of PSC devices, reproducibility of device
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fabrication, and fabrication costs, which hinder commercialization. Unstable interfaces
between the active layers cause the degradation of photoactive materials and lower device
performance. PSC structure can be stabilized by modifying the perovskite layers and inter-
faces. The photoelectric properties of the PSC device were found to be dependent on the
film deposition technique, and the use of various additives improves film morphology and
crystallinity. Another PSC research prospect is interfacial layer selection. The incorporation
of inorganic and organic materials as interfacial layers promotes the effective passivation
of surface traps and charges collection from a photoactive medium to relevant electrodes.
The fullerene PCBM modified by depositing PMMA polymeric additives appears to be an
excellent choice in the preparation of ETLs, while the modified PEDOT:PSS is the best fit
for use as HTLs.
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