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Abstract: Georgian forests are very valuable natural resources, but due to the lack of affordable
alternatives to firewood, people are forced to use forest resources illegally and unsustainably. The
aim of this study was to determine the productivity and biomass properties of four poplar clones
from Aigeiros and Tacamahaca and one control clone, considering their wood and bark characteristics
and their proportion in the stems. Short-rotation woody crops with these clones represent a potential
source of commercial fuelwood production in Georgia as an alternative to natural forests. These tree
characteristics were evaluated after three years of growth. The survival of the clones was generally
high. No significant differences in biomass production (dry matter, DM) were found among the four
clones tested (DM of approximately 4 Mg ha−1 yr−1), while the control clone achieved significantly
lower values for DM. The biomass specific density was exceptionally high, at 481–588 kg m−3, which
was a result of the high proportion of bark mass in the stem (23.3–37.7%), with a density almost
twice that of wood. On the other hand, the tested clones had a very high ash content in the biomass
(2.6–4.5%), which negatively affected their energy potential expressed as a lower heating value
(17,642–17,849 J g−1). Our preliminary results indicated that both the quantity and quality of biomass
are important factors to justify the investment in an intensive poplar culture. The four clones should
be further considered for commercial biomass production and tested at different sites in Georgia
to evaluate the genotype-by-environment interactions and identify the site conditions required to
justify such an investment.

Keywords: poplar; clone; biomass properties; mean annual increment; specific density; bark; wood;
heating value; AF8

1. Introduction

Forests in Georgia occupy about 40% of the country’s territory [1]. They are excep-
tionally valuable natural resources at both the regional and global level [1,2]. The forest
ecosystems surviving in the mountain massifs of the Georgian Caucasus are the last un-
touched (“virgin”) forests in the temperate climate zone of the Earth [3]. As much as 95–98%
of Georgian forests are of natural origin [1], and almost all of them are still naturally re-
generated [2]. The species composition, structural diversity, and other characteristics of
Georgian forests shape their rich biodiversity, with approximately 400 occurring tree and

Energies 2021, 14, 3016. https://doi.org/10.3390/en14113016 https://www.mdpi.com/journal/energies

https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0002-1508-2497
https://orcid.org/0000-0001-6574-0796
https://orcid.org/0000-0001-9563-728X
https://orcid.org/0000-0001-5193-4274
https://www.mdpi.com/article/10.3390/en14113016?type=check_update&version=1
https://doi.org/10.3390/en14113016
https://doi.org/10.3390/en14113016
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/en14113016
https://www.mdpi.com/journal/energies


Energies 2021, 14, 3016 2 of 18

shrub species, including 61 species that are exclusively endemic to Georgia and a further
43 to the Caucasus [1].

However, Georgian forests not only conserve their unique biodiversity and perform a
variety of important protective functions (100% of the forests are protective forests), but
they also ensure the continuous supply of vital direct and indirect benefits and resources
to the population [1]. Georgia lies within two “biodiversity hotspots”—the Caucasus
and Irano-Anatolia—out of the 36 “biodiversity hotspots” identified by Conservation
International as both outstanding and highly threatened areas [4]. The high level of poverty
in rural areas, lack of affordable alternatives to firewood, and lack of alternative grazing
land force people to exploit forests illegally and unsustainably [5]. The National Forest
Agency allocates 600,000 m3 of firewood resources annually, which only meets 25% of
the demand for firewood [5]. The rest of the residents are forced to obtain the necessary
1,800,000 m3 of firewood illegally [5]. In addition, public institutions and the private sector
also consume a large amount of firewood [5]. Therefore, the scale of logging far exceeds the
rate of natural growth of forests located near human settlements. As a result, these forests
have been devastated, and it has become necessary to find alternative energy sources for
the country to reduce the pressure on natural forests [6].

Eliminating the fuelwood deficit is a complex problem that needs to be solved in
conjunction with improved forest, environmental, energy, social, and regional development
policies [5]. Energy efficiency is crucial to achieving social and environmental sustainability,
economic performance, and energy security [7,8]. The Georgian energy system is in active
development, and reforms are influenced in particular by the Association Agreement,
signed with the European Union (EU), and by membership in the Energy Community. In
the framework of the Association Agreement, Georgia has committed to the implementa-
tion of EU directives in the energy sector and will have to comply with the requirements of
the Third Energy Package [9]. Among EU member states, solid biofuels have been the most
important renewable energy source so far, reaching a share of 40.3% in the structure of
primary energy production from renewable sources in 2018 [10]. Solid biofuels are mainly
derived from woody biomass from forestry and agricultural crops [11]. Another promising
biomass source in Europe includes short-rotation woody crops (SRWC), which are based
on short cycles and use genetically superior planting material [12–14].

In this context, short-rotation woody crop (SRWC) plantations with fast-growing tree
species seem to be a good alternative to obtain additional biomass for firewood for Georgia.
The production of biomass as a raw material for energy production from SRWC plantations
is still developing in many countries in Europe and North America [8–20]. Biomass is
generally considered carbon-neutral, assuming that emissions from biomass combustion
are offset by plant regrowth [21–23]. If biomass resources are available and located close
to settlements, biomass disposal and transportation costs remain low, ensuring energy
sustainability [8]. In addition, the cultivation of woody biomass resources in the vicinity
where they are consumed creates employment in rural areas, which is much needed to
maintain the population in small rural settlements [24]. Therefore, biomass from SRWCs is
worth considering in order to achieve the goal of developing a more sustainable energy
supply and biodiversity conservation in the country [6].

SRWC plantations for bioenergy purposes are a novelty in Georgia and require a pre-
liminary study and elaboration of the basis for the development of plantation management
and, in particular, species and clone selection. The use of the best adapted genetic material
in the development of plantations contributes to the efficient use of site resources and thus
to a higher level of production [25].

Poplar (Populus L., Salicaceae Mirb.), as a fast-growing tree and the most widely
distributed genus in the Northern Hemisphere, provides an excellent opportunity for the
selection of natural genetic resources to maximize biomass production in SRWC plantations.
This natural genetic diversity of different poplar species occurs in very wide ranges and
amplitudes of ecological conditions. When natural easy hybridization between poplar
species is also considered, the desirable characteristics of different species can be combined
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in breeding programs [26]. In general, most poplar breeding programs aim to develop new
genotypes to achieve higher production, greater tolerance to pests and diseases, and specific
wood quality [25,27–29]. When considering biomass as an energy feedstock, important
energy-related characteristics of interest include a favorable wood-to-bark ratio, high
specific gravity (density) [30,31], and heating value [32–34], as well as a low ash/residue
content [33] and porosity [35]. In general, despite the fact that some studies have shown
that the heating value of bark is comparable to that of wood [36], in SRWC biomass, the
proportion of bark mass to total harvested biomass is nevertheless considered negative.
Since most minerals taken up by trees are accumulated in the bark, the ash mass fraction in
the whole tree is predominantly associated with the bark fraction [37]. Therefore, the energy
analysis of tree stems should be carried out considering the properties of wood and bark and
their proportion in stems. These properties are influenced by several factors, including stem
diameter, changes in cambium with age, genetic control, and environmental factors [37].
Previous studies [34,36–41] on the clonal variation of many of these traits in hybrid poplars
and other species of the Salicaceae family (willow) have reported a considerable variation
in the bark-to-wood ratio and ash mass fraction, a moderate variation in specific density,
and little variation in heating value.

Superior poplar genotypes from Aigeiros (e.g., Populus nigra, Populus deltoides) and
Tacamahaca (e.g., Populus trichocarpa, Populus maximowiczii, Populus balsamifera) sections are
the most commonly planted in Europe and potentially the most promising in terms of
biomass production for energy purposes in Georgia. Therefore, the aim of our preliminary
study was to determine the productivity and biomass characteristics considering the wood
and bark properties and their proportion in the stems of five poplar clones from the
Aigeiros and Tacamahaca sections as a potential source of commercial fuelwood production
in Georgia.

2. Materials and Methods
2.1. Experimental Location, Soil, and Climatic Condition

The experiment was established in eastern Georgia in the Mtskheta Municipality
(41◦55′01.75 N 44◦46′18.37 E, 586 m a.s.l.) in the village Jighaura, on the right bank of the
Tezami River, in the spring of 2017 (Figure 1). The long-term annual mean temperature is
11.89 ◦C, while the annual precipitation is 632.45 mm. The annual water balance (precipita-
tion minus potential evapotranspiration) of the study site amounts to −410.81 mm. The
detailed bioclimatic characteristics of the study site are presented in Table 1 [42].

Table 1. Bioclimatic characteristics of the study site in Jighaura (eastern Georgia) according to the
EuMedClim database [42].

Climatic Variable (Unit) Value

Annual mean temperature (◦C) 11.89
Mean diurnal temperature range (◦C) 11.02

Maximal temperature of the warmest month (◦C) 29.59
Minimal temperature of the coldest month (◦C) −4.50

Annual precipitation (mm) 632.45
Precipitation of the wettest month (mm) 101.03
Precipitation of the driest month (mm) 22.84

Winter mean temperature (December, January, February; ◦C) 1.11
Summer mean temperature (June, July, August; ◦C) 22.46

Winter precipitation (December, January, February; mm) 81.65
Summer precipitation (June, July, August; mm) 195.19

Annual potential evapotranspiration (mm) 1048.41
Annual water balance (precipitation minus potential evapotranspiration; mm) −410.81

Minimal monthly water balance (mm) −117.15
Maximal monthly water balance (mm) 21.73
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Figure 1. The location of the study site in Georgia (41◦55′01.75 N 44◦46′18.37 E, 586 m a.s.l.).

The soil type of the experimental plot belongs to Fluvisols according to the World
Reference Base for Soil Resources (IUSS Working Group WRB, 2015), which was developed
based on river deposits and correlated with the national classification as an alluvial soil
azonal type [43]. Fluvisols generally have low production and are used as cropland or
hay meadows [43]. A soil survey conducted prior to the establishment of the experiment
revealed that the soil was characterized by a very low organic matter content (less than 2%
in the humic horizon), moderate alkalinity (pH 8), silty clay texture, and high stoniness
index. The soil was poor in available phosphorus, rich in potassium, and had a high
calcium carbonate content that increased with depth [44]. In winter 2017, the soil was
plowed to a depth of 30–40 cm and superficially flattened before planting.

2.2. Planting Material and Study Design

The trial was established in early spring in 2017 using 22 cm long-dormant hardwood
cuttings that had previously been soaked in water for 24 h to promote rooting.

The genetic material consisted of five clones. Three clones, 89.M.061, 89.M.004, and Ko-
cabey (TR—77/10), were obtained from the Poplar and Fast Growing Forest Trees Research
Institute, PFGFTRI in Izmit, Turkey. AF8 is a commercial clone suitable for short-rotation
plantations produced by Alasia Franco Vivai in Italy (12030 Cavallermaggiore (CN)), while
Populus pyramidalis Roz (syn. Populus nigra “Italica”, P. italica Moench., P. fastigiata Desf.)
was used as a control. We continue to refer to the name P. pyramidalis for consistency.
The species was imported from Italy in the last century and showed good adaptability in
Georgia. Detailed information about the genetic material used in this study is presented in
Table 2.

Twenty cuttings from each poplar clone were used for planting. The cuttings were
planted in a completely randomized design with a spacing of 2.0 m between rows and 0.4 m
within rows, resulting in a density of 12,500 cuttings per hectare. No mineral fertilizers
were used, while an optimal irrigation regime was applied to mitigate the water deficit.
Manual weeding was carried out as required during the growing seasons.



Energies 2021, 14, 3016 5 of 18

Table 2. Poplar clones used in the experiment in eastern Georgia.

Name Source Parentage Sex

89.M.061 PFGFTRI P. deltoides × P. deltoides ♀
89.M.004 PFGFTRI P. deltoides × P. deltoides ♀

Kocabey (TR—77/10) PFGFTRI P. nigra L. ♀
AF8 Alasia Company P. generosa 103-86 × P. trichocarpa PEE ♀

P. pyramidalis (control) Georgia P. pyramidalis ♀

2.3. Measurement of Tree Characteristics

After three years of growth, the height and diameter at breast height (DBH; measured
at a height of 1.3 m) of all trees were measured. DBH was measured using a digital caliper
(Mitutoyo, type CD -15DC, UK), while tree height was measured using a calibrated pole.
The survival rate was determined by the number of living trees. Aboveground biomass
(dry mass, DM) production was calculated using an allometric function commonly used in
tree biomass and volume modeling [45]:

log10(DM)= β0 + β1 × log10(DBH) + β2log10(H), (1)

where DBH is the diameter at breast height; H is the height; and β0, β1, and β2 are the
parameters of the function (β0 = −7.31111, β1 = −0.402705, β2 = 4.33891, R2 = 0.958). The
parameters of the function were fitted based on the aboveground biomass of sample trees
taken from each genotype. The sample trees were selected for each poplar clone according
to their average height and diameter in the experiment [46]. Immediately after felling, the
sample trees were weighted. The two sample discs representing the given clone (discs cut
at breast height, 1.3 m) were taken to the laboratory to assess the biomass properties [46,47].

2.4. Biomass Properties

All the properties of stem biomass were analyzed in the Laboratory of Production Tech-
nology and Quality Assessment of Biofuels certified by the Polish Center for Accreditation
PCA (accreditation number AB1585). Analyses were conducted according to standardized
procedures, the required number of replicates, and the required repeatability of the results.
Since the parameters of the drying process have a significant impact on the specific density
and porosity of the dried material [48], the stem samples of all clones were dried under
strictly the same conditions in a laboratory dryer (SLW 115, Pol-Eko, Wodzisław Śląski,
Poland) at 105 ◦C until a constant mass was obtained. Then, the samples were divided
into subsamples consisting of bark and wood of a given poplar clone. Based on the mass
of bark and wood, the mass fraction (%) of wood Sw and bark Sb in the steam sample
was determined. Specific density (SD), as an important physical parameter characterizing
the ratio of the mass of a substance to its volume (volume including internal pores), was
measured based on a displacement method [33] using a quasi-fluid pycnometer (GeoPyc
1360, Micromeritics Instrument Corp., Norcross, GA, USA). The detailed procedure for SD
determination was described in our previous work [33]. Since the solid wood and bark
samples consist of the cell walls and cell cavities, which contain air and small amounts
of gum and other substances, we also determined their absolute density (AD). AD refers
to the density of the material without internal pores. Measurements of AD were taken
using helium gas for displacement with a gas pycnometer (AccuPyc II 1340 Micromeritics
Instrument Corp., Norcross, GA, USA). Based on SD and AD, the porosity p of the samples
was calculated according to the equation:

p [%] =
AD− SD

AD
× 100 (2)

For the proximate analysis of wood and bark, the samples were prepared accord-
ing to the EN ISO 14 780:2017 standard [49]. The samples (of wood and bark) were
ground to a particle size of <1 mm in a laboratory mill (PX-MFC 90D Polymix, Kinematika,
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Lucerne, Switzerland). Subsequently, the determination of the ash mass fraction Ad was
performed according to EN ISO 18122:2015 [50] in the muffle furnace (FCF 7SM Czylok,
Jastrzebie-Zdrój, Poland) and the heating value according to EN ISO 18125:2017 [51] using a
calorimeter (IKA C6000, IKA-Werke, Staufen, Germany). The heating value, also called the
calorific value, of the biomass was defined by the higher heating value (HHV) and lower
heating value (LHV). The HHV is essentially the energy content on a dry basis and indicates
the maximum amount of heat that a material can produce when burnt completely [52].
Unlike HHV, the LHV takes into account energy losses, such as the energy used to vaporize
water [52]. The difference between these values is practically constant when converted to
the dry state and depends mainly on the hydrogen content in the fuel [53]. Therefore, we
report both values while in the statistical analysis, and in the following, we refer only to
the LHV since this value is more applicable in practice.

The relative self-ignition temperature (TSI) of the samples was determined according
to the guidelines of Commission Regulation (EC) No. 440/2008 [54]. The TSI determination
was carried out in the temperature-programmed laboratory oven (FCF 2R/TZ-BM Czylok,
Jastrzębie-Zdrój, Poland). The test was performed until the sample temperature reached
400 ◦C, then the TSI was calculated. Details of the procedure are described elsewhere [31].
The synthetic information about the methods, standards, and equipment used for the
assessment of biomass quality parameters followed by the repeatability and errors of the
measurements are presented in Table 3.

Table 3. Standards followed for biomass quality parameters and analytical equipment used with information on measure-
ment accuracy.

Parameter Standard/Method Equipment Required
Repeatability

Reached
Repeatability

Standard
Deviation

SD quasi-fluid method Pycnometer GeoPyc 1360 Not defined - 0.02
AD gas method using helium Pycnometer AccuPyc II 1340 Not defined - 0.03

Ad EN ISO 18122 muffle furnace Czylok FCF 7SM A < 1%—0.1% absolute
A > 1%—10% relative

Max. 0.06%
Max. 2.2%

HV EN ISO 18125 calorimeter IKA C6000 120 J g−1 Max. 98 J g−1

TSI Commission Regulation
(EC) No. 440/2008

laboratory oven Czylok FCF
2R/TZ-BM Not defined - 3.2

SD, specific density; AD, absolute density; Ad, ash mass fraction; HV, heating value; TSI, self-ignition temperature.

2.5. Statistical Analysis

To test for variation among the examined clones in terms of mean growth and biomass
traits, linear models were implemented. The mathematical model for the single-factor
completely randomized design was applied for growth traits (DBH, H, DM), which was
appropriate with the study layout:

xij = µ + αi + εij, (3)

where xij is the dependent variable, µ is the mean, αi is the effect of clone i, and εij is the
random error.

Meanwhile, linear models with the interaction effect were applied to assess differences
in the biomass properties (SD, Ad, LHV, p). In the latter analysis, we considered the effect
of clone, material (bark, wood), and interaction between the clone and material:

xijk = µ + αi + β j + (αβ)ij + εijk, (4)

where xijk is the dependent variable, µ is the mean, αi is the effect of clone i, βj is the effect
of material j, (αβ)ij is the effect of interaction between clone i and material j, and εijk is the
random error.

Generally, the analyses for biomass properties were performed separately for wood
and bark characteristics; however, since it was unlikely that the feedstock would be de-
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barked in commercial operations, we also calculated the average values for stem character-
istics as a weighted average of the wood and bark content in the stem.

When the ANOVA indicated a significant effect (p ≤ 0.05), post hoc comparisons
between clones, materials, or interactions between clone and material were performed
using a least significant difference (LSD) test.

Pearson correlation coefficients were used to test the relationships between the mea-
sured characteristics, while principal component analysis (PCA) was used to further explore
the variation and determine patterns in the dataset. In the PCA, the multidimensional
space was reduced to eigenvectors (the principal components) corresponding to the eigen-
values that explained the largest part of the variation in the dataset. In this analysis, the
eigenvectors were calculated based on the constructed correlation matrix. All the statistical
analyses were performed with Statistica (data analysis software system), version 13 [55].

3. Results
3.1. Survival and Growth Parameters of Clones

The survival rate of the poplar clones was generally high. Clone 89.M.061 had the
lowest survival rate among the tested genotypes (90%), while two clones, Kocabey and
AF8, recorded a 100% survival rate at the age of three. The average diameters of the
various genotypes were statistically significantly different (p < 0.05). Clone 89.M.061 had
the highest mean DBH value (28.4 mm), which was significantly greater than the DBH
values of all the other clones (p < 0.05 in the LSD test, Figure 2a). In contrast, the control
clone of P. pyramidalis had the lowest DBH, at 11.6 mm, which was almost 2.5-fold smaller
than for the thickest clone.

The heights of trees of various clones were not as diverse as in the case of DBH values.
The four tested clones differed significantly in height (298.6–320.1 cm) from P. pyramidalis,
which produced the shortest trees (200.3 cm; p < 0.05 in the LSD test, Figure 2b).

The dry biomass, estimated on the basis of the allometric equation, showed significant
differences among clones. Biomass production data were calculated on an area basis,
taking into account the survival rate, and did not show statistically different results for
the three clones: 89.M.004, AF8, and Kocabey. The 89.M.061 had a slightly lower biomass
production but did not considerably differ from that of Kocabey. The largest difference in
DM productivity was exhibited between the tested clones and control (p < 0.05 in the LSD
test, Figure 2c). The mean annual increment (MAI) of dry mass reflected the results for DM
per ha and ranged between 2.96 (89.M.061) and 4.14 Mg ha−1 yr−1 (89.M.004). In contrast,
the MAI produced by the P. pyramidalis achieved a value of 0.78 Mg ha−1 yr−1 (Figure 2d).

3.2. Biomass Properties

All the biomass properties were generally influenced by the wood-to-bark ratio in
the stem. The proportion of bark in the stem of the different clones varied from 23.3% in
Kocabey to 37.7% in P. pyramidalis (Table 4). Overall, the specific density of stem biomass
(wood and bark) was high and ranged from 481 kg m−3 (89.M.061) to 588 kg m−3 (AF8).
There were significant differences (p < 0.05) between the wood and bark SD (Figure 3).
The wood density was 422 kg m−3, while the bark density was almost twice as high, at
817 kg m−3. Therefore, the bark content resulted in higher mean density values in the
clones with a greater ratio of bark to wood in the stem, e.g., P. pyramidalis. These results
were in contrast to porosity, which was lowest for the biomass of clone AF8 and highest
for that of 89.M.061. The mean porosity obtained for wood was 71.1%, and for bark it was
43.7%. The obtained results for porosity were significantly different between these two
components of the stem. The ash mass fraction in the stem biomass was generally high
and ranged from 2.6% to 4.5%. The lowest ash mass fraction was observed in the biomass
of AF8 and gradually increased with the biomass of the Turkish clones until it reached the
level of P. pyramidalis, which had the highest ash mass fraction. Similarly to density, the ash
mass fraction was considerably higher in the bark (9.5%) than in the wood (1.1%).
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Figure 2. Mean values ± standard error (vertical bar) for: (a) diameter at breast height (DBH (mm)), (b) height (H (cm)), (c)
dry matter yield per unit area (DM (Mg ha−1)), (d) mean annual increment of dry matter yield (MAI (Mg ha−1 yr−1)) for
clones. The values expressed per unit area were calculated, taking survival rate into account. The same letters indicate
statistically homogenous groups of clones at p < 0.05 in the LSD test.

Table 4. Weighted mean values of the stem parameters for the tested clones.

Clone Sw (%) Sb (%) Ad (%) HHV (J g−1) LHV (J g−1) TSI (◦C) SD (kg m−3)

89.M.004 71.8 28.2 3.1 18,997 17,708 238 507
89.M.061 75.1 24.9 3.7 19,050 17,758 232 481

AF8 74.4 25.6 2.6 19,103 17,849 245 588
Kocabey 76.7 23.3 3.1 18,985 17,716 244 522

P. pyramidalis 62.3 37.7 4.5 18,922 17,642 236 572

Sw, wood mass fraction; Sb, bark mass fraction; Ad, ash mass fraction; HHV, higher heating value; LHV, lower heating value; TSI,
self-ignition temperature; SD, specific density.
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Figure 3. Mean values ± standard error (vertical bar) of wood and bark for: (a) specific density (SD (kg m–3)), (b) porosity
(p (%)), (c) ash content (Ad (%)), (d) low heating value (LHV (J g−1)). The same letters indicate statistically homogenous
groups of clones at p < 0.05 in the LSD test.

The highest HHV among all the tested clones was achieved by the clone AF8 (19,103 J g−1),
while the lowest was achieved by P. pyramidalis (18,922 J g−1). The LHV results were in
agreement with the values obtained for the HHV of the clones and ranged from 17,642 J g−1

(P. pyramidalis) to 17,849 J g−1 (AF8). In general, wood was characterized by a significantly
higher LHV (18,205 J g−1) than bark (16,508 J g−1). The overall mean values for clones are
presented in Table 4, while the detailed data on all the biomass characteristics obtained
with the LSD test are shown in Figure 3.

3.3. Relationship between Traits

The Pearson correlation coefficients showed that the tree height (H) was strongly and
positively correlated with DBH, while strong negative correlations were observed between
H and bark share (Sb) or ash mass fraction (Ad). Similarly, DBH was negatively correlated
with Sb and specific density (SD). The correlation matrix also showed that the trees with a
high bark mass fraction in the stem had a higher ash mass fraction, which also negatively
affected the heating value (LHV; HHV was excluded from the analysis as explained in
Materials and Methods). Table 5 summarizes the correlation coefficients between the
studied traits. Wood mass fraction and porosity were removed from the analysis because
they are the converse of bark mass fraction and specific density, respectively.
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Table 5. Correlation coefficients between the studied traits. Blue tones indicate a positive correlation,
and red tones a negative relationship.

Height
(cm)

DBH
(mm)

Survival
(%)

Sb
(%)

Ad
(%)

LHV
(J g−1)

TSI
(◦C)

DBH (mm) 0.82 1.00 −0.39 −0.77 −0.42 0.45 −0.22
Survival (%) 0.17 −0.39 1.00 −0.20 −0.63 0.29 0.98

Sb (%) −0.88 −0.77 −0.20 1.00 0.73 −0.66 −0.36
Ad (%) −0.86 −0.42 −0.63 0.73 1.00 −0.72 −0.76

LHV (J g−1) 0.66 0.45 0.29 −0.66 −0.72 1.00 0.44
TSI (◦C) 0.34 −0.22 0.98 −0.36 −0.76 0.44 1.00

SD (kg m−3) −0.42 −0.79 0.63 0.45 −0.08 0.17 0.56
Sb, bark mass fraction; Ad, ash mass fraction; LHV, lower heating value; TSI, self-ignition temperature; SD,
specific density.

The results of the PCA are shown in Table 6 and Figure 4. The eigenvalues calculated,
based on the correlation matrix, showed the dominance of the first principal component,
which explained 52.52% (eigenvalue = 4.2) of the variance and was mainly associated with
H, Sb, Ad, and LHV, while the second PC was mainly associated with DBH, S, TSI, and
SD, and explained another 37.63% (eigenvalue = 3.0) of the variance. Overall, the first two
components explained a large part of the variance, amounting to 90.15%

Table 6. Pearson correlation coefficients between traits and the principal components (PC1, PC2).

Trait PC1 PC2

Height 0.93 −0.29
DBH 0.64 −0.77

Survival 0.44 0.86
Sb −0.91 0.28
Ad −0.95 −0.24

LHV 0.79 0.10
TSI 0.60 0.77
SD −0.15 0.92

Sb, bark mass fraction; Ad, ash mass fraction; LHV, lower heating value; TSI, self-ignition temperature; SD,
specific density.

The locations of the clones in the PCA ordination space showed very different patterns
in terms of growth and biomass properties (Figure 1). Generally, however, clones AF8 and
in laser extend Kocabey demonstrated a higher survival rate, TSI, and heating value, with a
lower ash mass fraction. The 89.M.004 clone demonstrated high DBH and H but a lower SD.
Clone 89.M.061 had, desirable, a high DBH but also a higher ash mass fraction and lower
SD than the other clones. The reference clone P. pyramidalis was distinguished by showing
the lowest productivity traits (DBH and H) and the highest share of bark in the stem among
all the selected clones, as well as a greater ash mass fraction and specific density.
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Figure 4. Principal component analysis (PCA) plot showing the multivariate variation poplar clones for productivity and
biomass characteristics. Vectors indicate the direction and strength of each variable to the overall distribution. S, survival;
TSI, self-ignition temperature; LHV, lower heating value; H, height; DBH, diameter at breast height; Ad, ash mass fraction;
Sb, bark mass fraction; SD, specific density.

4. Discussion

High biomass production in SRWC plantations depends on an optimum combination
of climatic and soil physical conditions, the availability of moisture during the growing
season, the availability of nutrients, the aeration of the soil and suitable species, and
clone selection [12]. Thus, the highest yields of 20–25 Mg ha−1 yr−1 are expected to be
achieved under suitable climatic conditions, with additional optimization of soil fertility
and moisture through fertilization and irrigation. Geographically, most records of the
highest productivity of poplars in SRWCs are reported from southern Europe [56–59] and
more southern locations in North America [60–62]. The results of several studies also
highlight the notable role of clone selection by showing large differences in productivity
between clones under the same culture, which can range from less than 1 to more than
25 Mg ha−1 yr−1 [63,64].

This study showed a relatively uniform level of biomass production among the tested
poplar clones at the study site in eastern Georgia. The only exception was the control,
P. pyramidalis, which differed significantly from all other clones in terms of biometric traits
and achieved the lowest growth parameters. During the three-year period of our study, the
highest DBH was achieved by clone 89.M.061, while the highest trees were produced by
89.M.004. The highest biomass production (DM) was achieved by the two clones, 89.M.004
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followed by AF8. However, the MAI for these clones was not high and amounted to
approximately 4 Mg ha−1 yr−1. The following two clones, Kocabay and 89.M.061, were
characterized by an MAI at a level of about 3 Mg ha−1 yr−1. The lowest MAI was produced
by the control clone P. pyramidalis (below 1 Mg ha−1 yr−1).

Previous studies in the Black Sea region—with similar climatic conditions to those
in our study site—showed the high potential (promising results) of all Turkish clones
investigated in this study. They were all characterized by significantly higher biomass
production than the control clones at the experimental sites established in central Anatolia,
south-east Anatolia, and east Anatolia [20]. The black poplar clone Kocabey, native to the
region, was already registered by the National Poplar Commission (Turkey), while 89.M.004
achieved an MAI of 62 m3 ha−1 yr−1 in first-stage clone trials in the Black Sea region [20].
The MAI produced by 89.M.004 was more than twice that of the control clone and can be
roughly converted to an MAI of DM of approximately 24 Mg ha−1 yr−1. Similarly, the AF8
clone has shown a high biomass production in many trials and in commercial plantations
in the Mediterranean region, with an MAI of about 19–24 Mg ha−1 yr−1 [25,32,65]. The
low productivity of the investigated clones in the current study may, therefore, suggest
unsuitable growth conditions.

Optimal growth conditions for hybrid poplar cultivation have been studied extensively
in Italy [65]. According to these studies, the optimal annual average temperature may be in
a wide range from 8.5 to 17 ◦C, with summer precipitation of 100–150 mm. These ranges
of climatic parameters indicate that our study site falls within limits for optimal climatic
conditions. Regarding soil properties, a suitable soil pH for short-rotation poplar cultivation
should fall within the range of 5.5 to 7.5. Soils with either a highly acidic or alkaline
pH or poorly or excessively drained; infertile; stony; shallow; or degraded by erosion,
compaction, or salinization reduce the productivity required to achieve satisfactory results in
cultivation [12]. Land suitability analyses for SRWC have defined the threshold of potential
annual biomass productivity as more than 8 Mg ha−1 yr−1 for suitable land [32,66,67]. The
soil conditions at the study site, with a pH of 8, a low organic matter content, and high
stoniness, exceeded suitable soil conditions, resulting in the low productivity of the clones,
which was far too low for sustainable biomass production on a commercial scale. In order
to obtain reliable results for the productivity of the currently tested clones, we propose that
further experimental phases should focus on establishing multiple trials under different site
conditions. Further experimental phases would certainly limit the pool of potentially useful
sites for poplar cultivation in Georgia but would help to achieve the high productivity
required to justify an investment in intensive culture. As a supplementary to the above, we
suggest the implementation of soil fertilization.

Regarding the biomass properties, they showed, as expected, a considerable variation
between clones in terms of bark-to-wood ratio and ash mass fraction, but also quite a
large variation in terms of specific density and porosity and a low variation in the lower
heating value.

Specific density is an important parameter in assessing the quality of feedstocks for
bioenergy production. High densities give a higher energy output on a volume basis and
help to reduce transportation costs [37]. The specific density values for the poplar clones in
the experiment were exceptionally high (481–588 kg m−3), much higher than the wood den-
sities of the 3-year-old poplar clones in the study of Tharakan et al. (330–370 kg m−3) [37]
or the 10-year-old poplar clones in continental Canada (325–366 kg m−3) [29].

From a biomass production perspective, selecting clones that combine a high wood
density with a high volume of growth maximizes the production and energy output on an
area basis [37]. Our preliminary results showed that the best combination of productivity
and density was achieved for the clone AF8, but all other clones tested in our study were
also characterized by a high wood and bark density.

The exceptionally high values of specific densities for biomass raw materials obtained
in our study resulted directly from the fact that all the clones were characterized by a
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relatively high bark mass fraction in the stem, ranging from 23.3% to 37.7%, with a density
almost twice that of wood.

In general, the bark mass fraction results for the sample trees, which reached DBH
values of 11–28 mm in our study, were comparable to results obtained in other studies on
poplar clones from similar DBH ranges [68]. Bark mass fraction is known to decrease with
increasing DBH and age [34,36,68]. As described by Guidi et al. [68] for 2-year-old shoots
of Populus deltoids L., the bark mass fraction gradually decreased from 35.8% to 7.1% in
the 10–90 mm diameter range. The stabilization of bark mass fraction (less than 8%) was
visible when shoots reached 60 mm in diameter [68]. In the present study, we also found
a clear negative correlation between bark mass fraction and growth traits DBH and H,
suggesting that rotation length should be extended if the stabilization of the wood-to-bark
ratio is deemed desirable.

Although bark was characterized by a very high SD in our study, it should be empha-
sized that the bark mass fraction in biomass tends to be considered a negative characteristic
of the energy feedstock. Since most of the minerals taken up by trees are accumulated in the
bark, the ash content in the whole tree is highly dependent on the bark mass fraction [33].
Consequently, a high ash mass fraction in the biomass feedstock negatively affects the
heating value.

The heating value of the biomass as a bioenergy feedstock of the investigated clones was
comparable to publications on hybrid poplars [32,33,69], furthermore to the heating value of
other tree species [70], and suggested a similar or even better energetic potential compared
to waste biomass (bio-waste) from the agri-food industry [8,51,70–72]. As expected, a high
variation in the heating value of the biomass of the poplar clones was not detected. The
difference in the heating value mainly arose from the different share and composition of
bark and wood.

The lower heating value of the tested clones for wood was in the range of 18,100–
18,300 J g−1 and was higher than the LHV determined for bark: 16,000–17,000 J g−1.
Overall, when considering woody biomass as a bioenergy feedstock according to EN ISO
17225-1:2014 [73], typical LHV values of bark and wood from various tree species are
comparable for bark (19,000–19,200 J g−1) and for wood (18,900–19,100 J g−1). However,
the range of variation in these values is much larger for bark (17,100–21,300 J g−1) than
for wood (18,400–19,800 J g−1) [73]. The bark contains less cellulose and more lignin and
extractives than wood [34,74]. For this reason, the quantities of these components relative
to the extractives and ash mass fraction of the biomass have an impact on the combustion
temperatures and energy potential of the feedstocks [34]. As our results showed, the energy
potential of poplar bark decreased with increasing ash mass fraction (r = −0.72). The
ash content of the bark was notably high, ranging from 7.6% (clone AF8) to 11.4% (clone
89.M.061). According to EN ISO 17225-1:2014 [73], the typical ash content of bark should fall
within the range of 0.8–5%, which is consistent with several empirical studies conducted on
different tree species [36,37,75–77], although higher values of ash were also found [46,75,78].
Nevertheless, the exceptionally high ash content obtained in the studied poplar clones
prompted us to consider the specific factors that influenced these results. It seems likely
that this phenomenon can be explained in part by the environmental conditions of the
study area. The dry, windy climate may cause mineral dust to be deposited on the bark
surface, which is not adequately removed by the low rainfall. As a result, the high ash mass
fraction in the bark reduces the energy potential of whole stems. Anderson and Zsuffa [79],
in turn, draw attention to the possible presence of a genotype–environment interaction
with respect to nutrient availability.

Despite the differences in the LHV and ash content between wood and bark in the
present study, the LHVs of whole stems for different clones were comparable and ranged
from 17,600 to 17,800 J g−1. The values obtained were lower than the typical value for
poplar of 18,400 J g−1 according to EN ISO 17225-1:2014. This result was undoubtedly
influenced by the high bark content in the biomass and the high ash content in the bark.
In this context, it should be noted that bark fuel contains silicon oxide (SiO2) and alkali
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metals such as potassium (K), sodium (Na), calcium (Ca), and magnesium (Mg), which
determine the behavior of ash during combustion. Low melting temperatures can form
very “sticky” silicate melts that occur during the combustion process and form deposits on
the burner grate [36,75]. Bark can form slag at 850 ◦C, while the actual combustion process
takes place at a temperature of approximately 1100 ◦C [80]. Therefore, due to the different
chemical properties of bark and wood, the bark mass fraction should not be ignored when
assessing the overall fuel quality of crops.

Regarding the clones tested, the Kocabey clone had the lowest bark-to-wood ratio,
while the most desirable overall biomass properties were obtained by the AF8 clone, which
had not only a desirable high wood and bark density but also lower ash content and a
higher heating value than all the other clones. Similar to the productivity results, the
control clone was characterized by inferior biomass feedstock properties compared to the
remaining clones.

5. Conclusions

In this study, the potential biomass yield and biomass energy properties of poplar
clones in SRWC under the specific climate and environmental conditions of eastern Georgia
were recognized for the first time to contribute to solving the energy deficit in the country.
Our preliminary results indicated that both the quantity and quality of biomass are impor-
tant factors in justifying the investment in an intensive poplar culture. None of the clones
tested in this study site had all the desired quantitative and qualitative characteristics,
although all four clones tested performed better than the control clone. The productivity
of the tested clones at the current stage of the experiment was far too low to justify the
investment in intensive culture, while the biomass properties of the tested clones as an
energy feedstock were generally slightly below the normalized values. The tested clones
had desirable, exceptionally high densities on the one hand and exceptionally high ash
content in the biomass, on the other hand, which negatively affected the energy potential
of these clones. In addition, we showed that a high bark mass fraction in the stems had a
negative effect on the quality of the biomass feedstock for energy purposes. Bark content
can be controlled by appropriate clone selection and silvicultural means. To improve
biomass as an energy feedstock, we, therefore, propose an extension of the rotation length,
which should favor larger stem dimensions and, thus, a lower and more stable bark mass
fraction in the stems.

We also pointed out a number of potential difficulties that Georgia will face in prepar-
ing to invest in biomass energy plantations. Future research should focus on the currently
tested clones, perhaps enriched with commercially available clones that perform well
under similar climatic conditions, and test them at multiple sites in Georgia to further
identify the potential for genotype-by-environment interactions, which will enable the
selection of stable clones for operational use. In addition, it would be beneficial to conduct
experiments to analyze the effects of fertilization and irrigation on the growth of poplar
clones at different test sites.
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Symbols and Nomenclature

DM Dry matter
SRWC Short-rotation woody crop
DBH Diameter at breast height
H Height of steam
TSI Relative self-ignition temperature
Ad Ash content in dry state
HHV Higher heating value
LHV Lower heating value
SD Specific density
AD Absolute density
P Porosity
Sw Wood mass share in steam
Sb Bark mass share in steam
LSD Least significant difference test
PCA Principal component analysis
MAI Mean annual increment
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