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Abstract: A simplified and accurate model of a surge arrester used in the residual voltage test is
proposed in this paper. With the help of a genetic algorithm, the measured impulse current and
residual voltage waveforms are utilized to determine circuit parameters of the proposed model and
the generation circuit precisely. The technique starts from the circuit parameter determination using
the preliminary experimental data with a lower current peak than that specified by the standard.
From the determined model and with the help of the genetic algorithm, the circuit parameters and
the charging voltage to obtain the specified current peak and the residual voltage can be estimated
accurately. The validity of the proposed technique has been verified by experiments for the estimation
of the appropriate current circuit parameters, the charging voltage, and the residual voltage. In
addition, the application of the proposed model in the residual voltage tests is presented. From
comparison of simulated and experimental results with the determined parameters, the impulse
current and residual voltage waveforms are determined precisely. It is confirmed that the proposed
model and technique are attractive in the appropriate circuit parameter determination and the
residual voltage estimation in the residual voltage tests of surge arresters. The proposed method also
provides a good advantage for reduction of the number of trial and error experiments for obtaining
the current waveform according to the standard requirement. Moreover, the unintentional damages
of the arrester during the process of the waveform adjustment will be reduced significantly.

Keywords: circuit parameter determination; impulse currents; surge arresters; residual voltage test;
simplified arrester model

1. Introduction

A surge arrester is a device widely used to protect electrical equipment from over-
voltages due to lightning and switching operation in electrical power and telecommuni-
cation systems [1]. The arrester exhibiting dynamic and nonlinear characteristics diverts
current to the ground to clamp the over-voltage to be lower than the insulation level of the
protected high voltage equipment. To confirm the performance in over-voltage mitigation,
the international standards [2–5] advise performing residual voltage tests on the arrester.

According to the standard [3] and in the residual voltage tests, four kinds of impulse
current waveforms, i.e., steep impulse current (1/20 µs), high impulse current (4/10 µs),
lightning impulse current (8/20 µs), and switching impulse current (30/80 µs), in different
current peaks are injected to the arrester during tests. The residual voltages across the
arrester associated with the different impulse current waveforms and peaks are examined.
The impulse currents can be generated by a simple resistance, inductance, and capacitance
circuit as illustrated in Figure 1. The current generation circuit is composed of the DC
voltage source (Vs), the charging current limiting resistor (RL), the charging capacitor
(C), the spark gap (G), the series inductor (Le), the series resistor (Re), the shunt current
measuring resistor (RSH), and the surge arrester (SA).
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Figure 1. The impulse current generation circuit.

The most essential problem in residual voltage tests is that it is quite laborious for test
engineers to generate an accurate waveform and a current peak according to the standard
requirement, because the uncontrolled parasitic impedance in the current generation circuit
and the nonlinear characteristic of the arrester affect the current waveform significantly.
Therefore, an accurate arrester model is necessary to use in controlling the current wave-
form. There are a lot of researchers developing the accurate model used for designing
insulation coordination and for obtaining successful high-voltage testing [6–14]. Further-
more, the effect of thermal stress under the arrester operation and experimental tests can
be included in the model successfully [15]. However, the generation circuit and parasitic
impedance are neglected in the process of model construction. It leads to the models not
being appropriate in the residual voltage test in real practice. Therefore, trial and error
approaches for selecting the circuit parameters and the charging voltage are still necessary
to employ in the real experiment. Several experiments for waveform adjustment are carried
out to obtain the required waveform and it sometimes unintentionally causes damage
on the arrester during the test. It will be advantageous for test engineers if an effective
technique for selecting the circuit parameters and the charging voltage is developed.

This paper aims to propose a simplified and accurate model of a surge arrester and an
effective technique for selecting the circuit parameters and the charging voltage to obtain
the specified impulse current waveform in residual voltage tests. Moreover, the residual
voltage associated the impulse current waveform is estimated precisely. With the help
of a genetic algorithm, the unknown parasitic impedance was determined, and the other
appropriate circuit parameters and the charging voltage can be selected. The validity of the
proposed technique was verified by the experiments for determination of the appropriate
current circuit parameters, the charging voltage, and the residual voltage associated with
the specified current waveform. From comparison of the experimental and simulated
results, it was confirmed that the method is fairly highly accurate and very effective in
the residual voltage tests of surge arresters. From this achievement, the proposed method
is also very useful for the significant reduction of unintentional damages to the arrester
during the process of waveform adjustment.

2. Conventional Surge Arrester Model

There are many proposed models of surge arresters but most of them are not applicable
in residual voltage tests since the parasitic impedance and generation circuit are not taken
into account in the process of model construction. For the sake of clarity, an experiment of
the residual voltage test on a surge arrester with the rated voltage of 9 kV and the nominal
discharge current of 10 kA was considered as a test case. As shown in Figure 1, the setting
circuit parameters in the experiment were composed of the charging capacitance of 2 µF,
the series resistance (Re) of 0.1 Ω, the series inductance (Le) of 25 µH, and the charging
voltage (Vch) of 69 kV. The IEEE model [6] as illustrated in Figure 2 was utilized in a circuit
simulator to calculate the impulse current and residual voltage waveforms. The circuit
parameters of the model were composed of two series resistors (R0 and R1), two series
inductors (L0 and L1), two nonlinear resistors (A0 and A1), and a parallel capacitor (C0).
With the help of a genetic algorithm as described in Section 4, those circuit parameters
of the model were determined by matching the residual voltage from simulation with
that from the experiment. As shown in Figures 3 and 4, the calculated current waveform
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agreed well with the experimental result. The calculated peak voltage deviated from the
experimental one by only 2%. However, the calculated residual voltage deviated from the
experimental one. It was found that the calculated time to the peak of the residual was
longer that the experimental one, and the spurious oscillation of the calculated residual
voltage occurred in the late time or in the non-conductive state of the arrester.
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Figure 4. Comparison of the residual voltage waveforms across the arrester.

3. Simplified and Accurate Model of a Surge Arrester

In the results presented in Section 2, the conventional arrester model provided inaccu-
rate results when they were compared to the experimental ones. In this section, a simplified
and accurate model of a surge arrester as shown in Figure 5 is proposed to overcome the
problems of the conventional model. The circuit parameters of the model were composed
of the internal resistor (R0) in parallel with the internal inductor (L0), the nonlinear resistor
(A0), and the damping resistor (R2) in series with the internal capacitor (C2).
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Figure 5. Simplified arrester model.

As mentioned above, the generation circuit, the parasitic impedance, i.e., series induc-
tance (Lp) and series resistance (Rp), and the nonlinear characteristic of a surge arrester must
be taken into account in the real impulse current generation. The simplified equivalent
circuit including the parasitic impedance and the proposed arrester model is illustrated in
Figure 6. In real practice, it is possible to measure the charging capacitance, the charging
voltage (Vch), and the arrester capacitance precisely, but it is quite hard to measure other
circuit parameters. However, the characteristic of the nonlinear resistor (A0) can be ap-
proximated from the experimental results of voltage and current across the arrester. As
shown in Figure 7, in this paper, a piecewise linear curve drawn through the center of the
data of voltage and current of the arrester was employed to represent the characteristic of
the nonlinear resistor. A genetic algorithm was employed to search the unknown circuit
parameters of the generation circuit and of the arrester model to match residual voltage
(vr) waveforms from the experiment.
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4. Genetic Algorithm

A genetic algorithm (GA) is inspired by the process of natural selection. The genetic
algorithm is a kind of stochastic optimization. In this paper, the genetic algorithm [16,17]
was utilized to search the appropriate circuit parameters, i.e., the equivalent inductance
(Le), the equivalent resistance (Re), the internal arrester inductance (L0), the internal arrester
resistance (R0), the damping resistance (R2), and the charging voltage (Vch). The genetic
algorithm searches the input parameters (the circuit parameter in the vector form; X) to
minimize objective function (Ob(X)), as given in Equation (1).

Ob(X) =
n

∑
i=1

(
vr(exp)(i)− vr(sim)(X, i)

)2
(1)

where vr(exp) and vr(sim) are the residual voltages from experiment and simulation using
the arrester model. i is the ith residual voltage point and n is a number of points of the
measured and simulated residual voltages.

The flow chart based on the genetic algorithm for searching the most proper circuit
parameters is presented in Figure 8.
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5. Verification of the Proposed Model

To express the validity of the proposed model, two experiments were carried out on
two arresters. The first and the second arresters had the nominal discharge currents of
10 kA and 2.5 kA, respectively. In the first experiment, the lightning impulse current of
10 kA was generated through the first arrester. The nonlinear characteristic of the arrester as
shown in Figure 7 was used in the model construction. The genetic algorithm was utilized
to search the appropriate unknown circuit parameters. As shown in Figures 9 and 10,
the calculated current and residual voltage waveforms agreed well with the experimental
results. The time to peak of the calculated residual voltage was almost the same time of the
experimental one. The calculated peak current and voltage deviated from the experimental
ones by only 0.25% and 0.2, respectively.
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Figure 10. Comparison of the residual voltage waveforms across the arrester in a case of lightning
impulse current injected.

In the second experiment, the steep impulse current of 2.5 kA was generated through
the second one. The comparisons of the generated currents and the residual voltages
from the experiment and from the proposed model are shown in Figures 11 and 12. Good
agreements of the generated currents and the residual voltages were found in both cases.
As shown in Figures 3 and 4, the calculated current waveform agreed quite well with
the experimental result. The time to peak of the calculated residual voltage was almost
the same time of the experimental one. The calculated peak current deviated from the
experimental one by 5%. The high oscillation of the residual voltage occurred around the
peak time, which is quite different from the model one.
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Figure 12. Comparison of the residual voltage waveforms across the arrester in a case of steep
impulse current injected.

It was confirmed that the proposed model is fairly highly accurate for the residual
voltage tests.

6. Applications of the Proposed Method in the Residual Voltage Test

It is hard for a test engineer to control the current waveform and peak without a trial and
error approach. Therefore, in this section, an effective technique is proposed to determine the
charging voltage for obtaining the current waveform according to the standard requirement.
The technique starts from the determination of the unknown circuit parameters of the genera-
tion circuit and the proposed arrester model as shown in Figure 6. The current and residual
voltage waveforms from the preliminary test with the lower current peak specified by the
standard were utilized to determine the circuit parameters. Then, the previous determined
model and a genetic algorithm were employed to search the charging voltage to obtain the
specified current peak.

To confirm the validity of the proposed technique, some experiments on the residual
voltage tests were carried out on two surge arresters with the rated voltage of 9 kV. The first
arrester had the nominal discharge current of 5 kA and the second one had the nominal
discharge current of 2.5 kA.

According to the standard requirement [3] for the residual voltage test of the light-
ning impulse current, 0.5, 1.0, and 2.0 times the nominal discharge current are generated
through the arrester and the residual voltages are examined. In the preliminary experi-
ment, the charging capacitance and voltage were set to be 2 µF and 30 kV, respectively,
and the measured internal capacitance was 56 pF. From the known circuit parameters
and to obtain the lightning impulse current waveform [18,19], the total inductance of
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about 30 µH was required, so the series inductor (L) with inductance of 30 µH was con-
nected to the generation circuit. As shown in Figure 13, the current waveform deviated
from the standard requirement due to effects of the parasitic impedance and the arrester.
From the experimental results of current and residual voltage waveforms as shown in
Figures 13 and 14, the circuit parameters were determined by using the equivalent circuit
in Figure 6. The equivalent inductance (Le), the equivalent resistance (Re), the internal
arrester inductance (L0), the internal arrester resistance (R0), and the damping resistance
(R2) were 41.2 µH, 0.1 Ω, 4.1 µH, and 3.7 kΩ, respectively. From the determined circuit
parameters, the total inductance in the circuit was 45.3 µH (Le + L0). Therefore, the series
additional inductance of 14.7 µH was required to obtain the lightning impulse current
waveform specified by the standard. Another experiment with an additional inductance
of 15 µH was carried out to confirm the validity of the proposed technique. Furthermore,
using the proposed technique, the calculated charging voltage of 34 kV associating with
the current peak of 2.5 kA was set in the experiment. It was found that as shown in
Figure 13, the current waveform according to the standard specification was generated
when the corrected circuit parameter was applied in the generation circuit. Moreover,
the calculated residual voltage agreed well with that from the experiment as shown in
Figure 14. The time to peak of the calculated residual voltage was almost the same as the
experimental one. The calculated peak current and voltage deviated from the experimental
ones by only 0.55% and 0.35%, respectively.
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Figure 13. Comparison of the generated current waveforms in cases of the preliminary test and the
corrected one.
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Figure 14. Comparison of the residual voltage waveforms across the arrester in cases of the prelimi-
nary test and the corrected one.
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In a similar manner, the proposed technique with the equivalent circuit associated
with the current peak of 2.5 kA was applied to search the appropriate charging volt-
ages associated with the current peaks of 5 kA and 10 kA. The piecewise linear curve
used to estimate the nonlinear characteristic of the nonlinear resistor (A0) is illustrated in
Figure 15. From the proposed technique, the equivalent inductance (Le), the equivalent
resistance (Re), the internal arrester inductance (L0), the internal arrester resistance (R0),
and the damping resistance (R2) were 27.1 µH, 0.1 Ω, 4.0 µH, and 3.6 kΩ, respectively. The
charging voltages to obtain the current peaks of 5 kA and 10 kA were 46 kV and 69 kV,
respectively. Comparisons of the experiment and simulated waveforms by the proposed
technique are shown in Figures 16 and 17. Good agreement was found in the case of
5 kA current peak but deviation occurred in the case of 10 kA current peak. In the case
of 5 kA current application, the calculated peak current and voltage deviated from the
experimental ones by only 0.73% and 0.88%, respectively. In the case of 10 kA current
application, the calculated peak current and voltage deviated from the experimental ones
by 4.1% and 8.1%, respectively. However, in terms of current generation in the case of
10 kA current peak, the deviation is acceptable because the current peak deviation of 4.1%
was less than 10% according to the standard tolerance.
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Figure 15. Voltage and current characteristic of the arrester under test and estimated piecewise linear
characteristic of the nonlinear resistor.
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Figure 16. Comparison of the generated current waveforms from the proposed model and experiment.
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Figure 17. Comparison of the residual voltage waveforms across the arrester from the proposed
model and experiment.

To obtain higher accuracy in the generation of the 10 kA current peak, the proposed
technique was applied to model the equivalent circuit using the waveforms in the case of
the 5 kA current peak and it was employed to determine the charging voltage to obtain
the current peak of 10 kA. From the experimental results of current and residual voltage
waveforms as shown in Figures 15 and 16, the circuit parameters were determined by
using the equivalent circuit in Figure 6. The equivalent inductance (Le), the equivalent
resistance (Re), the internal arrester inductance (L0), the internal arrester resistance (R0),
and the damping resistance (R2) were 26.9 µH, 0.1 Ω, 2.4 µH, and 3.1 kΩ, respectively.
Using the model of the 5 kA current peak, the calculated charging voltage to obtain the
current peak of 10 kA was 67.3 kV and a charging voltage of 67.5 was set in the experiment.
Comparison of the generated currents by simulation with the proposed model and that
from the experiment is shown in Figure 18. In addition, the comparison of the experimental
and simulated residual voltages is shown in Figure 19. A better agreement between the
simulated and experimental was found. The calculated peak current and voltage deviated
from the experimental ones by only 0.43% and 0.56%, respectively.
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Figure 18. Comparison of the generated current waveforms from the proposed model and experiment.
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Figure 19. Comparison of the residual voltage waveforms across the arrester from the proposed
model and experiment.

In a similar manner, the proposed technique was applied for the residual voltage test
on the arrester with the nominal discharge current of 2.5 kA. The preliminary test with a
steep impulse current was carried out at the current peak of 1.25 kA. For the steep impulse
current generation, the charging capacitance, the charging voltage, and the additional
resistance were set to 2 µF, 78 kV, and 38 Ω, respectively, and the measured internal
capacitance was 50 pF. From the calculation using the proposed technique, the equivalent
inductance (Le), the equivalent resistance (Re), the internal arrester inductance (L0), the
internal arrester resistance (R0), and the damping resistance (R2) were 14 µH, 0.1 Ω, 2.8 µH,
and 198 Ω, respectively. Using the proposed technique to obtain the current peak of 2.5 kA,
the calculated charging voltages was 134.5 kV and the setting charging voltage in the
experiment to confirm the validity of the proposed technique was 135 kV. Comparisons
of the experiment and simulated waveforms by the proposed technique are shown in
Figures 20–22, in which good agreement is found. It was confirmed that the proposed
technique is very effective in the residual voltage tests. In the case of 2.5 kA current
application, the calculated peak current deviated from the experimental one by 7.8%, which
is still in the standard tolerance.
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Figure 20. Comparison of the generated current waveforms from the proposed model and experiment.
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Figure 21. Comparison of the residual voltage waveforms across the arrester from the proposed
model and experiment in a case of 1.25 kA current peak.
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Figure 22. Comparison of the residual voltage waveforms across the arrester from the proposed
model and experiment in a case of 2.5 kA current peak.

7. Conclusions

A simplified and accurate model of a surge arrester for the residual voltage tests was
proposed in this paper. The validation of the proposed model was verified in comparison
with some experiments. Furthermore, the technique for the estimation of setting circuit
parameters and the charging voltage to obtain the specified current waveform and peak
was proposed. In addition, the residual voltage associated with the specified current was
estimated precisely. The validity of the proposed technique was verified by the experiments.
It was confirmed that the proposed technique is very useful in the residual voltage tests
of arresters and helps test engineers in the selection of appropriate circuit components
without a trial and error approach.
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