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Abstract: Most inhabited islands in Indonesia are powered by expensively known diesel generators
and isolated from the primary grid due to either geographical or economic reasons. Meanwhile,
the diesel generator can be combined with a photovoltaic (PV) system and Battery Energy Storage
(BES) system to form a hybrid power generation system to reduce the energy cost and increase
renewable energy penetration. For this, proper sizing of each power generation component is
required, one of which is influenced by the applied control strategy. This paper proposes an optimal
BES dispatch (OBD) control strategy that optimizes the power generation components’ sizing. The
method examines the shortcomings of the other popular control strategies, such as load following,
cycle charging, or combination. The optimization objectives are to minimize the Levelized Cost of
Energy (LCOE) and maximize the renewable energy (RE) penetration, which can be achieved by
prioritizing the BES to supply the load over other available generations and charge the BES every time
the generator operates. The proposed method is implemented at two different systems with different
load profiles. As a result, the proposed control strategy provides lower LCOE while maintaining
higher RE penetration than the other control strategies in both locations.

Keywords: photovoltaic (PV); battery energy storage (BES); hybrid power generation; load following
(LF); cycle charging (CC); combined dispatch (CD); optimal BES discharge (OBD); isolated grid

1. Introduction

Indonesia’s geographical condition has limited electricity provision through the inter-
connected power grid in many locations. Thus, these isolated locations are mostly powered
by diesel generators, which are known to be costly and not environmentally friendly [1–3].
Indonesia’s energy cost is endorsed by the Ministerial Decree of the Ministry of Energy
and Mineral Resources (MEMR) No. 55K/20/MEM/2019. It is known that in most small
systems, the cost of energy is still above 0.2 $/kWh [4] due to the utilization of diesel-fueled
power generation. The CO2 emission of a diesel generator is between 2.4–2.8 kg CO2/L
depending on the characteristics of both the engine and the fuel [5]. The average specific
fuel consumption of a diesel generator is 0.33 L/kWh, so the CO2 emission generated by a
diesel generator is estimated to be 0.8–0.93 kg CO2/kWh.

On the other hand, the Government of Indonesia (GoI) has committed to participating
in the Paris Agreement to hold the global temperature rise below 2 ◦C and endeavor to
limit it to a maximum of 1.5 ◦C [6]. This commitment is implemented through the issuance
of Nationally Determined Contribution (NDC), which states that Indonesia will reduce the
greenhouse gas emissions by 29% from business as usual on their own, which is detailed as
the reduction of 314–398 Tons of CO2 emission from the energy sector in 2030 [7]. Indonesia
has targeted a renewable energy mix of 23% of the primary energy in 2025 and exceeds
31% of the primary energy by 2050 [8,9].
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For this reason, it is advantageous to deploy renewable energy (RE)-based power
generation in these remote locations. In addition to reducing CO2 emission to meet the
NDC target, increasing RE penetration is also expected to reduce energy costs. However,
this benefit can only be obtained through appropriate planning since the implementation
of REs in remote locations may require a considerable investment. Thus, RE potentials in
those locations must be optimized to decrease the Levelized Cost of Energy (LCOE).

Lately, one of the massively applied REs in many countries is solar energy through
photovoltaic (PV) systems, including in Indonesia. Indonesia’s archipelago is exposed
to sunlight throughout the year without exception, where the solar energy potential in
Indonesia may reach 6 kWh/m2/day [10]. Besides, the capital investment cost for PV
system installation has been significantly decreased in the past ten years [11]. Therefore, the
implementation of PV systems is considered feasible to develop in Indonesia and achieve
the RE mix target, as previously mentioned. Furthermore, PV systems can be combined
with battery energy storage (BES) systems to supplement the existing diesel generators
in an isolated area, forming a hybrid power generation. By applying a proper control
algorithm to determine the optimal sizing of PV and BES systems and the dispatch strategy
for each generator, the operation of hybrid power generation is proven to improve the
system performance while minimizing the system cost [12]. It should be noted that the
control algorithm must be suitable for the characteristics of the load in the designated
location to obtain the most optimal configuration of a hybrid power generation. One
control algorithm that results in good output in one isolated system may not be fitted if
applied in another system.

Many works in the literature have studied the methodologies for sizing hybrid power
generation in accordance with the application of different dispatch control strategies. Par-
ticularly, some of these studies applied HOMER (Hybrid Optimization of Multiple Energy
Resources) to design the Hybrid Renewable Energy Resources (HRES) with optimal config-
uration and operation [13]. HOMER software was developed by the National Renewable
Energy Laboratory (NREL) and endorsed by Underwriters Laboratories (UL) [14]. Bahra-
mara et al. compiled studies on the optimal planning of HRES that used HOMER to obtain
the most optimal sizing of HRES components in various locations [15]. They concluded
that HOMER had been used mostly in developing countries, primarily to design the HRES
in rural or remote areas. Some advantages of HOMER are the wide range of loads, multiple
dispatchable and non-dispatchable energy resources, and a feature to apply the user’s
control strategy.

In HOMER, there are several options of dispatch strategy for an HRES, such as
cycle charging, load following, generator order, combined dispatch, predictive dispatch,
and user’s own control strategy that can be developed through MATLAB Link feature.
In [16], a cycle charging (CC) strategy was applied for an off-grid hybrid energy system
in Iraq, consisting of diesel, hydropower, and a combined PV and BES system. Besides,
Oladigbolu et al. used a load following (LF) control strategy to analyze the feasibility
of HRES compared with a standalone diesel generator for a case in a remote area in
Nigeria [17]. LF and CC control strategies are the two most used strategies, where the
comparison and the combination of both strategies have been studied. In [18], the authors
presented research for a case study in Eastern Indonesia by comparing strategies to design
an HRES in a relatively high load factor system. They applied a sensitivity analysis on
battery state of charge (SoC) and the fuel price, concluding that the CC control strategy was
more suitable for such a system. A combined dispatch (CD) strategy of cycle charging and
load following was used in the research presented by Aziz et al. [19]. The result indicated
that the CD control strategy provided better system performance and a lower energy cost.

Meanwhile, Nurunnabi et al. studied the operation of HRES consisting of PV and
wind power generation in grid-connected and off-grid mode, which was implemented in
five regions in Bangladesh [20]. It was observed that each region had a different optimal
configuration of HRES depending on the site-specific characteristics. Moreover, even
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though the specific control strategy was not evident in this literature, there is an opportunity
to improve the HRES performance by applying the site-specific control algorithm.

Other studies developed their dispatch strategies using other simulation tools. Torre-
glosa et al. proposed a simulated model predictive control (MPC)-based dispatch strategy
for long-term application (25 years) using MATLAB [21]. This control strategy was verified
to achieve a higher global efficiency of the HRES and ensure the off-grid load support
and maintain the components parameters within the desired operating limits. Meanwhile,
Velasquez et al. presented another dispatch strategy combining the concept of distributed
MPC and dual decomposition, which was feasible for a short-term application and proven
to provide better anticipation to the changes of the system [22]. Furthermore, Jung and
Vilaran presented a Distributed Energy Resources—Customer Adoption Model (DER-
CAM) technique, which was used to determine the size, type, and dispatch schedule of the
distributed energy resources [23]. It was shown that the proposed technique was capable
of increasing the effectiveness of RE penetration. These studies with each self-developed
method have been proven to improve the performance of each system with certain benefits.
Likewise, in HOMER, several control strategies aim to enhance other classic strategies,
such as CD, which has the advantages of LF and CC.

For the LF control strategy, RES is prioritized to supply the load whenever the primary
source is available, and the dispatchable energy sources such as a diesel generator will
generate power only when RES output does not satisfy the demand. However, as the
excess power produced by RES charges the BES, there might be a condition where the BES
state of charge (SoC) is empty, such as during the low generation of RES. If this happens
for a long duration and is repeated, it may degrade the BES lifetime. Besides, the BES is
also allowed to discharge energy while the diesel generator is supplying the load. This
operating condition may cause the diesel generator to run at low power, resulting in low
operating efficiency.

Meanwhile, in the CC control strategy, to preserve the diesel generator operating at
high efficiency, the diesel generator is run at full capacity, and it will not operate when
RES output is high. The BES will be in charging mode when the diesel generator output
is higher than the demand. Moreover, the BES is only allowed to start discharging at the
specified SoC. Hence, the BES is not optimally used to either supply the load, although it
has enough SoC since it has not reached the setpoint yet, or to charge the excess power at
the lightly loaded condition, as its SoC is already full.

In the CD control strategy, the CC operation is applied during low net load, and the LF
strategy is used for high net load [13,19]. Net load here is defined as the load demand that
has been reduced by the RES output available at that time. During low net load, the BES
discharges energy to satisfy the demand if its SoC is higher than its setpoint. Otherwise,
a diesel generator will take over to supply the load as well as charge the BES. Whereas
at high net load, the diesel generator will be run to only supply the load once the BES
energy reaches its minimum SoC after being in discharging mode. Even though the CD
control strategy may optimize RES output and operate the dispatchable generator more
efficiently, in some cases, it is found that the BES is not optimally charged and discharged.
For instance, in [24–26], the BES was left at its minimum SoC for several hours during
high net load. Besides, in some particular conditions, the BES is not allowed to discharge
energy although it has enough SoC, particularly during low net load. Another study also
performed the CD control strategy for optimizing the HRES operation by minimizing the
daily cost [27]. However, this strategy still allowed the BES to be in charging mode when
the SoC reaches its maximum value and discharge energy when its SoC is low.

To overcome such drawbacks, in this paper, we developed a modification of the
CD control strategy to reduce the LCOE by maximizing BES utilization. This research’s
contribution lies in the weakness analysis of the commonly used control strategies, such
as LF, CC, and their combination or CD. The weakness of each control strategy was then
solved to obtain a lower LCOE while maintaining its RE penetration ratio. In this way,
we developed an optimized dispatch strategy of BES in HRES by taking advantage of the
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BES’s lower incremental cost than the diesel generator. The proposed algorithm has the
objective of minimizing the LCOE while maintaining the high RE penetration through
maximization of BES utilization. It works by optimally avoiding the idle (standby) status
of BES. The proposed control strategy was developed by using MATLAB Version 2021a,
Mathworks Inc., Natick, MA, USA and integrated into the HOMER Pro Version 3.14.4,
HOMER Energy LLC, Boulder, CO, USA. Other HRES control strategies are presented as
a comparison accordingly. By doing so, the performance of the proposed method could
be appropriately compared with the other control strategies that are already available
in HOMER. Furthermore, the proposed method was evaluated at different load profile
patterns to investigate its robustness. The validation is performed through HOMER
software to obtain uniform and consistent financial calculations for each case.

The remaining of this paper is structured as follows: Section 2 describes the technical
and economic calculation, Section 3 elaborates the applicable control strategies (load
following, cycle charging, combined dispatch, and optimal BES discharge). Section 4
provides simulation case studies, the results, and the discussion. Lastly, this research is
concluded in Section 5.

2. Dispatch Power and Cost Calculation
2.1. BES Available Charge and Discharge Power

The available charge power (PC) and discharge power (PD) of a BES depends on its
state-of-charge (SoC). SoC of the battery at a specified time (Qt) is defined as the ratio
between the remaining capacity at that time (Ebat,t) to the maximum capacity (Ebat) of the
battery [28]. The discharge power of a battery is also affected by the C-rate. It is a measure
of the power that can be discharged in one hour relative to the maximum capacity and was
assumed to be 1-C in this research. Other than SoC and C-rate, the maximum discharge
power also depends on the minimum SoC (Qmin) that must be maintained in the battery [29]:

Qt =
Ebat,t

Ebat
× 100% (1)

PC = (1−Qt)
Ebat
1 h

(2)

PD = (Qt −Qmin)
Ebat
1 h

(3)

where Qt and Qmin are in percentages, Ebat is in kWh, PC and PD are in kW, respectively.

2.2. Power Dispatch Setpoints

The hybrid power generation system consists of a diesel generator, variable generation
of the PV system, and a BES. Each of these power generations is dispatched sequentially to
meet the required load depending on the selected dispatch strategy so that the unmet load
is equal to zero. First, the PV generated power is dispatched and result in the net required
load (Pnet), as follows:

Pnet = Preq − P∗pv (4)

P∗pv = ηpvinvPpv,dc (5)

where Pnet is the net required load (kW), Preq is the required load (kW), and P∗pv is the
PV system setpoint (kW), ηpvinv is the PV inverter’s efficiency (%), Ppv,dc is the DC power
generated by the PV array (kW).

The value of the net required load can be zero, negative, or positive. Zero value
indicates that the required load can be satisfied precisely by the PV system. A negative
value implies that the excess power produced by the PV system, which can be used to
charge the battery if the battery SoC is not full. Otherwise, it will be dumped. Meanwhile,
the positive value means that there is an unmet load. The unmet load can be supplied
either by the BES or the generator, depending on the applied control strategy.
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The battery’s power setpoint (P∗bat) in kW is determined as follows:

P∗bat =


0 if Pnet = 0

−min
(

PD, Pnet
ηbinv

)
if Pnet > 0

−min(PC, ηbrecPnet) if Pnet < 0

(6)

where ηbinv and ηbrec are the efficiency of the battery’s inverter and rectifier (%), respectively.
P∗bat is negative if the battery is discharged and positive if the battery is charged.

The generator’s dispatch power (P∗gen) in kW is determined by the unmet load and the
required power to charge the battery (if any) and compared it with the rated power of the
generator (PG,rate). It can be mathematically set as follows:

P∗gen = min
(

PG,rate,
(

Pnet +
PC

ηbrec

))
(7)

At each step of dispatching the BES or the generator, the unmet load (Pu) can be
calculated as follows:

Pu =


Pnet − P∗bat if BES is dispatched first
Pnet − P∗gen if generator is dispatched first

Pnet −
(

P∗bat + P∗gen

)
if BES & generator are dispatched

(8)

2.3. Component’s Marginal Cost

The order of dispatch of the power generation is decided by comparing the hourly
marginal cost of energy provided by each generation system. The generation system with
the lowest hourly marginal cost of energy is dispatched first and continued by the higher
one. BES hourly marginal cost of energy (Cbat) in $/kWh is formulated as follows [30]:

Cbat =
Rbat

Etp
√

ηrt
(9)

where Rbat is the battery replacement cost ($), Etp is the battery throughput (kWh), ηrt is
the battery roundtrip efficiency (%).

On the other hand, the generator’s hourly marginal cost of energy (Cgen) in $/kWh
can be formulated as follows:

Cgen =
Rgen

P0Yli f e
+

Ogen

P0
+

C f

(
F0P0 + F1P∗gen

)
P∗gen

(10)

where Rgen is the replacement cost ($), Ogen is the operation and maintenance cost ($/h),
Yli f e is the generator lifetime (hour), C f is the fuel cost ($/L), F0 is the fuel curve intercept
coefficient (L/kWh), F1 is the fuel curve slope (L/kWh), P0 is the generator rated power
(kW), and P∗gen is the generator dispatch power (kW).

2.4. Financial Model

The optimized configuration of the hybrid energy system is determined by the total
net present cost (NPCtot) and the Levelized Cost of Energy (LCOE) [31,32]. The total net
present cost (NPCtot) in $ can be calculated as follows:

NPCtot = Itot +
N

∑
y=1

[
(1 + i)−1

K

∑
k=1

(
My,k

)]
(11)
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My,k =
N

∑
y=1

[
(1 + i)−1

K

∑
k=1

(
Ry,k + Sy,k + Oy,k + C f Fy

)]
(12)

where Itot is the total initial investment for developing the hybrid energy system ($), My,k is
the total marginal cost in year-y of component-k ($), Ry,k, Sy,k, and Oy,k are the replacement,
salvage, and operation and maintenance costs in year-y of component-k, respectively, and
Fy is the fuel consumption in year-y ($). i is the real discount factor (%), N is the lifetime
(year), and K is the number of components in the hybrid energy system.

Furthermore, the LCOE can be calculated by dividing the annualized cost spent by
the hybrid energy system with the total load served by the system. The annualized cost
can be calculated in order to obtain the equally annual cost throughout the lifetime [13,33]:

LCOE =
Cann

Eann
(13)

Cann =
i(1 + i)N

(1 + i)N − 1
NPCtot (14)

Eann =
8760

∑
t=1

Pserved,t (15)

where Cann is the annualized cost ($/year) and Eann is the annual electrical energy served
by the system (kWh/year).

3. Control Strategies
3.1. Load Following

A load following (LF) control strategy is used to optimize the utilization of energy
produced by RES. LF control strategy will only allow the battery to be charged by the
excess power generated by renewable energy such as PV system [18]. It prevents the diesel
generator from charging the battery. Hence, the diesel generator only produced the power
required to meet the unmet load.

The algorithm of the LF control strategy is presented in Figure 1. The PV is set to
supply the required load. If the net required load (Pnet) is negative, which indicates that
there is excess power, then the excess power will be used to charge the battery if the SoC
is less than 100% (PC > 0). On the other hand, if the net required load is greater than zero
(Pnet > 0), the energy is available in the battery (PD > 0), and the battery energy cost is
cheaper than the cost to run the generator without charging the battery (Cbat < Cgen (at
PC = 0)), then BES will be discharged. Otherwise, the generator will be dispatched to satisfy
the remaining required load.

Because of the nature of the LF control strategy, it is generally suitable for the system
where the PV system’s power during the day is normally higher than the load demand
during the same period. The LF algorithm works based on the assumption that the diesel
generator is needed in the subsequent high load periods. It is unnecessary to utilize
the diesel generator to charge the BES at the current time step to reduce the energy cost.
However, if, in any cases the generator is still operating at the low loads in the successive
periods, then the LF control strategy becomes inefficient [13].

3.2. Cycle Charging

The Cycle Charging (CC) control strategy operates the generator to supply the required
and simultaneously charge the battery. It will dispatch the BES to supply the load if the
battery can satisfy the load without additional power from the generator. Hence, once
the generator starts charging the battery, it will continue to do so until the setpoint SoC
is reached.
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Figure 1. Load Following (LF) control strategy. This strategy does not allow the generator to charge
the battery, and BES is discharged every time the SOC is greater than the SOC minimum.

The algorithm of the cycle charging (CC) control strategy is presented in Figure 2. The
CC control strategy starts by setting the PV system to supply the required load. The excess
power from PV (if any) will be used to charge the battery. However, if the PV cannot meet
the required load alone (Pnet > 0), the energy is available in the battery (PD > 0), and the
battery energy cost is cheaper than the energy cost of using the generator to supply the
unmet load as well as to charge the battery (Cbat < Cgen), then the CC control algorithm will
check the two following conditions:

• The battery is discharged in the previous time step (Pbat,t−1 < 0);
• The SoC is higher than the setpoint SoC (Qt > Qset).

Figure 2. Cycle Charging (CC) control strategy. This strategy tends to store energy in the battery
every time generator is operated. BES is only discharged when it reaches maximum SOC or has been
discharged in the previous timestep.
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If one of these conditions is satisfied, then the battery will be discharged. Otherwise,
the controller will avoid discharging the battery at this time step.

The CC control strategy algorithm is suitable to optimize the dispatched power for
the system where the power generated by the PV system during the day is lower than the
required demand of a similar period. The CC algorithm works based on the assumption
that the generator can be turned off in the next time steps where the load is low, and the
BES can fulfill the demand, and the energy cost can be reduced. However, if the generator
is still required to supply the load in any case, then the CC control strategy becomes
inefficient [13].

3.3. Combined Dispatch

The energy cost of the generator operation consists of the fixed cost and variable cost,
as described in (13). The variable cost incurred by running the generator depends on the
produced power (P∗gen). Due to the generator’s no-load fuel consumption and its efficiency,
it is more efficient to operate the generator at high load instead of at low load. For instance,
the efficiency can be less than 20% when the diesel generator operates at 10% of rated
power. In comparison, the efficiency can exceed 30% when the diesel generator operates at
higher than 50% of rated power.

The combined dispatch (CD) control strategy is designed to benefit from the efficient
operation of the generator. It is developed by combining the LF and CC control strategies,
such that it will operate in LF mode when the net required load (Pnet) is high and in CC
mode when the net required load is low. By doing so, the CD controller can minimize the
operation of the generator at a low load, which causes lower efficiency. The algorithm of
the CD control strategy is provided in Figure 3.

Figure 3. Combined Dispatch (CD) control strategy. The BES is charged using the excess power from
the PV system or the generator during the low load period. The BES is discharged if the SOC is at
maximum or if it has been discharged in the previous timestep as in CC control strategy, or if the BES
can supplement the unmet power of PV system as if in LF control strategy.

The CD control strategy will dispatch all of the power generated by the PV system,
resulting in net required load (Pnet). If there is excess power (Pnet < 0), then it will be used to
charge the battery. However, if the net required load is greater than zero, then the algorithm
will dispatch the BES or the generator through the following considerations:
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• BES will be discharged if the stored energy in the battery is available (PD > 0) and
the cost of discharging the battery (Cbat) is cheaper than the cost of running the
generator to supply the load and to charge the battery (Cgen) and the cost of running
the generator only to supply the load (Cgen (at PC = 0));

• The CC mode control strategy will be applied if the cost of running the generator to
supply the load and to charge the battery (Cgen) is lower than the cost of discharging
the battery (Cbat) and the cost of running the generator only to supply the load (Cgen
(at PC = 0));

• The LF mode control strategy will be applied if the cost of running the generator
only to supply the load (Cgen (at PC = 0)) is cheaper than the cost of discharging the
battery (Cbat) and the cost of running the generator to supply the load and to charge
the battery (Cgen). Additionally, the LF mode control strategy is also applied if the BES
is discharged but cannot satisfy the net required load.

3.4. Optimized BES Discharge (OBD)

The previous control strategies, such as LF, CC, and CD, were analyzed at the homoge-
nous system configuration to investigate their vulnerabilities. The operating characteristics
at similar load profiles, solar irradiances, and component sizes were examined. The analysis
results were then used to develop an enhanced control strategy that deals with the other’s
weaknesses. First, the LF, CC, and CD control strategies were simulated at the same load
profile, solar irradiance, and the components’ size (PV System, BES, and diesel generator).
The annual operational characteristics, such as the schedule of generator operation and
the BES charge/discharge, were analyzed to find the weaknesses. It was found that the
existing control strategies sometimes simultaneously operate the generator with the BES,
which causes a lower operating efficiency of the generator. Furthermore, it was observed
that there was an idle operation of the BES for quite a long period, which caused a higher
cost of using storage. In addition, the CC and CD control strategies tended to have the BES
in full condition when there is excess power generated by the PV system so that there was
wasted energy. The research framework is presented in Figure 4.
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The LF control strategy will only charge the battery by the PV system, so the battery
might remain empty or at its minimum SOC during the low irradiance condition, which
may occur in quite an extended period. Moreover, the LF control strategy allows the battery
to discharge together with the generator, which may cause the generator to operate at
low power and low efficiency. Therefore, the BES was not optimally utilized when the LF
control strategy was used, as shown in Figure 5.

Figure 5. Analysis of LF control strategy implementation was captured on 1 and 2 January. The BES
was in minimum SOC for a longer period and ran simultaneously with the generator.

The CC control strategy tended to run the generator continuously to charge the battery
until it reaches its SOC setting point once it starts to operate. The battery would only be
discharged if discharged in the previous timestep or at maximum SOC. This strategy might
result in the condition such as the battery is already fully charged when the PV system
generates excess power. Consequently, the battery may remain at maximum SOC for some
periods. Hence, the BES was also not optimally utilized when the CC control strategy was
applied, as shown in Figure 6.

Figure 6. Analysis of CC control strategy implementation was captured on 1 and 2 January. The BES
might not be discharged since it had not reached the SOC setpoint, and some excess power from the
PV system could not be utilized.
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On the other hand, the combination of LF and CC control strategies, the so-called
CD control strategy, delivers more efficient results. It was considered the most optimized
control strategy [19]. The CD control strategy tends to charge the battery in two conditions:
using the excess power from the PV system and using the generator during the low load
period. The first one follows the logic of the LF control strategy, while the latter works
based on the algorithm of the CC control strategy. This strategy does not use the generator
to charge the battery during the high load period simultaneously. The CD control strategy
commands the BES discharging when the BES’s SOC is at maximum setpoint, or the BES
has been discharged in the previous timestep (as in the CC control strategy), or the BES can
supplement the unmet power generated by the PV system (as in the LF control strategy).
The analysis of the CC control strategy operation is illustrated in Figure 7.

Figure 7. Analysis of CD control strategy implementation was captured on 1 and 2 January. It works
as an LF control strategy in the low load period and as a CC control strategy in the high load period.

This paper proposes modifying the CD control strategy, namely Optimal BES Dis-
charge (OBD) control strategy, as presented in Figure 8. OBD control strategy does not
decide the BES discharging operation based on the availability of the stored energy, BES’s
maximum SOC, or charge/discharge status of the previous timestep. The BES discharging
operation is determined based on the BES capacity to supply the net required load solely
(PD > Pnet). If the stored energy in BES is greater than the net required load, then the BES
will be discharged. The BES can immediately be discharged once its available energy can
supply the load. Otherwise, the generator will be operated to supply the load as well as
to charge the battery. By doing so, this control strategy can optimize the utilization of the
BES. Another benefit obtained from the proposed control strategy is that the generator will
consistently operate at a high load and deliver higher operating efficiency. Lastly, the low
load period will be satisfied either by the PV system, BES, or both.
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Figure 8. Optimal BES Discharge (OBD) control strategy. The decision to utilize BES is by directly
comparing Pnet to the available BES power (PD) instead of examining the BES’s SOC, such as in other
control strategies. The generator is always set to charge the BES every time it operates to supply the
load, resulting in a more efficient operation. BES is always ready to be discharged every time it can
supply the load alone, resulting in a more optimized utilization.

4. Simulation and Results
4.1. Systems’ Profile

We used a two-hybrid power generation system in this paper to validate the proposed
predictive dispatch control. The system data used for validation was obtained by observing
and summarizing the small-scale isolated grids in Indonesia. Each system had a unique
load pattern, daily average energy consumption, peak load, and average load.

System-1 had an average energy consumption of 4000 kWh/day, an annual peak load
of 529 kW, and an hourly average load of 167 kW. It was supplied by diesel generators with
a total installed capacity of 1000 kW with specific fuel consumption (SFC) defined as (0.03
+ 0.28 P*gen) L/hour. The Levelized Cost of Energy (LCOE) of System-1 was 0.2500 $/kWh.
Meanwhile, System-2 consumed about 5000 kWh/day of energy, 504 kW of annual peak
load, and 208 kW of hourly average load. System-2 was fed by a 1200 kW diesel generator
with SFC defined as (0.025 + 0.26 P*gen) L/hour. The LCOE of System-2 was 0.1920 $/kWh.
Table 1 summarizes the data of both systems, and Figure 9 presents their load profiles.

Table 1. Data summary of System-1 and System-2. System-1 had lower energy consumption and
hourly average load but higher peak load compared to System-2. System-1 had a lower load factor
than System-2.

Description Unit System-1 System-2

Energy consumption kWh/day 4000 5000
Annual peak load kW 529 504

Hourly average load kW 167 208
Load Factor % 32 41

Diesel generator rating kW 1000 1200
SFC - 0.03 + 0.26 P∗gen 0.025 + 0.25 P∗gen

Existing LCOE $/kWh 0.2500 0.1920
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Figure 9. Load profiles of System-1 and System-2. The deviation between peak load and the hourly
average load in System-1 was greater than in System-2.

4.2. Hybrid System Configuration and Component’s Unit Cost

The schematic of the hybrid power generation system of both systems is presented
in Figure 10. The additional components include the solar PV system and BES system, in
which the sizing would be determined through an optimization process in accordance with
the applied dispatch control strategy.

Figure 10. Configuration of the hybrid power generation system. Both systems have typical configu-
rations but with different characteristics. System-1 with a higher peak load had a lower generator
capacity than System-2.

The profile of solar irradiance in both locations is provided in Figure 11. The average
solar irradiance in the System-1 location was 4.8 kWh/m2/day, and in the System-2 location
was 5.6 kWh/m2/day. The maximum energy per day occurred in March (5.17 kWh/m2/day)
and in October (6.5 kWh/m2/day) for System-1 and System-2, respectively.

Figure 11. Daily solar irradiance profile. System-1 had peak daily irradiance in March, and System-2
had peak daily irradiance in October.
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The costs incurred in the development of solar PV system was estimated based on
the previous projects and global trend studied by International Renewable Energy Agency
(IRENA) [34]. The investment cost of the solar PV system applied in this paper was
$760/kWp, and the replacement cost was estimated at $152/kWp. The operation and
maintenance cost was assumed to be 1% of the investment cost per year. On the other hand,
the investment cost of the BES system included the cost of the battery pack, cost power
conversion system, and balance of the system. The total installation cost of the BES system
applied in this paper was $420/kWh [35,36]. The replacement cost of the BES system was
associated with the cost of the battery pack, which was estimated to be $150/kWh [37],
and the operation and maintenance cost was assumed to be 1% of the capital cost annually.
In addition, the fuel price considered in this study was $0.5/L, and the operation and
maintenance cost of a diesel generator was $0.005/kWh.

4.3. Simulation Result

The performance of the control strategy is validated through the 25-year of simu-
lation concurrently with the other control strategies to obtain comparable results. The
simulations are carried out by using HOMER software. The proposed method was im-
plemented through the MATLAB Link feature, enabling the users to apply their dispatch
strategy [13]. HOMER determines the optimized component’s sizing through a derivative-
free optimization algorithm, which does not require defining an objective function and
its derivative [11,38]. Therefore, the sizing optimization results could be acknowledged
to be comparable between the control strategies. The optimized sizing results for each
type of dispatch algorithm are presented in Table 2. The PV system size required by the
OBD control strategy was relatively smaller, being 610 kWp in System-1 and 1081 kWp in
System-2. Similarly, the optimized BES capacity obtained by the OBD control strategy was
1273 kWh and 2177 kWh for System-1 and System-2, respectively.

The LCOE of System-1 was $0.1874/kWh, which could compete only with the CC
control strategy ($0.1914/kWh). However, the ratio of renewable energy by using the OBD
control strategy was higher (34.0%) than the CC control strategy (22.4%). Even though
the renewable energy fraction in other control strategies, such as LF and CD, was higher
than the OBD control strategy (74.7% and 72.6%, respectively), they come with a higher
LCOE of $0.2028/kWh and $0.1994/kWh, respectively. System-2 results in the LCOE of
$0.1637/kWh if the OBD control strategy was used, which is the lowest among the other
control strategies. The renewable energy fraction could also be considered sufficiently high
(59.9%), particularly by considering its low LCOE.

The optimal operation of the proposed control strategy could also be evaluated by
looking at the ratio of excess electricity. It could be seen that the OBD gave the lowest
excess electricity compared to other control strategies in System-1 and second-lowest in
System-2. Furthermore, the proposed method was also more robust for a system with
different load profile patterns. The OBD control strategy delivered a consistent benefit in
terms of the low LCOE, satisfactorily high renewable energy penetration, and low excess
electricity (wasted energy) for different load profiles.

The snapshots of the operation pattern for all control strategies are presented in
Figure 12 for System-1 (two consecutive days in March) and Figure 13 for System-2 (two
consecutive days in September). The OBD control strategies regularly charge the BES by
using the generated power from the PV systems or using a generator during the high load
period. In contrast, the other control strategies did not charge the battery during the high
load period (between 05:00 to 07:00 and between 18:00 to 22:00) in both systems.
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Table 2. Optimized Simulation Results. The results compare the PV and BES size, Net Present Cost
(NPC), LCOE, renewable fraction, and excess electricity between the control strategies applied in
System-1 and System-2.

Parameter Control Strategy System-1 System-2

PV system size
(kWp)

LF 1234 1405
CC 550 966
CD 1268 1396

OBD 610 1081

BES system size
(kWh)

LF 2981 3614
CC 524 3021
CD 2922 3357

OBD 1273 2177

Net Present Cost
(NPC)

($)

LF 3.83 M 4.05 M
CC 3.61 M 4.26 M
CD 3.76 M 4.02 M

OBD 3.53 M 3.87 M

LCOE
($/kWh)

LF 0.2028 0.1718
CC 0.1914 0.1804
CD 0.1994 0.1704

OBD 0.1872 0.1640

Renewable Energy
Fraction

(%)

LF 74.7 83.8
CC 22.4 56.3
CD 72.6 79.2

OBD 34.0 58.1

Excess Electricity
(%)

LF 13.7 11.2
CC 12.5 6.7
CD 16.7 14.2

OBD 8.37 9.9

Figure 12. The operation pattern in System-1 for all control strategies in two consecutive days in
March. BES was constantly discharged at the low load period, or every time there was a lack of
supply from the PV system.
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Figure 13. The operation pattern in System-2 for all control strategies in two consecutive days in
September. BES was constantly discharged at the low load period, or every time there was a lack of
supply from the PV system.

On the other hand, the OBD control strategy consistently discharged the BES at low
load conditions, such as seen during the period between 00:00 to 04:00 and after peak load
period (22:00 or 23:00) in both systems. The BES was also discharged when the solar PV
energy production was insufficient (day one at 07:00–08:00 in System-1 and day two at
13:00–14:00 in System-2). Whereas, the discharging schedule happened every time there
was available power in the battery in LF, once the BES’s SOC exceeded the setpoint SOC in
CC and CD, or if the BES was already discharged in CC and CD.

The proposed control strategy provided the sizing of the PV system and BES that
result in the lowest LCOE and sufficiently higher renewable energy penetration compared
with other control strategies. The operation of the generator was also more efficient when
the OBD control strategy was applied. The generator operated at a lower frequency and
shorter period but with higher power compared with the other control strategies. This
operating characteristic resulted in lower fuel consumption and led to a lower LCOE.
Moreover, it performed more robustly than the others in terms of the trade-off between the
LCOE, the percentage of renewable energy penetration, and the excess electricity for any
system with different load and solar irradiance profiles.

4.4. Discussion

The simulation results showed that the proposed control strategy had the lowest
LCOE among the other control strategies. Nevertheless, the resulting RE penetration was
still lower than the control strategy where the LF is applied (i.e., LF and CD). For instance,
the LCOE in System-1 with the OBD is $0.1872/kWh, and its RE penetration was 34.0%.
On the other hand, the LCOE when the LF was applied was as high as $0.2028/kWh (7.7%
higher), and its RE penetration could be more than twice the one with the OBD control
strategy. The RE penetration by using the CD control strategy was 72.6%. However, its
resulted LCOE is $0.1994/kWh, which was 6% higher than the OBD. Another example was
presented in System-2. The LCOE in System-2 with the OBD was $0.1640/kWh, with an
RE penetration of 58.1%. The LF and CD control strategy results in a higher LCOE such as
$0.1718/kWh (LF) and $0.1704/kWh (CD) and provides a higher RE penetration, such as
83.8% (LF) and 79.2% (CD).

The results of LF and CD implementation were consistent because, in the LF control
strategy, the system required a higher capacity of the PV system and BES. By using OBD, the
required capacity of the PV system was only 610 kWp (System-1) or 1081 kWp (System-2),
and the required capacity of BES was 1273 kWh (System-1) or 2177 kWh (System-2). By
applying the LF and CD control strategies, the sizes became one-and-half to twice the
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one with the OBD control strategy. Hence, a higher RE penetration ratio in the LF control
strategy comes with a huge investment and results in a higher LCOE.

On the other hand, the CC control strategy had the lowest RE penetration among
other control strategies, including the OBD. It could only reach 22.4% (System-1) and 56.3%
(System-2). Meanwhile, the LCOEs were still higher than the proposed control strategy,
such as $0.1914/kWh (System-1) and $0.1804/kWh (System-2). The CC control strategy
required a smaller capacity of PV system in both System-1 and System-2. It also needed
a lower BES capacity in System-1 but a higher BES capacity in System-2. The CC control
strategy often operates to maximize diesel generator utilization. This result shows that the
CC control strategy was load profile dependent, which means the resulted LCOE could be
lower or higher than the LF and CD control strategies in other locations. Hence, it is less
robust than the OBD, LF, and CD.

It is worth noting that the development of HRES is considered capital investment-
sensitive. Hence, the capacity of the PV system and BES are expected to be as low as
possible so that it needs lower capital investment, and thus, the total life-cycle cost and
LCOE can be reduced. On the contrary, a lower capacity may result in a lower RE pen-
etration, as described above. Therefore, still and all, the cost-benefit decision depends
on the stakeholder whether to achieve a low LCOE or to achieve the RE penetration
target. For the remote or isolated grids in Indonesia, the lower LCOE with sufficiently
higher RE penetration is preferable, which can be obtained by implementing the proposed
control strategy.

5. Conclusions

Expensive diesel generators are predominantly used in remote and isolated areas. The
application of the hybrid system consisting of the PV system and BES can bring two-fold
benefits, such as reducing the LCOE and increasing the renewable energy penetration.
The most popular generation dispatch control strategies, namely load following, cycle
charging, and combined dispatch can be implemented as the energy management system
algorithm in a hybrid system. However, these algorithms still have disadvantages, and
their performance depends on the system characteristics like the load profile and local
solar irradiance.

This paper presented an improved control strategy algorithm, the so-called Optimal
BES Discharge (OBD), enhancing the combined dispatch control strategy. The OBD was
designed to operate a hybrid system (generator-PV-BES) with a smaller PV and BES
system size. Hence, the LCOE could be reduced by doing so but still maintaining a higher
percentage of renewable energy penetration. Moreover, it was also aimed at minimizing
the excess electricity generated by the hybrid system.

The results show that the proposed control strategy could work better than the other
control strategies, which can be evaluated through the resulting LCOE, renewable energy
penetration ratio, and excess electricity. The LCOE of an HRES could be lower by 2.2–9.1%
when the OBD is implemented. The RE penetration ratio was comparable to the second-
lowest LCOE, which could be lower by only 3.1%, but it could be higher by 35.3%. The
excess electricity of the OBD implementation could be reduced below 10%, while the other
control strategies mostly have excess electricity above 10%. Furthermore, the proposed
OBD control strategy also consistently performed satisfactorily in different load and solar
irradiance profiles.

Although this paper has shown some improvements, such as the LCOE reduction, the
resulted RE penetration ratio was still lower than the original CD control strategy. Therefore,
further research can be performed to increase the RE penetration with a lower LCOE. The
improvement can be executed by implementing the scheduled dispatch control strategy for
specific site characteristics or the predictive control strategy through well-known machine
learning algorithms.
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Nomenclature

BES Battery Energy System
CC Cycle Charging
CD Combined Dispatch
HOMER Hybrid Optimization of Multiple Energy Resources
HRES Hybrid Renewable Energy System
LCOE Levelized Cost of Energy
LF Load Following
NPC Net Present Cost
OBD Optimal BES Discharge
PV Photovoltaic
RE Renewable Energy
SFC Specific Fuel Consumption
SOC State of Charge
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