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Abstract: The rise in energy requirements and its shortfall in developing countries have affected
socioeconomic life. Communities in remote mountainous regions in Asia are among the most affected
by energy deprivation. This study presents the feasibility of an alternate strategy of supplying
clean energy to the areas consisting of pristine mountains and forest terrain. Southeast Asia has
a much-diversified landscape and varied natural resources, including abundant water resources.
The current study is motivated by this abundant supply of streams which provides an excellent
environment for run-of-river micro vertical axis water turbines. However, to limit the scope of the
study, the rivers and streams flowing in northern areas of Pakistan are taken as the reference. The
study proposes a comprehensive answer for supplying low-cost sustainable energy solutions for
such remote communities. The suggested solution consists of a preliminary hydrodynamic design
using Qblade, further analysis using numerical simulations, and finally, experimental testing in
a real-world environment. The results of this study show that the use of microturbines is a very
feasible option considering that the power generation density of the microturbine comes out to be
approximately 2100 kWh/year/m2, with minimal adverse effects on the environment.

Keywords: run-of-the-river power generation; vertical axis water turbine (VAWT); remote communi-
ties; micro-hydro power; sustainability

1. Introduction

Renewable, or inexpensive energy resources, are the need of the day for the sustain-
ment of daily life [1]. Hydroelectric energy is one of the most abundantly available resource
of renewable energy in Southeast Asia, but traditional hydroelectric projects require a
huge amount of investment in the form of infrastructure and time. Most rivers/streams
originating from the mountainous regions of Southeast Asia, such as the Himalayan ranges,
are shallow, but they keep a high velocity during the majority of the year. Within the region,
several countries like Pakistan have a large number of such water channels. These are in
abundance in the northern part of Pakistan’s rain catchment areas. To limit the scope of the
current study, data from the water channels located in Pakistan are taken as the reference.
The main aim of this study is to find a possible solution to provide energy to small local
communities residing on the banks of these water streams, without disrupting the local
ecology. The preliminary hydrodynamic design is made after basic parametric analyses
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using QBlade. The designed turbine is then validated using numerical simulations, and
finally, experimental testing in a real-world environment is completed.

Though this study does not conduct environmental analyses, earlier works have
shown that small run-of-the-river hydroelectric power projects do not cause any significant
negative impact on the physical or chemical characteristics of the waterways [2] and
innovative designs can reduce other ecological effects [3]. The geographical layout of
the Indus Basin is given in Figure 1 [4]. The depicted precipitation data shows high
precipitation feeding the water channels being studied in this research effort, while the
flow rates of the water channels originating in the Northern Regions of Pakistan are shown
in Figure 2 [5].
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Figure 2 shows that most of these water channels have water flowrates ranging from
an average flow rate of 89 m3/s during the winter and higher flowrates averaging at
473 m3/s during the summer and reaching up to highs of around 1200–1700 m3/s in peak
precipitation season, as shown in Table 1.

These flow rates (Table 1) in mountain regions translate to water velocities ranging
from 1.5–2.5 m/s in the off-peak season and to 3.5–4.5 m/s in the peak rainy season.
Such water flowrates are sufficient for the year-round harvesting of hydroelectric energy.
However, these water channels are mostly shallow, and during off-peak season, their depth
can be less than 1.5 m. In such a scenario, run-of-the-river micro-vertical axis water turbines
(µVAWT) supply a more efficient and workable solution for harnessing the kinetic energy
of flowing water and converting it into electrical energy than the horizontal axis water
turbine (HAWT) options [6].
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Table 1. Flowrates (m3/s) of rivers and streams in the region.

River and Location Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Jhelum, Azad Pattan 216 359 722 1336 1712 1740 1410 999 623 355 265 234
Snyok, Yogo 52 46 43 46 109 476 1249 1309 546 167 101 77

Hunza, Dainyor 52 46 43 74 186 587 1107 1083 494 167 73 63
Chitra, Chitral 80 67 74 95 221 486 824 734 382 174 111 80
Gilgit, Gilgit 66 56 43 71 224 706 908 671 358 132 108 87

Shigar, Shigar 18 14 11 39 71 329 737 696 334 94 49 32
Astore, Doyian 28 25 25 60 186 371 389 253 139 66 49 38

Swat, Kalam 14 14 23 50 130 253 249 166 90 38 24 21
Average flowrate per month 66 78 123 221 355 618 859 739 371 149 97 79

Average winter months flow 89
Average summer months flow 473

Alternately, using fossil fuels would cause great harm to the pristine natural envi-
ronment [7–10]. Hydrokinetic turbines have the advantage of a smaller footprint than
other available renewable options, like solar power, which has a power density of around
0.16–0.25 kW/m2 [11], and would need clearing up large forest areas. Similarly, erecting
huge towers to harness wind energy can be disruptive to the natural environment [12–16].
Thus, under the existing conditions of the Southeast Asia region, exploiting the kinetic
energy of flowing water seems to be the more environmentally friendly option, as it encom-
passes many socioeconomic benefits for the region’s population as well [17,18]. Other than
being environmentally suitable, µVAWT also have a positive effect on the local and regional
economies [19]. It is seen that providing remote off-grid areas with energy through local
microgrids is both less expensive and less disruptive to the local ecology than extending
the main grid to such areas [20–23]. This research effort tries to design an efficient µVAWT
model with multiple design parameters adjusted to values where the overall performance
of the µVAWT is fine-tuned to year-round energy extraction of 2.5–5 kW from the flowing
water of rivers and streams found in the mountain regions of Pakistan.
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2. Design of Darrieus Type Turbine

Water turbines can be broadly categorized as horizontal axis, vertical axis, and cross-
flow turbines based on the axis of rotation [24]. The conventional horizontal axis and
crossflow water turbines are more developed and have better efficiency compared to the
vertical axis turbines, but they are not suited for shallow water channels with a water head
of less than 3 m [25,26].

Darrieus turbines use lift force produced by hydrofoil to rotate the shaft, while Savo-
nius turbines rotate because of the drag force experienced by the rotor. Darrieus turbines
are selected for this research effort, as it can achieve higher efficiency compared to the
Savonius turbines under the given conditions [27–31]. The design is simple and well suited
for mountain water streams; it does not require a complex yawing mechanism and its
compact nature can allow it to be portable as well. The structural design of the Darrieus
µVAWT is simpler and can accommodate most mechanical parts and even the generator on
top of the turbine or conveniently close to the stream bank. However, the hydrodynamic
design of the rotor blades can be quite complex, as the blades experience interaction with
vortices generated by preceding blades as well as the remnants of vortices generated in their
earlier cycle. Engineers and researchers have developed different performance prediction
models, such as the cascade, vortex, and momentum models [32–34], to analyze the power
output of the µVAWT. These models estimate relative velocities and incidence angles at
every azimuthal location to calculate normal and tangential forces [35]. It is the tangential
force which drives the turbine.

3. Design Parameters

The design of a Darrieus rotor depends upon many geometric parameters, which
include rotor radius (R), rotor height (H), number of blades (N), blade airfoil, blade camber,
blade chord length (c), and blade pitch angle (φ). In the current study, the preliminary
turbine design is based on the momentum model known as the double multiple stream tube
(DMST) model. This model was developed by Paraschivoiu (2002) [35]. The open-source
software QBlade, based on DMST, is used for performance evaluation.

DMST is derived from actuator disc theory and blade element theory. The energy
extracted from the fluid occurs due to a reduction in the downstream velocity, or the water
kinetic energy is converted to rotor mechanical energy. As shown in Figure 4, DMST models
the turbine by dividing it into several tubes. Then every stream tube is further divided
into two parts, i.e., upstream, and downstream. The turbine performance is separately
calculated for both parts and then summed up. As shown in Figure 4, DMST considers
five important velocities i.e., inflow velocity V∞; upwind induced velocity Vu; equilibrium
velocity Veq; downwind induced velocity Vd; wake velocity Vw [36,37]. The turbine shaft
power produced is calculated as:

P = Cp
1
2

ρAre f V∞
3 (1)

where, Are f = 2RH is the turbine’s normal projected area.
CP is the turbine power coefficient, V∞ is the free stream (inflow) velocity, and ρ is the

density of the fluid. The local angle of attack a is calculated using the formula:

α = arctan
sinθ

cosθ + λ
(2)

where, λ is an important dimensionless quantity known as the tip-speed ratio (TSR).
Angle θ is an azimuthal position of the blade (see Figure 4). TSR is the ratio between the
free stream water velocity V∞ and the blade’s tangential velocity due to its rotation. ω is
the angular velocity of the turbine. TSR is then given by:

TSR = λ =
ωR
V∞

(3)
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The relationship between the power coefficient and torque (T) produced by the rotor
is given below:

P = Tω (4)

CP =
2Tω

ρAre f V∞3 (5)
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3.1. Effect of Design Parameters on Power Output

Several studies [38–43], have been carried out in past to study the effects of variation
in various design parameters of µVAWT. These studies have used a variety of techniques
to improve turbine performance.

In the current study, the effect of each design variable on CP as a function of λ, the
tip speed ratio (TSR), is studied using the blade element momentum theory [44]. Each
parameter is varied while keeping all others constant. Using the results calculated for
each design parameter, the design is formulated using the best value of each parameter
(intuitive approach). The geometric restrictions (geographical constraints) and simplicity
requirements (manufacturing and economic constraints) are maintained, as the aim of the
study is to meet the requirements of the remote mountain regions. This back-to-the-basics
approach keeps the design process simple, cost-effective, and results in an easy-to-maintain
turbine. In these remote areas, traveling to a settled region for repairs, etc., is a very costly
and difficult endeavor. Thus, design simplicity is as important as performance.

3.1.1. Effect of Airfoil Type

The airfoil design is the most important variable affecting turbine performance [37].
The design of an airfoil is dependent on its thickness, camber, and camber location. These
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variables are altered individually to study each one’s impact on the turbine performance.
Before the National Advisory Committee for Aeronautics (NACA) formulated the NACA
airfoil series, the airfoil design was not standardized, and researchers had to rely on their
intuition and experience to determine the geometric characteristics of the airfoil. The
NACA airfoil series has been designed using algebraic equations and provides researchers
with much-needed details of airfoil performance. The NACA four-digit series airfoil profile
is defined by a numbering system where:

• Digit 1 gives the maximum camber as a percentage of the chord length.
• Digit 2 gives the distance of maximum camber from the airfoil leading edge (10 × digit

in percent of chord length).
• Digits 3 & 4 give the maximum thickness of the airfoil as a percent of the chord.

3.1.2. Effect of Airfoil Thickness on CP

Traditionally, the NACA four digits and symmetric airfoil are used for most Dar-
rieus type turbine designs [30]. Airfoils with different thicknesses are explored and their
influence on CP is studied.

Figure 5 shows that turbine performance is not affected much by the thickness of
airfoil; however, if the thickness increases (such as in the case of NACA 0021), the coefficient
of power CP starts decreasing because of the increase in the blunt-body drag. Similarly,
using very thin airfoil can lead to structural and manufacturing concerns.
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Considering these constraints, NACA 0018 is selected for further studies for having
better CP at higher TSR values compared to NACA 0021. Moreover, it provides better
structural strength when compared with NACA 0012 or 0015.

3.1.3. Effect of Airfoil Camber

Different cambers are introduced to the selected airfoil thickness of 18% to study the
effect of variation of airfoil camber. Figure 6 shows that the performance of the highly
cambered airfoil is better at low TSR values, hence it can be useful for resolving self-starting
issues. However, the largest CP is reduced for the turbine at higher TSR values for the
cambered airfoil. Therefore, the introduction of the camber would deteriorate the overall
turbine performance. Hence, the choice of symmetric airfoil NACA 0018 is kept for this
design as it also satisfies the manufacturing and economic concerns.
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3.1.4. Effect of Number of Blades

A turbine performance with 3, 4, 5, 6, and 7 blades is studied. The results show better
CP values at low TSR values for a turbine with a greater number of blades. It is seen that
maximum CP values increase as the number of blades increase. However, the turbine
performance readily decreases at higher values of TSR when the turbine solidity increases
as more than 5 blades are included in the design.

The analysis of the effect of several blades revealed that the increase in the number of
blades improved the turbine efficiency at a low tip-speed ratio, and a higher maximum
output was also obtained at the lower TSR values. It was further observed that the CP vs.
TSR curve was flatter for the lower number of blades, near the maximum values of CP,
which corresponds to less change in power output and better off-design performance as
well. Based on the data in Figure 7, it was seen that the turbine with 5 blades keeps higher
power output with a CP value of 0.35 to 0.4 for a longer duration within the expected range
of TSR variation. Hence, it was concluded that fewer blades not only helped in reducing
the overall cost of the turbine manufacturing but also improved the off-design performance.
The 5-bladed turbine design was therefore selected for the study.
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3.1.5. Effect of the Airfoil Chord Length

The airfoil chord length has a major impact on the turbine performance because it
governs the surface area of the blade, hence the values of drag and lift forces. A turbine
with different chord lengths is analyzed and the following observations are made:

• Decreasing chord length improves the maximum value of C.
• The moderate value of chord length gives better performance at TSR values < 4.5.
• Larger chord lengths tend to reduce the maximum CP and turbine performance

decreases rapidly at higher TSR values.

From the data depicted in Figure 8, the best turbine performance (CP) for most TSR
values is achieved for a chord length of 125 mm, and therefore, this value is selected for
the study.
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3.1.6. Effect of Turbine Radius

The radius (R) of the turbine is not only governed by performance parameters but
also according to the available width of the water channel. Turbines with a bigger radius
have stable behavior near largest CP, but poor performance at low TSR. From the results
shown in Figure 9, the radius of 0.750 m is selected as it supplies a good value of CP (0.35
to 0.40) for the required TSR range.
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3.1.7. Effect of Pitch Angle

The pitch control mechanism is quite complex to design. Variable pitch gives improved
performance and stable torque output [45], but on the other hand, it increases system
complexity [46,47]. Therefore, the fixed-pitch design is selected for experimental testing.
Results are obtained for different fixed-pitch angles, as shown in Figure 10, to select the
angle for best performance.
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Based on the data in Figure 10 above, it was seen that the zero degrees pitch angle
gives maximum power out. Hence, a zero-pitch angle is selected for the design.

3.1.8. Effect of Turbine Height

The height of the turbine is a design constraint governed by the depth of the water
channel and it has an almost linear relation with CP.

Based on the data seen in Figure 11 above, it was seen that, as expected, CP increases
almost linearly with the increase of turbine height, as the blade surface area is directly
proportional to the turbine height. However, considering the available height constraint
during off-peak season in the water channels under consideration, a height of 0.75 m is
selected for the design to ensure year-round stable power output.
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4. Final Design Selection

Based on the above-mentioned studies, and keeping in mind the geographical and
economic constraints, the following design parameters as depicted in Table 2 are selected
for further analysis.

Table 2. Final selected design parameters for the vertical axis water turbine.

Airfoil NACA 0018

Chord length 0.125 m
Number of blades 5

Height 0.75 m
Radius 0.75 m

Pitch angle 0 deg

Power Output of Selected Design

The CP and power output curves of the finalized design are given in Figures 12 and
13 below:
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The results show that selecting turbine design based on the best performance of each
parameter (within the given constraints) can give a good year-round performance. It is
seen that turbine performance stays stable within a range of 2.5 < TSR < 4.5 and power out
of 4 kW to 6.5 kW is achieved in a velocity range of 3.5 < V < 4.5 m/s which is available
during the summer months. However, during the winter months, the power output is
likely to remain close to 2 kW only.

5. Fabrication of Turbine

Turbine blades are fabricated by using a five-axis CNC machine using polystyrene as
the base material and later coated with polyurethane material. Five inch diameter circular
aluminum plates are mounted on top of each blade to avoid tip vortices.

Each blade was mounted by two threaded rods and nuts (Figure 14) on the star-shaped
structure with five arms and a central shaft (Figure 15). This arrangement ensured the
required rigidity of the blades. A heavy metal structure was made using stainless steel
beams to hold the turbine with the ground clearance of one foot. The CAD drawings of the
assembly process are shown in Figure 15.
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The complete turbine support structure and hub assembly were fabricated using angle
iron and stainless-steel pipes, and the actual turbine assembly is shown in Figure 16.
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6. Experimental Testing
6.1. Site Selection

The testing site selected is located at Kalpani River (34.073808, 72.022975), Khyber
Pakhtunkhwa, Pakistan. The testing of the turbine, instead of being conducted in a con-
trolled environment, was conducted in an actual water stream, with similar characteristics
as the mountain streams in the region of interest, where accurate measurement was not
possible. This resulting uncertainty may be questioned from a strictly scientific perspec-
tive; however, as the turbines are to be deployed in a real-world environment, which is
uncontrolled and unpredictable, authors feel that this provides a better viability study. The
turbine was tested at three different sites with different flow velocities and channel depths,
as shown in Table 3.

Table 3. The data of three sites were selected for the testing of the vertical axis water turbine.

Velocity Channel Depth Channel Width Height of Blade Immersed in Water

Site 1 1.50 m/s 1.10 m 22.5 m 0.75 m
Site 2 1.67 m/s 1.00 m 22.5 m 0.75 m
Site 3 1.67 m/s 0.65 m 22.5 m 0.50 m

6.2. Velocity & Force Measurement

Water velocity was measured using the simple float method. The time to travel 10 m
by a float (Styrofoam piece) was noted multiple times using a stopwatch and the average
taken as time t. Velocity was simply calculated as 10m

t . For force measurement, a spring
balance attached to a turbine blade was used and the brake force (F) needed to keep the
turbine at rest was measured. Force (F) measured by the spring balance is used for torque
and power calculations.

Cm = r × CT (6)

where CT is the coefficient of the tangential force generated on the turbine blades, and Cm
is the coefficient of the moment of the turbine. Then from Equation (6);

CP =λ× Cm (7)
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τ =
1
2

ρV2
∞ Are f Cm (8)

Pout = τ × ω (9)

7. CFD Analysis

Computational fluid dynamics (CFD) analysis of our design was carried out to achieve
better insight into the fluid flow through the turbine. The turbine was modeled as a rotating
mesh domain within the static flow domain. For the CFD analysis, a 2D model of the
micro VAWT was created. Five equally spaced blades were placed on the turbine periphery.
NACA 0018 symmetric blades 0.125 m chord length was used, and the turbine radius
was selected to be 0.75 m (as per Table 3 parameters). ICEM CFD modeling software was
used to create a 2D model of the turbine. The mesh was created and read into an ANSYS
Fluent solver. The flow domain was selected to be a 30 m-by-30 m square domain. The
CFD domain and turbine model are shown in Figure 17. While the computational mesh is
shown in Figure 18.
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Mesh independence was conducted using mesh sizes as given in Table 4 below. The
turbine is modeled as a rotating mesh domain within the static flow domain. This study
simulates flow over the turbine using the shear stress transport (SST k-omega) turbulence
model. Flow conditions of Site 1 were used during the mesh independence simulations. The
simulations were run for 29 turbine revolutions to ensure that stabilized data was achieved.

Table 4. Mesh independence data.

Mesh Size (Nodes) Cm

588,111 0.1607
648,681 0.1791
729,756 0.1805

Based on the data in Table 4, the mesh size of 648,681 nodes was selected. The selected
mesh is depicted in Figure 18.

Time step independence study was also carried out. Based on the data in Table 5, the
Time-step of 0.00284091 s (representing an increment of 0.75 deg in the azimuthal angle per
time-step) was selected.

Table 5. Time-step (Tstep) independence data.

Time-Step (s) deg/Tstep Cm

0.00378789 1.00 0.1588
0.00284091 0.75 0.1803
0.00189394 0.50 0.1812

Discussion on CFD Results

For torque calculations, the total coefficient of the moment (Cm) was calculated by
adding the individual blade Cm for all the five blades and the turbine hub structure at each
iteration, and then taking the average of the total Cm over a complete turbine rotation cycle
of 360◦. The Cm of each blade, total turbine Cm, and the average value of Cm, are shown in
Figure 19. The turbine torque and power are calculated using equations (8) and (9).
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Figure 19. Turbine coefficient of the moment for individual blades and total turbine Cm.

The velocity profiles obtained using CFD simulation for the case with a river inflow
rate of 1.5 m/s and turbine rotation rate of 44 RPM are depicted in Figure 20, while the
vorticity distribution is shown in Figure 21.



Energies 2021, 14, 3160 15 of 18Energies 2021, 14, x FOR PEER REVIEW 15 of 18 
 

 

 
Figure 19. Velocity profile obtained using CFD simulation of river inflow at 1.5 m/s and turbine 
rotation rate of 44 RPM. 

 
Figure 20. Vorticity profile obtained using CFD simulation of river inflow at 1.5 m/s and turbine 
rotation rate of 44 RPM. 

8. Comparison of Results 
The results obtained using CFD analysis and QBlade (double multiple stream tube 

model) are compared with experimental results in Table 6. 

Table 6. The comparison of experimental and theoretical results of site 1 and site 2. 

DMST Model Results Experimental Results CFD Results % Difference 

Site 
Vel 

(m/s) 
RPM 

Power output 
(Watts) 

RPM 
Measured 
force (N) 

Torque 
(N-m)  

Power out-
put (Watts) 

RPM 
Power 
output 
(Watts) 

Expt. vs. 
DMST 

Expt. vs. 
CFD 

1 1.5 51 670 44 147 110.3 508 44 524.1 24.20% 3.10% 
2 1.7 57 950 48 209 156.8 787.9 48 799.5 17.10% 1.50% 

9. Conclusions 
The results of this study show that the designed μVAWT produces approximately 

0.5 kW of electricity. As the calculation was accomplished taking the least flow rates 
among the available water channels in the off-peak season, it can be considered that this 
would be the minimum electricity generation year-round. If 85% serviceability is assumed 
for the turbine, the minimum power generation is expected to be 7325 kWh annually. The 

Figure 20. Velocity profile obtained using CFD simulation of river inflow at 1.5 m/s and turbine
rotation rate of 44 RPM.

Energies 2021, 14, x FOR PEER REVIEW 15 of 18 
 

 

 
Figure 19. Velocity profile obtained using CFD simulation of river inflow at 1.5 m/s and turbine 
rotation rate of 44 RPM. 

 
Figure 20. Vorticity profile obtained using CFD simulation of river inflow at 1.5 m/s and turbine 
rotation rate of 44 RPM. 

8. Comparison of Results 
The results obtained using CFD analysis and QBlade (double multiple stream tube 

model) are compared with experimental results in Table 6. 

Table 6. The comparison of experimental and theoretical results of site 1 and site 2. 

DMST Model Results Experimental Results CFD Results % Difference 

Site 
Vel 

(m/s) 
RPM 

Power output 
(Watts) 

RPM 
Measured 
force (N) 

Torque 
(N-m)  

Power out-
put (Watts) 

RPM 
Power 
output 
(Watts) 

Expt. vs. 
DMST 

Expt. vs. 
CFD 

1 1.5 51 670 44 147 110.3 508 44 524.1 24.20% 3.10% 
2 1.7 57 950 48 209 156.8 787.9 48 799.5 17.10% 1.50% 

9. Conclusions 
The results of this study show that the designed μVAWT produces approximately 

0.5 kW of electricity. As the calculation was accomplished taking the least flow rates 
among the available water channels in the off-peak season, it can be considered that this 
would be the minimum electricity generation year-round. If 85% serviceability is assumed 
for the turbine, the minimum power generation is expected to be 7325 kWh annually. The 

Figure 21. Vorticity profile obtained using CFD simulation of river inflow at 1.5 m/s and turbine
rotation rate of 44 RPM.

8. Comparison of Results

The results obtained using CFD analysis and QBlade (double multiple stream tube
model) are compared with experimental results in Table 6.

Table 6. The comparison of experimental and theoretical results of site 1 and site 2.

DMST Model Results Experimental Results CFD Results % Difference

Site Vel
(m/s) RPM

Power
output
(Watts)

RPM Measured
force (N)

Torque
(N-m)

Power
output
(Watts)

RPM
Power
output
(Watts)

Expt.
vs.

DMST

Expt.
vs.

CFD

1 1.5 51 670 44 147 110.3 508 44 524.1 24.20% 3.10%
2 1.7 57 950 48 209 156.8 787.9 48 799.5 17.10% 1.50%

9. Conclusions

The results of this study show that the designed µVAWT produces approximately
0.5 kW of electricity. As the calculation was accomplished taking the least flow rates among
the available water channels in the off-peak season, it can be considered that this would be
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the minimum electricity generation year-round. If 85% serviceability is assumed for the
turbine, the minimum power generation is expected to be 7325 kWh annually. The area
occupied by the microturbine is 1.77 m2. This translates to a power generation density of
around 2100 kWh/year/m2. The power density of the proposed design compares favorably
with other possible options [48] and the design has minimal adverse environmental effects
as it does not cause any emissions, pollution, or disturbance to streams ecology [20–23].
Hence, the proposed microturbine design is very workable for the population living around
the water channels in the region.

The DMST based QBlade results in this study show a difference of 24.2% compared to
the experimental values. The experimental values are lower as QBlade does not include the
support and hub structure. The preliminary CFD results are found to be much closer to the
experimental values as the turbine hub is also included in the model. However, a further
detailed CFD analysis is needed to explain these differences. The research suggests that
Darrieus rotor type vertical axis water microturbines, which can be easily fabricated with
little expense, can be successfully used for power extraction from shallow water streams in
mountain regions. Provision of cheap power to off-grid remote mountainous regions using
micro VAWT can bring about great socioeconomic benefits [49] without causing any major
disruption to the ecosystem [2,3]. Other renewables in these mountainous regions would
have a larger footprint and would likely cause more disruption to the local ecosystem.
Remote generation would entail the laying of transmission lines, which would damage the
environment more severely.

This is a preliminary study carried out to ascertain that run-of-the-river power gen-
eration using µVAWT is a viable option for a year-round supply of energy. The study
uses the lowest flow rates among these water channels to do so. It is recommended that
higher efficiency VAWT designs as have been investigated [45], along with tandem de-
ployment of multiple turbines, be studied, so larger power requirements may also be met
for populations residing in these remote areas. It is also suggested that more detailed
parametric, sensitivity, and optimization analyses be carried out in future studies. The
vortex interaction of the blades operating in the wake may be investigated in detail in
the future.
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