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Abstract: Energy demand and generation are common variables that need to be forecast in recent
years, due to the necessity for energy self-consumption via storage and Demand Side Management.
This work studies multi-step time series forecasting models for energy with confidence intervals
for each time point, accompanied by a demand optimization algorithm, for energy management
in partly or completely isolated islands. Particularly, the forecasting is performed via numerous
traditional and contemporary machine learning regression models, which receive as input past
energy data and weather forecasts. During pre-processing, the historical data are grouped into
sets of months and days of week based on clustering models, and a separate regression model
is automatically selected for each of them, as well as for each forecasting horizon. Furthermore, the
multi-criteria optimization algorithm is implemented for demand scheduling with load shifting,
assuming that, at each time point, demand is within its confidence interval resulting from the fore-
casting algorithm. Both clustering and multiple model training proved to be beneficial to forecasting
compared to traditional training. The Normalized Root Mean Square Error of the forecasting models
ranged approximately from 0.17 to 0.71, depending on the forecasting difficulty. It also appeared
that the optimization algorithm can simultaneously increase renewable penetration and achieve load
peak shaving, while also saving consumption cost in one of the tested islands. The global improve-
ment estimation of the optimization algorithm ranged approximately from 5% to 38%, depending
on the flexibility of the demand patterns.

Keywords: time series; forecasting; demand; generation; prediction interval; optimization;
demand response; Demand Side Management; flexibility; smart islands

1. Introduction

Time series forecasting is useful in many applications [1,2]. Before 1927, time series
were forecast using extrapolation. Then, Yule introduced the autoregressive model in order
to forecast future values of time series as weighted sums of previous ones, and linear mod-
elling with noise was the common practice for forecasting within the next 50 years or so.
Afterwards, the linear models proved to be inadequate to describe complex time series
behaviour, and since 1980, along with the evolution of computers, time series forecasting
has been addressed also using machine learning techniques and state-space reconstruc-
tion with time-delay embedding [3]. Examples of recent generic time series forecasting
methods are random walk with drift, Autoregressive Fractionally Integrated Moving Aver-
age (ARFIMA), exponential smoothing state-space model with Box–Cox transformation,
Autoregressive Moving Average (ARMA) errors, Trend and Seasonal components (BATS),
simple exponential smoothing, Theta and Prophet methods [4], a hybrid approach linearly
combining alternative neural network models based on a weighting automatically derived
by the model errors [5], Bayesian models [6] and discretization with fuzzification [7].
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One of the aforementioned applications is that of forecasting energy demand (con-
sumption) and generation (production). The review in [8] explains why the variance
of solar and wind generation leads to cost and how this cost is reduced thanks to genera-
tion forecasting.

Self-consumption of energy is achieved with an energy storage system and De-
mand Side Management. The most popular strategy for the latter is load shifting [9].
According to [10], with the increase of population, energy management through demand re-
sponse (DR) programs has become an important need. Particularly, most of such programs
are price-based, according to the following charging policies: (a) Time-of-Use (TOU),
according to which the price depends on the time of the day and is determined by the
historically average cost of energy delivery at each time, (b) Real-Time Pricing (RTP), where
future prices are determined in real time on an hourly basis based on the current conditions,
and (c) Critical-Peak Pricing (CPP), which is a dynamic pricing mechanism using elements
of the above two to modify tariffs as a temporary response to events or conditions like high
market prices or reserve being reduced. RTP is mentioned as the best DR technique [11].

The current paper presents first a generic forecasting algorithm, based on machine
learning techniques, applied to predict aggregate demand and generation in three demon-
strators (Orkney island, Ballen marina at Samsø and Madeira island). Past values of the vari-
able to be forecast along with weather forecasts from [12] were considered as potential
input to the forecasting regression models. However, only the variables that improved
the performance of the models were finally selected. The historical dataset was grouped
w.r.t. month and day of week by applying a clustering method to the data of the variable
to be forecast. Along with each forecast, a confidence interval is automatically provided by
the algorithm, according to the distribution of the forecasting error, considering the impact
of the forecasting horizon, time of the day and month–day of week group resulting from
the above clustering. The pre-processed input and output variables of the forecasting
models were defined in such a way that they have near-linear dependencies. However,
multiple regression architectures were tested with hyper-parameter tuning, including the
contemporary Extreme Learning Machines (ELM), which is presented in [13] as better
than the usual Artificial Intelligence techniques, due to its faster learning ability and its
simpler architecture. Additionally, a demand optimization algorithm was developed,
which assumes that the future demand can be shifted among the timestamps of the op-
timization interval (e.g., next 24 h). Regarding constraints, it was considered that the
average demand across all timestamps of the interval should not be modified, and that the
demand at each future timestamp always ranges within the respective confidence interval.
This optimization algorithm is generic and was implemented for each demonstrator using
relevant data. It considers three optimization criteria, namely minimum cost for the con-
sumer, maximum usage of renewable energy and minimum power instability. The degree
of deviation from the fulfilment of each of these criteria was evaluated based on a Key
Performance Indicator (KPI), which was defined mathematically. In order that multiple
criteria among the above three are considered for the optimization, a total KPI was defined
as a weighted mean of the individual KPIs, which were scaled appropriately first. Not all
three criteria were considered in all demonstrators, because some criteria were considered
as non-applicable to some of them. The optimization algorithm is accompanied by a flexibil-
ity analysis for total demand, based on confidence intervals for demand, derived from the
forecasting algorithm. Flexibility is the ability to increase or reduce the production of power
plants or the consumption of demand processes [14]. A standard formula for quantifying
flexibility does not exist, and flexibility depends on the settings of the problem in question.

Based on the above, the solution described in this paper may be considered as useful
if at least one of the following hypotheses is valid:

• The end user is an energy consumer who views the recommendations about the time
points in the near future when energy consumption should be preferred according
to the desired weighting factors of the three optimization criteria and the unit prices
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of energy at every time point which are applicable to this user, and adjusts his/her
consumption behavior accordingly.

• The end user is a Distribution Systems Operator that forwards the recommendations
of these algorithms to its customers.

• The end user is someone authorized to determine the unit prices of energy consump-
tion at every time point, so (s)he can examine to what extent the economic criterion
contradicts the renewable energy penetration and power stability criteria and adjust
unit prices accordingly, also dynamically.

The remainder of the paper is organized as follows: Section 2 presents the related
work and the contribution of ours. In Section 3, the high-level architecture of the system
of the forecasting and optimization algorithms is depicted, whereas in Sections 4 and 5 the
forecasting and optimization algorithms, respectively, are presented in detail, including
their methodology and experimental results. The paper is concluded in Section 6. Finally,
Appendix A provides more information about the raw data.

2. Related Work and Our Contribution

A literature review relevant to the specific problem of demand and generation forecast-
ing follows: In [15] a multi-step forecasting algorithm similar to ours has been implemented
in the field of heat load in district heating systems, evaluating also recursive apart from
direct forecasting with similar results. However, in contrast with our paper, in order
to quantify intrinsically categorical variables such as month and time of day, it applies one-
hot encoding, thus highly increasing the number of input variables and enforcing the partial
sharing of parameters among models for different months and times of day. The review
in [16] deals with solar generation and electricity demand. The authors mention that de-
mand response causes instability in the forecasts. In terms of algorithms, although they
confirm that Artificial Neural Networks (ANNs) are still popular, other techniques are also
used nowadays (random forests, support vector machines, gradient boosting). It is stated
that there is no single forecasting model which is the best for all use cases, and this conforms
with the findings of the present paper. This is argued also in the review of [17], which favors
the trial and error strategy for this reason. The last review also mentions that clustering
is a common approach to automatically group days, as done in our work, although generally
this method was not found in the bibliography of the current research. However, that paper
also argues that most of the researchers focus only on point forecasts and not so much on con-
fidence intervals. (In some papers, including that one, the confidence intervals for predictions
are mentioned as “prediction intervals”. In this paper, by “confidence interval” a prediction
interval is implied). This is also a conclusion of [18], which summarizes the methods of the
Global Energy Forecasting Competition 2014 winners. The authors of [19] take advantage
of the method used by the winners of the above competition for load and price forecasting
with the help of multiple weather stations, which was based on quantile regression using
pinball loss minimization, and generalized additive models.However, in that work, a time
of year variable was introduced, which seems to be inappropriate for two reasons. First,
it does not take into account the dependencies among timestamps of same time of the day
in different days of the year. Secondly, it increases linearly over time, so it has a non-linear
dependence with the variable to be forecast, in contrast with the average time profile,
which was used in our method. In that work, day of week clusters were defined manually
based on experience. It seems that only during the last few years probabilistic forecasting
has been studied more extensively. For example, in [16,20], quantile regression, quan-
tile regression forests, Gaussian processes, bootstrapping, Lower Upper Bound Estimate,
gradient boosting, kernel density estimation, k-nearest neighbor and analog ensemble
are mentioned as the main statistical non-parametric methods for probabilistic energy
forecasting, along with the statistical parametric, physical (parametric and non-parametric)
and hybrid approaches. In the energy forecasting review of [21] it is confirmed, as observed
also by the rest of this literature review, that regarding generation, mainly wind and solar
forms have been studied. Nothing is mentioned about hydro and waste, which are studied
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in our paper for the Madeira demonstrator. In the case of wind generation there is no
distinction between ANM (Active Network Management) and non-ANM, which was done
in our work for Orkney, as discussed in more detail in Section 4.2. The work in [20] uses
Gaussian processes for probabilistic forecasting of demand and solar generation in an iso-
lated building, however it uses as input only past values of the variable to be forecast based
on pre-defined time lags. Grey models are presented by [22,23] as appropriate for train-
ing of forecasting models in case of lack of sufficient historical data to train non-linear
Artificial Intelligence models, which usually happens for high forecasting horizons (e.g.,
1 year), as is the case in these two papers, where China’s yearly electricity and natural gas
demand respectively are forecast using just some past values of the variable to be forecast
as input. A similar horizon (2-year) is used in [24], where monthly electricity demand is pre-
dicted with bagging Autoregressive ntegrated Moving Average (ARIMA) and exponential
smoothing techniques, again using only past values of the variable to be forecast as input.
In [25], generation and demand in smart cities and factories are forecast using Markov
chain, stride predictors, neural networks and combinations of them. In that study, the
forecasting problem is discretized and only the recent values of the variable to be forecast
are used as input. In the work of [26], yearly forecasts only for non-renewable generation
are made for the next 14 years using linear regression, based only on the historical trend
of generation. In [27], electricity consumption of a microgrid is forecast using the Nearest
Neighbors algorithm for prediction after clustering in business days and weekends with
Self-Organizing Maps. However, no comparison with other models is made, and weather
data have not been used as input. In [28], demand, generation and battery state of charge
of a microgrid are forecast with ARIMA, using only past data of the variable to be forecast
among photovoltaic (PV) power production, load consumption and battery state of charge
in a building, and a control algorithm is applied afterwards. However, in [29,30], which
deals with microgrid demand, it is argued that ANNs are more appropriate for time series
forecasting than ARIMA, especially in cases where the signals exhibit abrupt fluctuations
and nonlinearity. In [30] especially, season (with arbitrary numbering) and time themselves
instead of demand average over season/time have been inserted as input to the model,
thus leading to non-linear instead of linear relations between input and output, in contrast
to our approach. In [31], pp. 691–704, it is also mentioned that ANNs perform better,
especially in cases where the signals exhibit abrupt fluctuations and nonlinearity. Therein,
a Generalized Radial Basis Function Network (GRBFN) is used for forecasting solar gener-
ation, with modifications in the original algorithm such as the use of Evolutionary Particle
Swarm Optimization (EPSO) for optimization during model training. However, overfitting
is avoided with the weight decay method and the variables with unimportant weights
are not mentioned, so the importance of all the considered input variables is questionable.
No comparison is made with linear regression models. In [31], pp. 704–729, an ensemble
technique with wavelet decomposition and reconstruction for forecasting demand and solar
generation of an integrated smart building at the University of Queensland equipped with
PVs is applied, again by introducing time-dependent variables instead of their average pro-
file as model input. Finally, [32] is devoted exclusively to solar generation prediction, using
only past solar irradiation as input instead of using also past solar generation and future
solar irradiation forecasts; that paper uses a single, 10-min forecasting horizon, performing
manual split of the data into seasons, and focuses on ANN without comparing multiple
regression models.

The optimization algorithm of this paper regards a multi-criteria decision analy-
sis (MCDA). Multi-attribute utility theory (MAUT), analytical hierarchy process (AHP)
and multi-attribute value theory (MAVT) are particular MCDA techniques [33,34]. In the cur-
rent work an alternative of MAVT, used in [34], is employed, as described later in detail.

The bibliographic research of this section continues with DR-related optimization
algorithms. The work in [9] solves an optimization problem using the self-consumption
percentage as criterion, and assesses the impact of weather forecast uncertainty. In [35], DR
is applied to control the usage of home Air Conditioners by minimizing cost. Nevertheless,
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the only model applied is linear regression and the dataset used consists of only a single
summer week with low weather variability. The approach in [36] performs specification-
based cost optimization computing confidence intervals for uncertain variables with an in-
troduced method, and uses reliability constraints. Similarly, in [37], cost optimization
is performed in a single household with an energy storage system, based on confidence
intervals for load and generation obtained using quantile regression and k-nearest neigh-
bor methods, but without using weather data to improve forecasts. Cost is also optimized
in [38,39] using a genetic algorithm. Those papers consider a PV and a battery to gen-
erate and store energy respectively, and the latter has additionally taken into account
customer comfort constraints for which user input is needed. The work in [40] also per-
forms specification-based cost optimization converting a non-linear optimization problem
to a linear one, and employing a graph-theory-based energy hub model using coupling
matrices. In [41], energy procurement cost for retailer from pool market is minimized,
using a robust optimization method facing the uncertainty of the model input. The al-
gorithm has been used by multiple DR programs (pool-order, forward, reward-based).
The paper in [42] regards demand and electric vehicle (EV) usage forecasting for cost opti-
mization and control, involving more than 300 active drivers in the experiment. In addition,
in [43], a genetic algorithm performs demand response in an isolated microgrid of Terceira
island based on the cost criterion, while considering the consumer and grid manager view-
point. In [10,44], cost is optimized along with consumer satisfaction, which has also been
formulated mathematically, either as a constraint [44] or as an additional term in the objec-
tive function [10], whereas additional constraints have been introduced. Once more, the
non-linear programming optimization problem has been solved with a genetic algorithm.
In those two papers, specifications of particular home appliances have been considered.
Similarly, [11] executes specification-based cost and comfort optimization requiring user
input, proposing separate DR schedules for multiple users. In [31], pp. 613–635, a mixed-
integer nonlinear programming problem is solved using the Particle Swarm Optimization
(PSO) and Simulated Annealing algorithms and their variants while performing also
demand and generation forecasting so as to enhance the input of the cost optimization
problem. From the literature review of [31], pp. 635–645, it is inferred that Tabu search
(TS), PSO, multi-agent and fuzzy systems, as well as heuristics are commonly used in opti-
mization, and TS is employed therein for cost minimization. An other alternative of PSO,
named Quantum PSO (QPSO), is used in [31], pp. 680–691, to solve a specification-based
cost optimization DR algorithm related to load shifting. The goal of [31], pp. 729–741, was
to develop an algorithm to select the location of EV charging stations to be constructed by
optimizing cost, mean usage rate of charging poles and user charging convenience under
specification-based constraints, using an appropriate mathematical model. That work
introduces an improved version of the strength Pareto evolutionary algorithm (SPEA),
called SPEA2, for the computation of a set of optimal three-objective solutions. The work
in [45] concerns a related paper that has performed specification-based optimization in
one of the three demonstrators of the present work (Samsø), without including details
about the forecasting approach. An other work for specification-based optimization has
been published for the Madeira demonstrator [46]. It uses ARMA for forecasting and co-
optimizes arbitrage, self-sufficiency, peak shaving and energy backup for Model Predictive
Control, formulating all but one optimization criteria as constraints. In [47], a control
algorithm for cost optimization is applied to an ice bank system for food refrigeration, con-
sidering temperature predictions, ice mass and energy consumption. However, renewable
energy sources are not considered, and many data used in that work are simulated instead
of real. The latter occurs also in [48], which deals with cost optimization in a microgrid
based on weather forecasts, assuming demand as deterministic instead of introducing
uncertainty or demand forecasting models. In [49], another specification-based problem
is addressed about water consumption instead of electricity consumption, considering the
economic viability and operational risks management criteria, but introducing only cost
in the objective function and defining constraints for the other criterion. The work in [50]
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studies integrated instead of the typical demand response, which enables consumers also
to change the type of the consumed energy. In [51], scenarios for uncertainty are used in
a probabilistic model for a cost optimization problem, considering wind and PV produc-
tion and using domain-specific constraints about energy conversion. However, also in
that paper, power is simulated using random variables instead of actual data, and power
forecasting is not studied. In [52], an optimization problem for production lines of heavy
industries is solved, and flexibility is analysed, but without an obvious mathematical
definition and numerical evaluation, as done in the current study. In [53], another indus-
trial application to an electrolysis plant is discussed, using cost in the objective function
and considering domain-specific operational constraints. In [54], multiple, potentially
contradicting criteria are considered for optimization of distribution networks reconfig-
uration. The problem is solved using the epsilon-constrained method and the max-min
fuzzy satisfying technique to balance the different criteria, but without weighting the
contributions of the criteria to the total objective function after their normalization, which
was done in our work to consider the subjective opinion of the end user about the relative
importance of the criteria. Finally, [55], which deals with another optimization problem
with PVs and wind turbines in a microgrid, introduces an arbitrary dynamic pricing model
with respect to renewable and non-renewable energy, a basic price and constant parameters.
Demand and price are optimized using the PSO method with respect to cost and comfort,
but only for a 4-s interval and without using forecasting. It concludes that dynamic pricing
results in higher customer profit than fixed pricing.

By studying the above bibliographic research, the main contribution of the present
work follows. Instead of solving a specification-based optimization problem related to a (rel-
atively) low number of energy consuming assets and requiring input from consumers
to assess their comfort, this work deals with a specification-free, statistical-based approach,
in order to optimize aggregate demand in larger areas, even whole islands, from which
it is practically infeasible to acquire all specifications. Particularly, in the current study,
demand flexibility is estimated thanks to the confidence interval for demand obtained
based on test error distribution during training the demand forecasting models on historical
data. Although a thorough evaluation of the confidence intervals and comparison among
probabilistic forecasting methods are not a main focus of this study, the confidence interval
reliability and sharpness are considered to be improved in this work by simultaneously
taking into account the forecasting horizon, the time of the day and the month and day
of week group to which the forecast corresponds, where grouping is based on automatic
clustering. Thanks to clustering, any periodic and non-periodic seasonality is automatically
identified. This is a step forward compared to the traditional seasonal ARIMA (SARIMA)
models, which assume periodic seasonality exclusively. In this way, the closer the point
forecasts are to the respective exact values, the narrower the confidence intervals are, while
their reliability is based on the desired significance level. Apart from cost, this work consid-
ers also renewable energy penetration, based on energy generation forecasting models also
trained on historical data, and power stability as optimization criteria. Finally, although
weather data and time-related information are also involved in the input of the forecasting
regression models apart from past values of the variable to be forecast, the paper defines
the input variables in such a way that they have near-linear relation with the output,
which not only enables the possibility for fast training, but also helps to select the best
input variables and clustering algorithm during pre-processing using linear approxima-
tions of the forecasting models. Bibliographic references tend to focus on the selection
of complex forecasting models rather than the appropriate definition of the input variables,
which renders training of simpler models easier.
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3. High-Level Architecture

The high-level architecture of the forecasting and optimization algorithms is depicted
in Figure 1. The data sources refer to demand and generation data, for example, from appli-
cation programming interfaces (APIs) in case of real-time data from Madeira, or files with
previously downloaded historical data. Historical weather data and observed historical
data from [12] are also considered. The forecasting module receives input data from these
sources and is able to (re)train demand and generation forecasting models and use them
for real-time predictions. Particularly, the models are saved for future reuse, and are also
retrained if they are outdated, according to a configurable oldness threshold. The forecasts
are stored in the output database and afterwards they are used by the optimization module,
which delivers to the same database the optimal demand scheduling for the near future.
Executing the forecasting module and posting the forecasting output before the optimiza-
tion module is triggered was preferred as an option, because if the optimization module
called the forecasting module instead, the forecasts could not be used as input by third
party modules.

Figure 1. High-level architecture of the forecasting and optimization algorithms.

4. The Forecasting Algorithm

The forecasting algorithm has been implemented using data from all three demon-
strators of Orkney, Samsø and Madeira. Forecasting models were trained for aggregate
generation and demand (power).

4.1. Methodology of the Forecasting Algorithm

The goal of this algorithm is to forecast the values of a variable for multiple future
time points, using data until present as input, from that and/or other variables. Each
estimation is accompanied by a confidence interval. The forecasting problem is formulated
based on both traditional and state-of-the art machine learning regression models.

The approach consists of the following steps:

1. Scaling each raw variable so that it has mean equal to 0 and standard deviation equal
to 1. This is required by some of the non-linear regression architectures.

2. In particular cases, the target variable is transformed to one of its features, but typically
all raw variables are directly used in the following steps, just after aggregation.

3. Selection of input variables based on linear regression.
4. Grouping the historical dataset w.r.t. month and day of week by applying a clus-

tering algorithm to the data of the target variable (i.e., the variable to be forecast).
The selection of the clustering algorithm and respective clusters is automatic, based
on the behavior of the target variable, and particularly the selection of algorithm
is also based on training of linear regression approximations of the forecasting models.

5. Supervised training of all regression architectures on the selected input variables.
A separate training is performed for each group and forecasting horizon. The best
architecture, based on 3-fold cross-validation, is automatically selected in each case,
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and the respective model is retrained within the whole historical dataset. (Cross-
validation is a common method to evaluate the ability of a model to generalize
to unknown data. Since usually about 50–70% of a dataset is used for a single training,
considering 3 folds is a reasonable choice).

Each forecasting model may be expressed mathematically as:

ŷs(t) = fG(t),s

(
xG(t),s(t), zG(t),s(t), pr,G(t),s(t), hG(t)(t), w(t), w̄G(t),s(t)

)
, (1)

according to the following notation:

• t: time point for which the forecast is made
• s: forecasting horizon
• ŷs(t): estimation of the value that the target variable will have at the time point t

based on the forecasting horizon s
• G(t): the group of months and days of week that t belongs to
• xG(t),s(t): latest known measurement of the target variable within G(t) when forecast-

ing for the time point t with horizon s (“present value”)
• r: duration such that all past values of the variable to be forecast, within G(t), obtained

after final aggregation (see Section 4.3.1), with a delay up to this duration, are used
as input to the model

• zG(t),s(t): latest known measurement of the target variable at the same time of the
day as t within G(t) when forecasting for the time point t with horizon s (“last value
at same time”)

• pr,G(t),s(t): past values of the variable to be forecast, within G(t), obtained after
final aggregation, with a delay up to duration r, to be used as input to the model,
when forecasting for the time point t with horizon s

• hG(t)(t): historical mean of the target variable at the same time of the day as t within
G(t) (“average time profile”)

• w(t): weather variables at the time point t (forecast weather in case of real-time fore-
cast of the target variable, or exact weather in case of training on a historical interval)

• w̄G(t),s(t): mean of weather variables within the interval from the time point
of xG(t),s(t) to t—in practice, no variable from this vector proved to be useful (and it would
not make sense in most of the cases), so it will not be discussed later

It needs to be clarified that the time point of xG(t),s(t) is not necessarily t − s, and
the time point of zG(t),s(t) is not necessarily t− (1 day). It may also be earlier, because
only the time points of the same group G(t) are taken into account in the computation of the
lag between the time point of xG(t),s(t) and t. For example, if G(t) is a group of business
days of summer months, then the earliest business day of June of some year is considered
as the next day of the last business day of the August of the previous year. Similarly, the
time interval of past values with previous output duration r is not necessarily [t− r, t).

The confidence interval for ŷs(t) is computed based on the empirical distribution of the er-
ror of the test sets, which is considered as dependent on the group, the forecasting horizon
and the time of the day. Thus, it can be written as

[
ŷs(t) + εG(t),s,t, a

2
, ŷs(t) + εG(t),s,t,1− a

2

]
,

where a denotes the significance level and εG(t),s,t, a
2
, εG(t),s,t,1− a

2
the a

2 and 1− a
2 percentiles

of the error of a single prediction of the target variable respectively, within G(t), for horizon
s and time of the day equal to the time of the day of the time point t. In practice, the error dis-
tributions in this work are symmetric enough so that εG(t),s,t, a

2
< 0 and εG(t),s,t,1− a

2
> 0

in all cases for a = 0.05 (which is our choice), so the forecast belongs to its confidence
interval. On the other hand, it was not assumed that the error distribution is necessarily
Gaussian (or even fully symmetric), because this assumption could be wrong. So, it was
preferred to estimate the confidence interval based on the historical data (non-parametric
approach) rather than the critical values of some Gaussian or other known distribution
(parametric approach).
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4.1.1. Forecasting Regression Model Architectures and Tested Hyper-Parameters

The following regression architectures and respective hyper-parameters are tested
using the scikit-learn Python library [56] (version 0.20.1):

• Multilayer Perceptron Regressor [MLP(hidden layer sizes)]—in case of absence of hid-
den layers [MLP()], this is reduced to linear regression

– hidden layer sizes = (), (1), (2), (5), (1,1), (2,2), (5,5)
– activation = “tanh”
– solver = “lbfgs”
– maximum number of iterations = 108

– alpha = 0

• Random Forest Regressor [RF(maximum depth)]

– maximum depth = 1, 2, 5, 10
– number of estimators = 100

• Nearest Neighbour Regressor [NN(number of neighbours, weights)]

– number of neighbours = 5, 10, 20, 50, 100, 200
– weights = “uniform”, “distance”

• Support Vector Regressor [SVR(penalty, kernel(degree), epsilon)]

– penalty (C) = 0.1, 1, 10
– kernel = “poly” (polynomial), “rbf” [Radial Basis Function (RBF)], “sigmoid”
– degree = 1, 2 (applicable only to the “poly” kernel)
– epsilon = 0.1, 0.01, 10−3, 10−4, 10−5

– maximum number of iterations = 107

• Gaussian Process Regressor [GPR(alpha)] (when the number of data points is less
than 104, so that training is memory-efficient)

– alpha = 10−10, 10−9, 10−8, 10−7, 10−6, 10−5, 10−4, 10−3, 0.01, 0.1

In addition, some more recent algorithms from the scikit-learn extensions library [57]
(version 0.0.2), which are not so widely-used in the bibliography compared to the previous
ones, have been considered:

• Kernel Regression [KR(kernel, gamma)]

– kernel = “poly”, “rbf”, “sigmoid”
– gamma = 0.01, 0.1, 1, 10, 100, 103

• Exteme Learning Machines [ELM(hidden layer units, alpha, RBF width, activation
function)]

– hidden layer units = 1, 2, 5, 10, 20, 50, 100
– alpha = 0, 0.5, 1
– RBF width = 10−3, 1
– activation function = “gaussian”, “tanh”

The selected values of the aforementioned non-tuned hyper-parameters differ from
the default values set by the respective library, because they seemed to generally perform
better, based on preliminary experiments. For all other hyper-parameters of the above
regressors the default values are considered. More information on the hyper-parameters
may be found in the documentation of the above two libraries.

4.1.2. Clustering Methodology and Relevant Architectures Tested

As mentioned above, clustering aims at grouping the dataset by subsets of months
and days of week combinations, so that different regression models are trained for each
cluster. This is helpful when the behavior of the target variable depends on the month
and/or day of week. Clustering addresses the problem of existence of qualitative vari-
ables (month and day of week), which, since their numbering is not meaningful, would
traditionally need to be inserted as binary variables in the regression models (one-hot
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encoding), and this would lead to too many input variables in the models, as aforemen-
tioned, which would need to share their common parameters among different months,
days of week and times of day.

Clustering is performed in two phases. In the first phase it is done w.r.t. months
and in the second phase w.r.t. day of week for each cluster of months resulting from the first
phase. The feature vector of each month used as input for months clustering consists
of the mean values of the target variable at every pair of day of week and time of day
during that month within all years with existing data. For example, when using a sampling
step of 1h, the length of the feature vector is 7·24 = 168. In the second phase, the fea-
ture vector of each day of week which is used as input to cluster days of week consists
of the mean values of the target variable at every time of the day during that day of week
and within the set of months of the months group in question.

The following clustering architectures are tested using the first of the two above
libraries [56]:

• Algorithms automatically selecting number of clusters:

– Affinity Propagation (AP)
– Mean Shift (MS)

• Algorithms requiring manual selection of number of clusters n (1, 2, 6 and 12 clusters
are tested for month, whereas 1, 2 and 7 clusters are tested for day of week):

– K-Means (KM(n))
– Agglomerative Clustering (AC(n))

As above, it needs to be clarified that apart from the number of clusters (when
applicable), for the rest of parameters of the clustering algorithms the default values have
been considered, and may be found in the documentation of the library. In each of the two
phases, among the candidate clustering architectures, the one minimizing the Normalized
Root Mean Square Error (NRMSE) (see Section 4.1.3) after training the fast linear regression
model separately for each cluster and for each forecasting horizon is automatically selected
as the best. As will be demonstrated later by the forecasting results, although non-linear
models contribute to the reduction of the errors, using linear regression as a much faster
approximation is satisfactory, since the input variables in Equation (1) have been defined
in a way that they are near-linearly associated with the output.

4.1.3. Evaluation

The performance of the forecasting algorithm is quantified based on the Normalized
Root Mean Square Error (NRMSE), which is interpreted as the ratio of the standard er-
ror of the prediction error to the standard deviation of the target variable, and is a common
evaluation metric for regression problems. In this work, the NRMSE for a particular
forecasting horizon s is defined as

E(s) =

√√√√∑F ∑t∈Is,F
[y(t)− ŷs(t)]2

∑F ∑t∈Is,F
[y(t)− ȳ]2

, (2)

and the total NRMSE as

E =

√√√√∑s ∑F ∑t∈Is,F
[y(t)− ŷs(t)]2

∑s ∑F ∑t∈Is,F
[y(t)− ȳ]2

, (3)

according to the following notation:

• F: training-test set split of the cross-validation
• Is,F: time interval for which forecasts are made based on horizon s, within all train-

ing/test sets obtained by split F when computing training/test NRMSE respectively
and within all groups of months and days of week pairs resulting from clustering

• y(t): exact value of the target variable at the time point t
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• ŷs(t): forecast value of the target variable for the time point t
• ȳ: mean of the target variable within the whole historical dataset

The NRMSE is non-negative. Lower values are better, so the perfect value is 0. It is in-
dependent of the measurement unit of the target variable, because it is scaled by the de-
nominator. When it equals 1, the model performance is the same as the performance of the
naive model that always predicts the mean of the variable as the future value of the target
variable. It is easy to prove that the latter is the best constant model, because the mean
of a variable minimizes the sum of square differences between the variable’s observations
and a constant number w.r.t. this constant.

The NRMSE is computed for the test sets (test NRMSE) and the persistence model,
as defined in [31], pp. 704–729, the forecasts of which equal the latest available value (bench-
mark NRMSE), which is another naive approach to be compared with ours. The formula
of this model is

ŷs(t) = xG(t),s(t). (4)

The performance measure for the models that has been used for model selection is the
test NRMSE.

4.2. Raw Data Used from Each Demonstrator

Table 1 shows the demand and generation data from each demonstrator that were
used for training. At Orkney, almost all generation is produced by wind, and it is separated
into ANM and non-ANM. ANM stands for Active Network Management. This corre-
sponds to the wind turbines to which curtailment is applied when generation is too high
to be consumed or stored. Because some non-ANM turbines may become ANM in the fu-
ture, forecasting models are trained also for the sum of ANM and non-ANM generation.
In case of Samsø, only the harbour is studied. Harbour generation has not been measured yet
directly, but it was estimated indirectly for a whole year by the partners of the demonstrator.

Table 1. Power data used from each demonstrator for training of the forecasting models.

Demonstrator Demand Generation

Orkney total (3 December 2018–6
April 2020)

wind ' total (ANM, non-ANM)
(3 December 2018–6 April 2020)

Samsø harbour (1 May 2016–19
June 2017) PV estimation—harbour (2016)

Madeira total (1 January 2018–30
November 2019)

hydro, wind, waste (“bio”), solar (1 January
2018–November 2019)

Before feeding the data to the Python code, some minor preliminary cleaning took
place offline:

• Orkney generation was frozen within some intervals, which were discarded from the
analysis. After that, about 5% and 6% of ANM and non-ANM generation timestamps
respectively appeared to have missing values. Furthermore, a few negative values
of generation were replaced by 0.

• In Madeira case, about 1% of the timestamps were discarded, because the sum of reg-
istered total demand was not within the range ±1% of the total generation, renewable
and non-renewable (thermal), although total demand and total generation should
be equal.

As mentioned above, weather data are also available for every location from [12],
although some data are missing sometimes.

More details about the technical objective, the grid issues/constraints, the market,
regulatory and legal context, as well as the suitable DR programs for each demonstra-
tor are documented in [58]. More details about the raw power data may be found in
Appendix A.
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4.3. Experimental Results from the Forecasting Algorithm and Discussion

The results obtained by implementing the steps of the approach mentioned previously
are presented and discussed in this subsection.

4.3.1. Algorithmic Specifications and Initial Pre-Processing

For all demonstrators, it is desired that forecasts are made for forecasting horizons
of 1 h, 2 h, . . . , 24 h. So, the raw data, which have a sampling step of 15 min–1 h, are ag-
gregated with a 1-h sampling step. (A constant sampling rate is needed for the models.
It is worthless and time consuming to keep a finer resolution because all forecasting hori-
zons are a multiple of 1 h and the algorithm is not required to be executed more frequently
than once an hour, or even once a day). For each variable, missing values are addressed
with linear interpolation only for data gaps up to 1 h.

Especially for the Samsø demonstrator, it is interesting and also easy to disaggregate
the controllable from the non-controllable demand, because it is assumed that any control
algorithm can affect only the former. Based on information from the demonstrator ex-
perts, the controllable demand corresponds to the harbour assets and usually to spikes
in the demand plot, because controllable energy is consumed for short periods of time
(usually up to 3 h) for particular purposes (e.g., sauna, wastewater pump, EV charger
on harbour master’s office). On the other hand, demand for charging the numerous boats
in the harbour, which is much smoother, is considered as non-controllable at this stage,
although there is a plan to control it in the future. Therefore, in the analysis of this work,
it has been assumed that the non-controllable demand may be expressed by the rolling
median of demand with a window size of 9 h (9 time points). As for the controllable
demand, because the exact time of the day when it is observed is partly vague, it has
been expressed by the difference between the rolling mean and the rolling median of de-
mand with a window size of 9 h, and the models for forecasting it use a sampling step
of 12 h, obtained with a second aggregation, after the variable transformation.

4.3.2. Input Variables Selection and Timestamps Clustering

The input variables were selected using a forward-backward selection policy. Variables
inclusion/exclusion was based on the test error obtained after training linear regression
models on the dataset. Regarding the past values, maximum delays of 0, 1 h, 2 h, 6 h, 12 h
and 23 h were examined, except for the controllable demand at Samsø, where the final
sampling step is 12 h, as mentioned above, so only the delays 0, 12 h and 23 h were tested.
The selections made are shown in Table 2. It needs to be noted that the “sun” variable
is not directly available by [12]. It is a variable defined in this work in order to quantify
the sunlight and is computed as 1− (cloudcover) between the sunrise and sunset time
(obtained also by [12]), and as 0 otherwise. It is also worth mentioning that the variable
selection process is rendered more complex due to clustering, because some variables may
be useful without clustering and useless when clustering is applied.

Overall, in Table 2 the input variables selected, the clustering algorithms that proved
to be the most appropriate and the respective clusters obtained are presented.

Regarding the input variables, the present value is always selected, except for the
case of controllable Samsø demand, where, as aforementioned, the data have been aggre-
gated with a 12-h sampling step, and thus the forecasts are made only for 12-h and 24-h
forecasting horizons. The average time profile and the last value at the same time point
as the one for which the forecast is made, or also other past values of the target variable,
are often helpful. As for the weather data, as expected, wind-related variables (especially
wind speed) are always selected as input to models forecasting wind generation, whereas
sunlight and humidity appear to affect solar generation.
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Table 2. Input variables selected and clustering details regarding the forecasting models.

Demonstrator Output Input

Clustering
Algorithms

for Month/Day
of Week

Month Groups & Respective Day
of Week Groups (Sets) on the Left &

Right Respectively of Slashes
and Colons [Days are Numbered
from 0 (Monday) to 6 (Sunday)]

Orkney

generation—ANM
present value, average

time profile, wind
speed, wind gust

singletons/- singletons/-

generation—non-ANM present value, wind
speed, wind gust KM(6)/- {{10,1}, {11,12,2–4}, {5}, {6}, {7,8}, {9}}/-

generation—total
(wind)

present value, past
values (≤23 h), wind

speed, wind gust
MS/- {{9–4}, {5}, {6–8}}/-

demand
present value, past

values (≤23 h),
apparent temperature

KM(6)/- {{11–2}, {3}, {4}, {5,10}, {6,9}, {7,8}}/-

Samsø

generation—solar

present value, last
value at same time,

past values (1 h),
average time profile,

sun, humidity

singletons/KM(2)

{{1}:{{6–1,3,4},{2,5}}, {2}:{{4–1},{2,3}},
{3}:{{0,4,6},{1–3,5}}, {4}:{{5–1,3},{2,4}},

{5}:{{2–0},{1}}, {6}:{{0–3},{4–6}},
{7}:{{3–1},{2}}, {8}:{{0–3},{4–6}},

{9}:{{0,1,4},{2,3,5,6}},
{10}:{{0,4,6},{1–3,5}}, {11}:{{4–2},{3}},

{12}:{{0,1,4,5},{2,3,6}}}

demand—total present value, past
values (≤23 h) singletons/- singletons/-

demand—non-
controllable

present value, past
values (≤23 h), average

time profile
KM(6)/- {{1–3,6}, {4,5}, {7}, {8}, {9–11}, {12}}/-

demand—controllable last value at same time,
average time profile KM(6)/AP

{{1,2}:{{0,2,6},{1,3},{4,5}},
{3,4}:{{0,2,6},{1,3},{4,5}},

{5,6,9}:{{0–4},{5,6}},
{7}:{{0–2,4,5},{3},{6}}, {8}:{{5–0},{1–4}},

{10–12}:{{0,2,4,6},{1,3},{5}}}}

Madeira

generation—hydro present value, past
values (≤23 h) -/- -/-

generation—wind

present value, past
values (≤23 h), average

time profile, wind
speed

AC(2)/- {{10,11,1–4}, {5–9,12}}/-

generation—waste
present value, last
value at same time,
average time profile

KM(2)/- {{12,1,3–8}, {9–11,2}}/-

generation—solar

present value, last
value at same time,

past values (1 h),
average time profile,

sun, humidity

KM(2)/- {{10–2}, {3–9}}/-

demand
present value, last
value at same time,
average time profile

singletons/MS

{{1}:{{0–4},{5},{6}}, {2}:{{0–4},{5},{6}},
{3}:{{0–4},{5},{6}}, {4}:{{0–4},{5},{6}},
{5}:{{0–4},{5},{6}}, {6}:{{0–4},{5},{6}},
{7}:{{0–4},{5},{6}}, {8}:{{0–4},{5},{6}},

{9}:{{0–4},{5},{6}}, {10}:{{0–4},{5},{6}},
{11}:{{0–4},{5},{6}},

{12}:{{0,3,4},{1,2},{5},{6}}
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Clustering in months improved the overall forecasting performance almost in any case,
and particularly the clusters based on generation are separated more clearly into winter
and summer months. Sometimes (especially for demand forecasting) clustering days of week
also makes sense, because these are related to people’s consumption patterns. The most evident
example is Madeira demand, where it seems that business days, Saturdays and Sundays have
three different profiles almost every month. The clusters were also meaningful for Samsø
controllable demand, which was relatively high during first or second halves of specific days
of the week in winter, but other days of week in the summer. The benefit of clustering will be
shown more clearly by the numerical evaluation in Section 4.3.3, as well as by the comparison
of the average time profiles among the selected clusters in Appendix A.

4.3.3. Results from Training the Regression Models

In the pie charts of Figure 2, the number of cases (cluster and forecasting horizon pair)
in which each regression model architecture was the best in terms of the selected evaluation
measure mentioned above is shown for the three demonstrators. For example, the first pie
depicts 24 × 12 = 288 groups, since there are 24 forecasting horizons and 12 clustering groups,
as shown above. These architectures correspond to the results of Table 3. Furthermore,
in Figures 3–5, the training, test and benchmark errors of the selected architectures are plotted
as a function of the forecasting horizon, but still aggregated for all clustering groups.

In the pies, each main colour corresponds to a particular model kind (e.g., blue to MLP),
and every tone of that main colour corresponds to a different selection of hyper-parameters
for that kind, although there is no standard correspondence between tone and values
of hyper-parameters; instead, darker tones correspond to higher frequency.

It was observed that usually several architectures have comparable performance
for the same learning task. However, sometimes the appropriateness of an architecture
seemed to depend on the forecasting horizon. MLP and SVR tend to perform better for low
horizons, whereas RF and NN for higher. GPR, KR and ELM were more rarely selected.
GPR proved to be inefficient also in terms of memory cost, which was not even viable
when a lot of training data (>10,000 time points) were used (mainly in some cases related
to Madeira generation, where the clusters were not many).

In Table 3, higher error indicates that the variable is harder to forecast, especially
when it does not regard an aggregate measurement (e.g., the controllable demand at Samsø,
which constitutes a relatively small part of the total harbour -or island- demand). However,
all errors (apart from the ones corresponding to the benchmark) are below 1, so all models
offer an added value compared to any of the two naive approaches. A special outcome
of this table is that the novel ANM wind generation at Orkney, which is gradually becom-
ing more and more common, seems a bit easier to be forecast compared to the traditional
non-ANM wind generation. The intermediate columns are of particular interest as well.
Generally, in cases of many clusters, clustering considerably reduces the error, as shown
by the first two numeric columns. The most important of these cases are the control-
lable demand at Samsø and the demand at Madeira, as aforementioned, where it is clear
that demand patterns are affected by month and/or day of week. From the comparison
of the first and third numeric columns it can be inferred that, in several cases, the selection
of the numerous regression models, as shown previously in the pie charts, is beneficial
compared to the usage of linear regression for all clustered groups and forecasting horizons;
however, often, the improvement is not serious (at least as an average from all horizons),
even in cases where linear regression is not the predominant model in the respective pie.
On the one hand, this is advantageous because it shows that, thanks to the methodology
based on which the input variables have been defined, the easy-to-train linear regression
model is an acceptable estimation when used for selection of input variables and clustering
algorithm before the final training. On average, the appropriate clustering proved to be
approximately equally important as the testing of all considered regressors.
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Figure 2. Number of group and forecasting horizon pairs for which each model architecture was the best.
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Figure 3. NRMSE per forecasting horizon corresponding to the selected models for Orkney.

Figure 4. NRMSE per forecasting horizon corresponding to the selected models for Samsø.
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Figure 5. NRMSE per forecasting horizon corresponding to the selected models for Madeira.

Table 3. Results (test NRMSE) from training the regression forecasting models.

Demonstrator Output Proposed
Approach

No Clustering—All
Candidate
Regressors

Same
Clusters—Linear

Regression

Same Clusters—
Benchmark
Regressor

Orkney

generation—ANM 0.3419 0.4164 0.4283 0.9217

generation—non-
ANM 0.4282 0.4727 0.5725 0.9351

generation—total
(wind) 0.4022 0.4300 0.4877 0.8715

demand 0.3879 0.4141 0.4087 0.6715

Samsø

generation—solar 0.3678 0.4360 0.4335 1.3081

demand—total 0.4108 0.4379 0.4209 0.5649

demand—non-
controllable 0.3112 0.3263 0.3206 0.3959

demand—
controllable 0.7122 0.9668 0.8152 not computed

Madeira

generation—hydro 0.3846 0.3846 0.3855 0.6025

generation—wind 0.6862 0.6994 0.6880 0.8171

generation—waste 0.4524 0.4534 0.4567 0.4852

generation—solar 0.3371 0.3440 0.3396 1.3826

demand 0.1674 0.2781 0.1846 1.3447
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More information is provided by the error curves. As expected, the error is usu-
ally lower for low forecasting horizon, and this indicates that the more the error drops
as the horizon decreases, the higher the impact of the present value to forecasting. When
the benchmark error decreases as the horizon approaches 24 h, this implies that the value
of the variable being forecast is relatively close to the value 1 day before within the same
group. Therefore, the impact of variables apart from the present value and the last value
at the same time as the time for the forecast is reflected by the difference of test and bench-
mark error for a horizon of 24 h. The cases with the most remarkable difference correspond
to Orkney wind generation, which exhibits strong correlation with wind speed (Pearson
0.8048 and Spearman 0.8417 for total wind generation) and wind gust (Pearson 0.8082
and Spearman 0.8389 for total wind generation) in the dataset, in contrast with the Madeira
case, where the correlation between wind generation and wind speed is much weaker
(Pearson 0.3211 and Spearman 0.3689). Furthermore, a valley appears in the benchmark
error curve of Samsø total demand and Madeira hydro generation, because these variables
usually exhibit two increases and decreases of similar duration every day, so values with
a time distance of 12 h are generally closer to each other compared to values with time
distance of for example, 6 h or 18 h. Finally, the training error fluctuations are explained
by the variety of architectures selected among forecasting horizons. The test error curves
are smooth, and close to the training error ones, at least for some forecasting horizons,
and this happens especially in the Madeira case, where the amount of data is higher.
This provides evidence that no overfitting issue exists.

Figures 6 and 7 demonstrate examples from the real-time execution of the forecasting
algorithm in our dashboards, comparing actual and forecast values with 95% confidence
intervals for the same timestamps in the Madeira case. These dashboards contain data
from 2020 and 2021, that is, after the training and cross-validation time interval mentioned
in Table 1, which covers 2018 and most of 2019. Especially, Figure 6 corresponds to demand,
which obviously depends highly on the time of the day and generally it is lower during
weekends, especially Sundays. The latter justifies the automatic clustering in business days,
Saturdays and Sundays, as shown in Table 2. Due to the effect of the last value at same
time within the same cluster as an input to the models, the algorithm can also identify the
overall change of the pattern from week to week. There is comparable error both with 1-h
and 24-h forecasting horizons, which conforms with the almost flat green curve for Madeira
demand in Figure 5. Only the first day (Monday, 4th January) the forecasts are slightly
lower than the exact values using an 24-h horizon, since the previous day of the same cluster
(Friday, 1st January) was a public holiday, so demand was exceptionally lower than normal
for business days. Finally, in Figure 7, apart from the effect of time of the day, the special
impact of weather variables is depicted. In each column, intentionally, 2 consecutive days
of the same cluster (based on Table 2) with clearly distinguishable weather and power
profiles were selected, so that the alignment between forecasts and exact values using a 24-h
horizon is not attributed just to the average time profile, or to the last values at same time,
which would probably be almost equal to the values to be forecast otherwise. As anticipated,
wind speed and sun have positive correlation with wind and solar generation respectively.
Although an exhaustive evaluation of the confidence intervals was not a part of this work,
these two figures convince that about 95% of the exact values are within the intervals.
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Figure 6. Time series of exact and forecast values with 95% confidence interval for Madeira demand during the first 4
calendar weeks of 2021, based on 24-h (top) and 1-h (bottom) forecasting horizon. The effect of average time profile and the
day of week clusters (business days, Saturday, Sunday) on all values is shown. The measurement unit of demand is MW
and the time zone is 2 h ahead of Madeira’s.
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Figure 7. Examples showing the effect of wind speed and sun on Madeira wind (left) and solar (right) generation
respectively [exact and forecast generation values with 95% confidence interval based on 24-h (top) and 1-h (middle)
forecasting horizon], during 2 consecutive days of the same clustering group with different weather and generation profiles,
as shown by the scatter plots (bottom). The measurement units of generation and wind speed are MW and mph respectively,
and the time zone is 2 h ahead of Madeira’s.
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5. The Optimization Algorithm

The optimization algorithm proposes the optimal demand for each time point of the
next time interval (“optimization interval”), based on a pre-defined time granularity.
Although the algorithm can be easily adapted, the following potential optimization criteria
have been considered, based on the demonstrators’ needs known:

• minimum cost (minimum mean product of demand and price per energy unit
of demand)

• maximum usage of renewable energy (minimum variance of difference between
demand and forecast generation)

• minimum power instability (minimum demand variance)

under the following constraints:

• Within the optimization interval, the total demand equals the total forecast de-
mand (w.r.t. time). This means that demand can only be shifted, but not reduced overall.

• At each time point of the optimization interval, demand is within a time-point-
dependent interval.

A Key Performance Indicator (KPI) was defined to quantify each criterion.
The optimization approach followed regards a generic, specification-free optimization

of the aggregate demand of the island (Orkney, Madeira) or the Ballen harbour (Samsø).
For Madeira, the future energy price is generally known and partially fixed. Partic-

ularly, every customer selects among programs with 1, 2, or 3 time zones with different
prices in each (simple, bi-hour and tri-hour tariff respectively). The tariffs with more
zones incentivize the customer to consume less during high-demand periods, by imposing
higher price during them, while decreasing price during low-demand periods, compared
to the tariffs with fewer zones. In Figure 8, the energy price zones for the tri-hour tariff
are shown. In the bi-hour tariff case the peak and half-peak zones are merged, whereas,
apparently, in the simple tariff case price is independent of time. In cases of multiple
time zones, the customers can also select between the daily cycle, where the time periods
of the zones depend only on the season, and the weekly cycle, where they depend also
on the day of week, as also shown in the figure. The price in each zone depends not only
on the tariff, but also on the contracted power of the customer. Prices change in the begin-
ning of each year by the Energy Services National Regulator and not by the Distribution
System Operator. In the remainder of the paper, the tri-hour daily cycle will be assumed
with the following realistic prices for the current year:

• peak: e0.1773/kWh
• half-peak: e0.1272/kWh
• off-peak: e0.0624/kWh



Energies 2021, 14, 3162 22 of 36

Figure 8. Energy price zones for the tri-hour tariff in Madeira. The information in the figure has been provided by the
experts of the demonstrator.

5.1. The Mathematical Viewpoint of the Optimization Method

The optimization problem was formulated as a mathematical programming problem
for constrained optimization of a non-linear scalar objective function. So, let f (x) the scalar
objective function of a vector x = [x1, x2, . . . , xn]ᵀ containing the variables the values
of which that minimize f (x) under the multi-dimensional constraints g(x) = 0, h(x) ≥ 0
[element-wise (in)equalities] have to be found. The constrained optimization problem

min
x

f (x) : g(x) = 0, h(x) ≥ 0 (5)

is approximated by the following unconstrained problem:

min
x

(
f (x) + M

((
g2(x)

)ᵀ
1 +

(
h2(x) ◦ (h(x) < 0)

)ᵀ
1
))

, (6)

where M >> minx:g(x) = 0,h(x) ≥ 0 f (x), the quadratic functions are applied element-wise, 1
denotes a vector with all of its elements equal to 1, the expression h(x) < 0 is a vector of in-
tegers indicating if the condition holds (1) or not (0) element-wise, and finally ◦ denotes
Hadamard (element-wise) product. Using this approximation, when the functions f , g
and h are differentiable, the same goes for the new objective function, so the derivative-
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based optimization methods can be applied. As follows from the following, in our cases
f (x) ranges around 1, so it is concluded that setting M = 103 is an appropriate choice.

For the implementation of optimization, the Basin-hopping global optimization algo-
rithm has been used from the scipy Python library [59]. Apart from the objective function,
its derivative has also been given as input in order that optimization is accelerated, al-
though in this work optimization always lasts less than 1 s, and it has been confirmed
that a single iteration of the Basin-hopping algorithm suffices to find the global optimum.
Finally, it is worth mentioning that the Basin-hopping algorithm is faster than differential
evolution, which is the other global optimization algorithm supported by the same library.

5.2. Methodology of the Optimization Algorithm

As shown in Figure 9, the optimization algorithm needs the following input data:

• optimization interval
• weighting coefficients of the optimization criteria
• aggregate demand forecast with confidence, based on a configurable significance level
• aggregate generation forecast (when the renewables-related criterion is considered)
• demand price at each time of the day, considering also day of week and month

Figure 9. Low-level architecture of the optimization algorithm and relation with the
forecasting algorithm.

The mathematical formulation of this approach is

min
d

(
wcKPIc(d) + wrKPIr(d) + wpKPIp(d)

)
:

{
meant∈Iopt d(t) = meant∈Iopt d̂(t)
d̂l(t) ≤ d(t) ≤ d̂u(t)∀t ∈ Iopt

, (7)

with the following notation:

• Iopt: interval for which the optimization takes place
• d(t): aggregate demand (power) at time t
• d: vector of all d(t), t ∈ Iopt, in ascending order of time
• d̂(t): forecast aggregate demand at time t
• [d̂l(t), d̂u(t)]: 95% confidence interval for demand at time t (as explained

in Section 4.1, the bounds depend on the predicted demand, but their difference
from predicted demand depends only on the forecasting horizon, time of the day
and clustering group)

• KPIc(d), KPIr(d), KPIp(d): KPIs for cost, renewables and power stability criteria
respectively

• wc, wr, wp ≥ 0, wc + wr + wp = 1: arbitrary weights of KPIs

The KPIs are defined as follows:
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KPIc(d) =
meant∈Iopt(c(t)d(t))
meant∈Ih(c(t)d(t))

(8)

KPIr(d) =
meant∈Iopt

(
(d(t)− g(t))2

)
meant∈Ih

(
(d(t)− g(t))2

) (9)

KPIp(d) =
σ2

d(Iopt)

s2
d(Ih)

, (10)

according to the following notation:

• Ih: interval of training data for the demand forecasting models
• c(t): expected aggregate demand cost per energy unit at the time point t (historical

prices are set according to the same pricing policy of the current year)
• g(t): aggregate generation at the time point t
• σ2

d(Iopt)
: theoretical variance of d(t) within Iopt (assuming mean as constant equal

to the historical mean demand)
• s2

d(Ih)
: sample variance of d(t) within Ih

The denominators of the above formulas aim at scaling KPIs so that they are inde-
pendent of the measurement units and in order that the contribution of each individual
KPI to the entire objective function is independent of the way the KPI is defined. With
this scaling, each KPI is non-negative, it is better when lower and the value 1 for the KPI
may be interpreted as neutral.

5.3. Flexibility Analysis

In the specification-free optimization of this work, to express flexibility mathematically,
the KPI reduction rate has been defined as

RRx,Iopt = 1−
KPIx(d̂opt)

KPIx(d̂)
(11)

according to the following notation:

• x: type of KPI (cost, renewables or power criterion, or combination)
• RRx,Iopt : reduction rate of KPIx within optimization interval Iopt

• d̂: vector of forecast aggregate demand at all time points of Iopt in ascending order
of time

• d̂opt: vector of forecast optimal aggregate demand at all time points of Iopt in ascending
order of time

5.4. Implementation Examples of the Optimization Algorithm and Discussion

In Figures 10–12, examples from the implementation of the optimization approach
in the three demonstrators are shown. In each case, the algorithm has been executed for a
particular 24-h time interval, with various considerations about the weights of the KPIs.
Obviously, when considering multiple KPIs, the optimized value of each individual KPI
is reduced no more than in case that optimization takes place based exclusively on that KPI.
In the Orkney case, the cost KPI was never considered, because cost optimization is not
a priority in this demonstrator, so real-time price forecasts are not available. It also does
not make sense to consider the cost KPI for the Samsø demonstrator, because price is not
predictable (based on our trials) and cannot be requested automatically in real time from
Nord Pool due to policy constraint. Day-ahead price data are available from Nord Pool only
manually through its website, so it would only make sense to consider the cost criterion if
the end user provided manually the prices for every time point of the optimization interval.
Furthermore, it is worth mentioning that, in the example for Samsø, the demand forecasts
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have relatively high uncertainty for the largest forecasting horizons, so it is assumed
that there is greater margin for demand shifting, and thus the optimal global KPI is more
reduced. An other factor that prevents especially the cost and renewables KPIs from
being reduced in the Madeira case is the high distance between total renewable generation
and demand.

Figure 10. Examples of the application of the optimization approach to Orkney. In the titles, the weights for cost, renewables
and power KPIs respectively are shown. In the vertical axis, the measurement unit is MW.
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Figure 11. Examples of the application of the optimization approach to Samsø. In the titles, the weights for cost, renewables
and power KPIs respectively are shown. In the vertical axis, the measurement unit is KW.
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Figure 12. Examples of the application of the optimization approach to Madeira. In the titles, the weights for cost, renewables
and power KPIs respectively are shown. In the vertical axis, the measurement unit is MW.

In Table 4, the unstandardized values of the KPIs in each pilot are shown, in cases
where the standardized KPIs (i.e., those defined above) have the neutral value 1. Although
in the standardized KPIs the measurement units are eliminated thanks to the denominators,



Energies 2021, 14, 3162 28 of 36

this does not hold for the unstandardized ones, which translate the former in the usual
measurement units. As anticipated, since the studied energy in the case of Samsø cor-
responds only to a harbour area instead of an entire island, the unstandardized values
of the renewables and power instability KPIs are much lower than in the other two demon-
strators. This explains the higher flexibility of demand in the Samsø case, which was
observed above. The unstandardized Madeira cost has been computed with the assump-
tion that all customers follow the tri-hour tariff policy with the prices shown previously.
In fact, most customers still use the simple tariff, but the idea is to gradually persuade
them to resort to the tri-hour tariff and follow a more appropriate consumption pattern
as regards the environmental and power stability criteria.

Table 4. Unstandardized values of the optimization KPIs for standardized values equal to 1. Re-
garding Madeira cost, the unstandardized KPI is proportional to the standardized one. The un-
standardized renewables and power stability KPIs are proportional to the square of the respective
standardized ones.

Demonstrator Cost Renewables Power

Orkney not considered 12.9285 MW 3.9921 MW
Samsø not considered 16.8783 KW 9.1264 KW

Madeira e266,180/day 73.5026 MW 17.7684 MW

6. Conclusions, Limitations and Future Work

This study demonstrated how energy consumption can be managed via load shifting
recommendations in large areas, where the consideration of all specifications of the in-
volved consumers is intractable. Instead, our generic methodology relied on the idea
that the uncertainty in demand forecasts reflects the flexibility of the consumers’ consump-
tion profiles. This uncertainty was evaluated thanks to confidence intervals for demand,
which were produced by training demand forecasting models, considering the effect
of forecasting horizon, time of the day, month and day of week on the forecasting error dis-
tribution. Unlike most works found in the literature, the current optimization algorithm
took into account simultaneously multiple criteria (among cost, renewable resources pene-
tration and demand stability) after appropriate scaling of the respective Key Performance
Indicators so that they are comparable. To consider the renewable resources criterion,
forecasting models for the generation of various forms were also trained. The group-
ing in pairs of months and days of week was based on automatically selected clustering
algorithms, which took into account the behavior of the variable to be forecast (energy
demand or generation). Since the best model was selected separately for each cluster
and for each forecasting horizon, and secondly because several models, many of which had
similar performance, were compared, it was not considered as necessary to select and fuse
multiple (instead of one) models for a particular combination of cluster and horizon, which
would cause unnecessary storage of too many selected models. Although there are simi-
larities in the models forecasting similar variables in different islands (e.g., effect of sun
and humidity on solar generation of Samsø and Madeira), there are also some differences
without obvious reason (e.g., difference in performance between linear and non-linear
regressors and effect of clustering on performance of regressors for wind generation in
Orkney and Madeira), which demonstrates the need for performance comparison among
candidate clustering and regression architectures. This conclusion conforms with the find-
ings of our literature review. Despite the demonstrated positive effect of using multiple
regressors for the different clusters and forecasting horizons, the input variables to the
forecasting models (mainly the average time profile) were defined in a way that they
have near-linear relation with the variable to be forecast (output), thus rendering the lin-
ear regression models satisfactory approximations considering their little training time.
These linear approximations were also useful for preliminary training in order to select
the most appropriate input variables and clustering architecture. Another benefit of the
linear regression models is that they do not overfit the data, due to their low capacity.



Energies 2021, 14, 3162 29 of 36

The forecasting models can be retrained manually or automatically (periodically), provided
that the algorithm has access to more recent data. Retraining would be particularly useful
in order to take into account previously unknown situations, for example, demand drop
due to the coronavirus disease 2019, which was observed for example, within spring of 2020
in Madeira.

The limitations of the forecasting algorithm regard mainly the regression models,
especially their training. Training with 3-fold cross validation took hours in case of the an-
alyzed datasets, due to the comparison of numerous architectures, some of which have
to learn numerous parameters with quadratic or cubic time complexity w.r.t. the num-
ber of observations. However, the training of the aforementioned linear approximations
requires less than a minute for all groups and forecasting horizons together. Among all
regressor kinds, only Gaussian Process Regressor has a memory limitation, since it is effi-
cient for up to 10,000 training observations approximately. The storage of the high number
of models shown in the pie charts required a few GB of space in our experiment. However,
it appeared that for only few regressor kinds the size of the model file was tens or thousands
of MB. The model file sizes of the most lightweight architectures (e.g., linear regression)
was even below 10 KB.

The optimization methodology presented in this paper can easily be adapted to dif-
ferent KPIs and constraints. For example, an extension of the optimization algorithm
could consider also Battery Energy Storage Systems (BESSs), which have been installed
at Samsø and Madeira. With a BESS, different policies are often appropriate, for example,
increasing demand when generation is currently low, but is going to increase in the near
future, so that unexploited renewable energy because the battery gets full is avoided.

The forecasting and the optimization algorithms have been deployed for Madeira
and are running in real time, using dashboards like the ones shown above. In the near
future, the Distribution System Operator of Madeira will start to utilize them in order
to make appropriate recommendations to its customers, so the impact of the algorithms
will be verified.
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Abbreviations
The following abbreviations are used in this manuscript:

AC Agglomerative Clustering
AHP analytical hierarchy process
ANM Active Network Management
ANN Artificial Neural Network
AP Affinity Propagation
API Application Programming Interface
ARFIMA Autoregressive Fractionally Integrated Moving Average
ARIMA Autoregressive Integrated Moving Average
ARMA Autoregressive Moving Average
BATS Box–Cox transformation, ARMA errors, Trend and Seasonal components
BESS Battery Energy Storage System
CPP Critical Peak Pricing
DR Demand Response
ELM Extreme Learning Machine
EPSO Evolutionary Particle Swarm Optimization
EV electric vehicle
GPR Gaussian Process Regressor
GRBFN Generalized Radial Basis Function Network
KM K-Means
KPI Key Performance Indicator
KR Kernel Regression
MAUT multi-attribute utility theory
MAVT multi-attribute value theory
MCDA multi-criteria decision analysis
MLP Multi-Layer Perceptron
MS Mean Shift
NN Nearest Neighbour Regressor
NRMSE Normalized Root Mean Square Error
PSO Particle Swarm Optimization
PV photovoltaic
QPSO Quantum PSO
RBF Radial Basis Function
RF Random Forest Regressor
RTP Real-Time Pricing
SARIMA Seasonal Autoregressive Integrated Moving Average
SPEA strength Pareto evolutionary algorithm
SVR Support Vector Regressor
TOU Time-of-Use
TS Tabu search

Appendix A. Access to Raw Data and Statistical Analysis

This appendix begins with a statistical summary of the power variables to be forecast.
Particularly, Table A1 shows the summary statistics of these variables within the entire time
ranges of analysis. Figures A1–A3 present the average time profiles of the same variables
as a function of the clustering group and time of the day, thus justifying the automatic
selections of these clusters, which were shown also in Table 2.
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Table A1. Summary statistics of power data. Count is the number of timestamps when data exist, after resampling.

Demonstrator Output Count Mean Standard
Deviation Minimum Median Maximum

Orkney

generation—ANM 10,520 8.21 MW 6.28 MW 0.00 MW 7.21 MW 20.79 MW

generation—non-
ANM 10,440 11.16 MW 6.59 MW 0.19 MW 11.90 MW 26.04 MW

generation—total
(wind) 11,061 18.34 MW 12.68 MW 0.00 MW 17.98 MW 42.78 MW

demand 11,060 16.99 MW 3.99 MW 2.68 MW 17.22 MW 33.75 MW

Samsø

generation—solar 8769 6.33 KW 11.63 KW 0.00 KW 0.04 KW 50.34 KW

demand—total 9935 12.07 KW 9.13 KW 1.44 KW 9.75 KW 77.88 KW

demand—non-
controllable 9937 11.62 KW 8.57 KW 1.68 KW 9.60 KW 67.20 KW

demand—
controllable 828 0.47 KW 0.54 KW 0.00 KW 0.23 KW 3.02 KW

Madeira

generation—hydro 15,017 7.84 MW 8.47 MW 0.83 MW 3.89 MW 42.95 MW

generation—wind 15,017 11.06 MW 10.39 MW 0.02 MW 7.79 MW 40.48 MW

generation—waste 15,017 4.22 MW 1.83 MW 0.00 MW 4.90 MW 6.68 MW

generation—solar 15,017 2.87 MW 3.93 MW 0.00 MW 0.15 MW 13.93 MW

demand 15,017 96.47 MW 17.77 MW 62.09 MW 100.64 MW 136.74 MW

Figure A1. Average time profiles of power data from Orkney. The horizontal axes represent time of the day (h), and the
vertical ones power (MW). The legends explain the clustering groups in the form (months, days of week), where days
are numbered from 0 (Monday) to 6 (Sunday).
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Figure A2. Average time profiles of power data from Samsø. The horizontal axes represent time of the day (h), and the
vertical ones power (KW). The legends explain the clustering groups in the form (months, days of week), where days
are numbered from 0 (Monday) to 6 (Sunday).
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Figure A3. Average time profiles of power data from Madeira. The horizontal axes represent time of the day (h), and the
vertical ones power (MW). The legends explain the clustering groups in the form (months, days of week), where days
are numbered from 0 (Monday) to 6 (Sunday).

The raw data used from Samsø, obtained after the preliminary calibrations which
were discussed in Section 4.2, may be found in [60] for reproducibility purposes and
further analysis.

Other open energy data on which the algorithms of this paper can be applied are found
in [61]; these have been used in [62]. There are also other relevant works [63,64].
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