Revised Environmental Kuznets Curve for V4 Countries and Baltic States
Abstract
:1. Introduction
1.1. Problem Background
1.2. Related Studies
1.3. Analytical Tools
1.4. Environmental Kuznets Curve (EKC)
2. Materials and Methods
2.1. Data
- GHG emissions, in thousand tonnes CO2 equivalent, provided by Eurosta;
- Real GDP per capita in PPP (constant 2017 dollar) from the World Bank;
- Gross inland energy consumption per capita, in TOE per capita, based on Eurostat data;
- Share of renewable energy consumption in overall energy consumption at national level, from the World Bank;
- Share of foreign direct investment (FDI as net inflows) in GDP, provided by the World Bank;
- Output per worker as a proxy of labour productivity, from ILO;
- Domestic credit to private sector as a share of GDP, from the World Bank.
2.2. Methodology
- control variables
- parameters
- country-fixed effects
- innovations
- i—index indicating country
- t—index indicating year
3. Results
4. Discussion
Robustness
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Peters, E.; Kliestik, T.; Musa, H.; Durana, P. Product decision-making information systems, real-time big data analytics, and deep learning-enabled smart process planning in sustainable industry 4.0. J. Self-Gov. Manag. Econ. 2020, 8, 16–22. [Google Scholar]
- Kliestik, T.; Misankova, M.; Valaskova, K.; Svabova, L. Bankruptcy prevention: New effort to reflect on legal and social changes. Sci. Eng. Ethics 2018, 24, 791–803. [Google Scholar] [CrossRef]
- Kovacova, M.; Kliestik, T.; Valaskova, K.; Durana, P.; Juhaszova, Z. Systematic review of variables applied in bankruptcy prediction models of Visegrad group countries. Oeconomia Copernic. 2019, 10, 743–772. [Google Scholar] [CrossRef] [Green Version]
- Lenhard, R.; Malcho, M.; Jandačka, J. Modelling of heat transfer in the evaporator and condenser of the working fluid in the heat pipe. Heat Transf. Eng. 2019, 40, 215–226. [Google Scholar] [CrossRef]
- Maroušek, J.; Stehel, V.; Vochozka, M.; Kolář, L.; Maroušková, A.; Strunecký, O.; Peterka, J.; Kopecký, M.; Shreedhar, S. Ferrous sludge from water clarification: Changes in waste management practices advisable. J. Clean. Prod. 2019, 218, 459–464. [Google Scholar] [CrossRef]
- Mardoyan, A.; Braun, P. Analysis of Czech subsidies for solid biofuels. Int. J. Green Energy 2015, 12, 405–408. [Google Scholar] [CrossRef]
- Jandačka, J.; Mičieta, J.; Holubčík, M.; Nosek, R. Experimental Determination of Bed Temperatures during Wood Pellet Combustion. Energy Fuels 2017, 31, 2919–2926. [Google Scholar] [CrossRef]
- Svazas, M.; Navickas, V.; Krajnakova, E.; Nakonieczny, J. Sustainable supply chain of the biomass cluster as a factor for preservation and enhancement of forests. J. Int. Stud. 2019, 12, 309–321. [Google Scholar] [CrossRef]
- Maroušek, J.; Strunecký, O.; Kolář, L.; Vochozka, M.; Kopecký, M.; Maroušková, A.; Batt, J.; Poliak, M.; Šoch, M.; Bartoš, P.; et al. Advances in nutrient management make it possible to accelerate biogas production and thus improve the economy of food waste processing. Energy Sources Part A Recovery Util. Environ. Eff. 2020, 1–10. [Google Scholar] [CrossRef]
- Kliestik, T.; Valaskova, K.; Nica, E.; Kovacova, M.; Lazaroiu, G. Advanced methods of earnings management: Monotonic trends and change-points under spotlight in the Visegrad countries. Oeconomia Copernic. 2020, 11, 371–400. [Google Scholar] [CrossRef]
- Valaskova, K.; Throne, O.; Kral, P.; Michalkova, L. Deep learning-enabled smart process planning in cyber-physical system-based manufacturing. J. Self-Gov. Manag. Econ. 2020, 8, 121–127. [Google Scholar]
- Muo, I.; Azeez, A.A. Green entrepreneurship: Literature review and agenda for future research. Int. J. Entrep. Knowl. 2019, 7, 17–29. [Google Scholar] [CrossRef]
- Lampropoulos, G.; Siakas, K.; Anastasiadis, T. Internet of things in the context of industry 4.0: An overview. Int. J. Entrep. Knowl. 2019, 7, 4–19. [Google Scholar] [CrossRef]
- Cepel, M. Social and Cultural Factors and their Impact on the Quality of Business Environment in the SME Segment. Int. J. Entrep. Knowl. 2019, 7, 65–73. [Google Scholar] [CrossRef]
- Vatankhah, S.; Zarra-Nezhad, M.; Amirnejad, G. An empirical assessment of willingness to accept “low-cost” air transport services: Evidence from the Middle East. J. Tour. Serv. 2019, 10, 79–103. [Google Scholar] [CrossRef]
- Maroušek, J.; Maroušková, A.; Kůs, T. Shower cooler reduces pollutants release in production of competitive cement substitute at low cost. Energy Sources Part A Recovery Util. Environ. Eff. 2020, 1–10. [Google Scholar] [CrossRef]
- Vu, H.M.; Ngo, V.M. Strategy development from triangulated viewpoints for a fast growing destination toward sustainable tourism development—A case of Phu Quoc Islands in Vietnam. J. Tour. Serv. 2019, 10, 117–140. [Google Scholar] [CrossRef]
- Biagi, G.; Bertaccini, B. Public Information and Perception of the Environmental Risk about the Works for the City High Speed Railroad Underpass in Florence, Italy. J. Tour. Serv. 2018, 9. [Google Scholar] [CrossRef]
- Haskova, S. Holistic assessment and ethical disputation on a new trend in solid biofuels. Sci. Eng. Ethics 2017, 23, 509–519. [Google Scholar] [CrossRef]
- Streimikiene, D. Ranking of Baltic States on progress towards the main energy security goals of European energy union strategy. J. Int. Stud. 2020, 13, 24–37. [Google Scholar] [CrossRef] [PubMed]
- Štreimikienė, D. Externalities of power generation in Visegrad countries and their integration through support of renewables. Econ. Sociol. 2021, 14, 89–102. [Google Scholar] [CrossRef]
- Bencsik, A.; Kosár, S.T.; Machová, R. Corporate Culture in Service Companies that Support Knowledge Sharing. J. Tour. Serv. 2018, 9, 7–13. [Google Scholar] [CrossRef]
- Vo, H.D. Sustainable agriculture & energy in the U.S.: A link between ethanol production and the acreage for corn. Econ. Sociol. 2020, 13, 259–268. [Google Scholar] [CrossRef]
- Achinas, S.; Achinas, V.; Euverink, G.J.W. A technological overview of biogas production from biowaste. Engineering 2017, 3, 99–307. [Google Scholar] [CrossRef]
- Vochozka, M.; Maroušková, A.; Váchal, J.; Straková, J. Reengineering the paper mill waste management. Clean Technol. Environ. Policy 2016, 18, 323–329. [Google Scholar] [CrossRef]
- Vochozka, M.; Rowland, Z.; Suler, P.; Marousek, J. The influence of the international price of oil on the value of the EUR/USD exchange rate. J. Compet. 2020, 12, 167. [Google Scholar] [CrossRef]
- Calvo, J. High-Tech Start-Ups in Japan: Cogent Labs, AI-OCR Solutions for Automated Business Process Outsourcing. Int. J. Entrep. Knowl. 2018, 6, 12–31. [Google Scholar] [CrossRef]
- Blažková, I. Sectoral and firm-level determinants of profitability: A multilevel approach. Int. J. Entrep. Knowl. 2018, 6, 32–44. [Google Scholar] [CrossRef]
- Nefzi, N. Fear of failure and entrepreneurial risk perception. Int. J. Entrep. Knowl. 2018, 6, 45–58. [Google Scholar] [CrossRef]
- Hnatyshyn, M. Decomposition analysis of the impact of economic growth on ammonia and nitrogen oxides emissions in the European Union. J. Int. Stud. 2018, 11, 201–209. [Google Scholar] [CrossRef] [Green Version]
- Khursheed, A.; Mustafa, F.; Fatima, M.; Siddique, F. Entrepreneurial intentions: Gem based emipirical analysis on the Northern Europe and Asian countries. Int. J. Entrep. Knowl. 2018, 6, 59–70. [Google Scholar] [CrossRef]
- Hadzima, B.; Janeček, M.; Estrin, Y.; Kim, H.S. Microstructure and corrosion properties of ultrafine-grained interstitial free steel. Mater. Sci. Eng. A 2007, 462, 243–247. [Google Scholar] [CrossRef]
- Vochozka, M.; Horák, J.; Šuleř, P. Equalizing seasonal time series using artificial neural networks in predicting the Euro–Yuan exchange rate. J. Risk Financ. Manag. 2019, 12, 76. [Google Scholar] [CrossRef] [Green Version]
- Stehel, V.; Rowland, Z.; Mareček, J. Valuation of Intangible Assets Deposit Into Capital Company in Case of Specific Transaction. AD Alta J. Interdiscip. Res. 2019, 9, 287–291. [Google Scholar]
- Milward, R.; Popescu, G.H.; Michalikova, K.F.; Musova, Z.; Machova, V. Sensing, smart, and sustainable technologies in Industry 4.0: Cyber-physical networks, machine data capturing systems, and digitized mass production. Econ. Manag. Financ. Mark. 2019, 14, 37–43. [Google Scholar]
- Rowland, Z.; Machová, V.; Horák, J.; Hejda, J. Determining the Market Value of the Enterprise Using the Modified Method of Capitalized Net Incomes and Metfessel Allocation of Input Data. AD Alta J. Interdiscip. Res. 2019, 9, 305–310. [Google Scholar]
- Machová, V.; Jaromír, V. Value generators for businesses in agriculture. In Proceedings of the 12th International Days of Statistics and Economics Conference Proceedings, Prague, the 11th of October 2018; Löster, T., Pavelka, T., Eds.; Libuše Macáková, Melandrium: Praha, Česká Republika, 2018; pp. 1123–1132, ISBN 978-80-87990-14-8. [Google Scholar]
- Stehel, V.; Horák, J.; Vochozka, M. Prediction of institutional sector development and analysis of enterprises active in agriculture. E M Ekon. Manag. 2019, 22. [Google Scholar] [CrossRef]
- Alkhateeb, T.T.Y.; Mahmood, H.; Altamimi, N.N.; Furqan, M. Role of education and economic growth on the CO2 emissions in Saudi Arabia. Entrep. Sustain. Issues 2020, 8, 195–209. [Google Scholar] [CrossRef]
- Zamil, A.M.A.; Furqan, M.; Mahmood, H. Trade openness and CO2 emissions nexus in Oman. Enterp. Sustain. Issues 2019, 7, 1319–1329. [Google Scholar] [CrossRef] [Green Version]
- Igaliyeva, L.; Niyazbekova Sh, S.; Serikova, M.; Kenzhegaliyeva, Z.; Mussirov, G.; Zueva, A.; Tyurina, Y.U.; Maisigova, L. Towards environmental security via energy efficiency: A case study. Entrep. Sustain. Issues 2020, 7, 3488–3499. [Google Scholar] [CrossRef]
- Sneideriene, A.; Viederyte, R. Green growth assessment discourse on evaluation indices in the European Union. Entrep. Sustain. Issues 2020, 8, 360–369. [Google Scholar] [CrossRef]
- Chehabeddine, M.; Tvaronavičienė, M. Securing regional development. Insights Reg. Dev. 2020, 2, 430–442. [Google Scholar] [CrossRef]
- Sarma, U.; Karnitis, G.; Zuters, J.; Karnitis, E. District heating networks: Enhancement of the efficiency. Insights Reg. Dev. 2019, 1, 200–213. [Google Scholar] [CrossRef] [Green Version]
- El Iysaouy, L.; El Idrissi, N.E.; Tvaronavičienė, M.; Lahbabi, M.; Oumnad, A. Towards energy efficiency: Case of Morocco. Insights Reg. Dev. 2019, 1, 259–271. [Google Scholar] [CrossRef] [Green Version]
- Tvaronavičienė, M.; Prakapienė, D.; Garškaitė-Milvydienė, K.; Prakapas, R.; Nawrot, Ł. Energy Efficiency in the Long-Run in the Selected European Countries. Econ. Sociol. 2018, 11, 245–254. [Google Scholar] [CrossRef] [Green Version]
- Androniceanu, A. Social responsibility, an essential strategic option for a sustainable development in the field of bio-economy. Amfiteatru Econ. 2019, 21, 503–519. [Google Scholar] [CrossRef]
- Valodka, I.; Snieska, V.; Mihi-Ramirez, A. Impact of the International Trade on the EU Clothing Industry Carbon Emissions. Inz. Ekon. Eng. Econ. 2020, 31, 314–322. [Google Scholar] [CrossRef]
- Habibur, R.; Ghazali, A.; Bhatti, G.A.; Khan, S.U. Role of Economic Growth, Financial Development, Trade, Energy and FDI in Environmental Kuznets Curve for Lithuania: Evidence from ARDL Bounds Testing Approach. Inz. Ekon. Eng. Econ. 2020, 31, 39–49. [Google Scholar] [CrossRef] [Green Version]
- Ghauri, S.P.; Ahmed, R.R.; Streimikiene, D.; Streimikis, J. Forecasting Exports and Imports by using Autoregressive (AR) with Seasonal Dummies and Box-Jenkins Approaches: A Case of Pakistan. Inz. Ekon. Eng. Econ. 2020, 31, 291–301. [Google Scholar] [CrossRef]
- Tamulevičienė, D.; Androniceanu, A. Selection of the indicators to measure an enterprise’s value and its changes in the controlling system for medium-sized enterprises. Entrep. Sustain. Issues 2020, 7, 1440–1458. [Google Scholar] [CrossRef] [Green Version]
- Chovancová, J.; Tej, J. Decoupling economic growth from greenhouse gas emissions: The case of the energy sector in V4 countries. Equilib. Q. J. Econ. Econ. Policy 2020, 15, 235–251. [Google Scholar] [CrossRef]
- Filimonova, I.; Komarova, A.; Mishenin, M. Impact of the global green factor on the capitalization of oil companies in Russia. Oeconomia Copernic. 2020, 11, 309–324. [Google Scholar] [CrossRef]
- Jonek-Kowalska, I. Transformation of energy balances with dominant coal consumption in European economies and Turkey in the years 1990–2017. Oeconomia Copernic. 2019, 10, 627–647. [Google Scholar] [CrossRef] [Green Version]
- Karnitis, G.; Karnitis, E. Sustainable growth of EU economies and Baltic context: Characteristics and modelling. J. Int. Stud. 2017, 10, 209–224. [Google Scholar] [CrossRef] [PubMed]
- Stavytskyy, A.; Kharlamova, G.; Giedraitis, V.; Šumskis, V. Estimating the interrelation between energy security and macroeconomic factors in European countries. J. Int. Stud. 2018, 11, 217–238. [Google Scholar] [CrossRef] [PubMed]
- Shindina, T.; Streimikis, J.; Sukhareva, Y.; Nawrot, Ł. Social and Economic Properties of the Energy Markets. Econ. Sociol. 2018, 11, 334–344. [Google Scholar] [CrossRef]
- Androniceanu, A.; Kinnunen, J.; Georgescu, I. E-Government Clusters in the EU Based on the Gaussian Mixture Models. Adm. Si Manag. Public 2020, 35, 6–20. Available online: https://ramp.ase.ro/_data/files/articole/2020/35-01.pdf (accessed on 3 February 2021). [CrossRef]
- Raggad, B. Carbon dioxide emissions, economic growth, energy use, and urbanization in Saudi Arabia: Evidence from the ARDL approach and impulse saturation break tests. Environ. Sci. Pollut. Res 2018, 25, 14882–14898. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.; Khan, Z.; Ur Rahman, Z.; Khan, S. Does financial development asymmetrically affect CO2 emissions in China? An application of the nonlinear autoregressive distributed lag (NARDL) model. Carbon Manag. 2018, 9, 631–644. [Google Scholar] [CrossRef]
- Adebayo, T.S.; Odugbesan, J.A. Modeling CO2 emissions in South Africa: Empirical evidence from ARDL based bounds and wavelet coherence techniques. Environ. Sci. Pollut. Res. 2021, 28, 9377–9389. [Google Scholar] [CrossRef]
- Rjoub, H.; Odugbesan, J.A.; Adebayo, T.S.; Wong, W.K. Sustainability of the moderating role of financial development in the determinants of environmental degradation: Evidence from Turkey. Sustainability 2021, 13, 1844. [Google Scholar] [CrossRef]
- Odugbesan, J.A.; Rjoub, H. Relationship among economic growth, energy consumption, CO2 emission, and urbanization: Evidence from MINT countries. Sage Open 2020, 10, 2158244020914648. [Google Scholar] [CrossRef] [Green Version]
- Staniucha, R.; Wojciechowski, A. Mouth Features Extraction for Emotion Analysis. In Hard and Soft Computing for Artificial Intelligence, Multimedia and Security. ACS 2016. Advances in Intelligent Systems and Computing; Kobayashi, S., Piegat, A., Pejaś, J., El Fray, I., Kacprzyk, J., Eds.; Springer: Cham, Switzerland, 2017; Volume 534. [Google Scholar] [CrossRef]
- Yang, Y.; Zheng, Z.; Weinan, E. Interpretable Neural Networks for Panel Data Analysis in Economics. arXiv 2020, arXiv:abs/2010.05311. [Google Scholar] [CrossRef]
- Półrola, M.; Wojciechowski, A. Real-Time Hand Pose Estimation Using Classifiers. In Computer Vision and Graphics. ICCVG 2012. Lecture Notes in Computer Science; Bolc, L., Tadeusiewicz, R., Chmielewski, L.J., Wojciechowski, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; Volume 7594. [Google Scholar] [CrossRef]
- Crane-Droesch, A. Semiparametric panel data models using neural networks. Applications 2017, arXiv:1702.06512. [Google Scholar]
- Malte, J. Artificial neural network regression models in a panel setting: Predicting economic growth. Econ. Model. 2020, 91, 148–154. [Google Scholar]
- Stern, D.I. The rise and fall of the environmental Kuznets curve. World Dev. 2004, 32, 1419–1439. [Google Scholar] [CrossRef]
- Ali, S.; Yusop, Z.; Kaliappan, S.R.; Chin, L. Trade-environment nexus in OIC countries: Fresh insights from environmental Kuznets curve using GHG emissions and ecological footprint. Environ. Sci. Pollut. Res. 2021, 28, 4531–4548. [Google Scholar] [CrossRef]
- Lazăr, D.; Minea, A.; Purcel, A.A. Pollution and economic growth: Evidence from Central and Eastern European countries. Energy Econ. 2019, 81, 1121–1131. [Google Scholar] [CrossRef]
- Solilová, V.; Nerudová, D. Evaluation of greenhouse gas emissions and related aspects: Case of the Czech Republic. Acta Univ. Agric. Silvic. Mendel. Brun. 2015, 63, 281–292. [Google Scholar] [CrossRef] [Green Version]
- Štreimikienė, D.; Balezentis, T. Kaya identity for analysis of the main drivers of GHG emissions and feasibility to implement EU “20–20–20” targets in the Baltic States. Renew. Sustain. Energy Rev. 2016, 58, 1108–1113. [Google Scholar] [CrossRef]
- Destek, M.A.; Sarkodie, S.A. Investigation of environmental Kuznets curve for ecological footprint: The role of energy and financial development. Sci. Total Environ. 2019, 650, 2483–2489. [Google Scholar] [CrossRef]
- Wang, Q.; Wei, H.H.; Xu, Q. A solid oxide fuel cell (SOFC)-based biogas-from-waste generation system for residential buildings in China: A feasibility study. Sustainability 2018, 10, 2395. [Google Scholar] [CrossRef] [Green Version]
- Suki, N.M.; Sharif, A.; Afshan, S.; Suki, N.M. Revisiting the Environmental Kuznets Curve in Malaysia: The role of globalization in sustainable environment. J. Clean. Prod. 2020, 264, 121669. [Google Scholar] [CrossRef]
- Yao, S.; Zhang, S.; Zhang, X. Renewable energy, carbon emission and economic growth: A revised environmental Kuznets Curve perspective. J. Clean. Prod. 2019, 235, 1338–1352. [Google Scholar] [CrossRef]
- Pesaran, M.H. General diagnostic tests for cross-sectional dependence in panels. Empir. Econ. 2021, 60, 13–50. [Google Scholar] [CrossRef]
- Pesaran, M.H. Estimation and inference in large heterogeneous panels with a multifactor error structure. Econometrica 2006, 74, 967–1012. [Google Scholar] [CrossRef] [Green Version]
- López-Menéndez, A.J.; Pérez, R.; Moreno, B. Environmental costs and renewable energy: Re-visiting the Environmental Kuznets Curve. J. Environ. Manag. 2014, 145, 368–373. [Google Scholar] [CrossRef] [PubMed]
- Mazzanti, M.; Montini, A.; Zoboli, R. Economic Dynamics, Emission Trends and the EKC Hypothesis: New Evidence Using NAMEA and Provincial Panel Data for Italy; No. 10261; Fondazione Eni Enrico Mattei (FEEM): Basilicata, Italy, 2007. [Google Scholar]
- Simionescu, M.; Bilan, Y.; Zawadzki, P.; Wojciechowski, A.; Rabe, M. GHG Emissions Mitigation in the European Union Based on Labor Market Changes. Energies 2021, 14, 465. [Google Scholar] [CrossRef]
- Fifeková, E.; Nemcová, E. Impact of FDI on economic growth: Evidence from V4 countries. Period. Polytech. Soc. Manag. Sci. 2015, 23, 7–14. [Google Scholar] [CrossRef] [Green Version]
- Gural, A.; Lomachynska, I. FDI and financial development as determinants of economic growth for V4 countries. Balt. J. Econ. Stud. 2017, 3, 59–64. [Google Scholar] [CrossRef] [Green Version]
- Vasylieva, T.; Lyulyov, O.; Bilan, Y.; Streimikiene, D. Sustainable economic development and greenhouse gas emissions: The dynamic impact of renewable energy consumption, GDP, and corruption. Energies 2019, 12, 3289. [Google Scholar] [CrossRef] [Green Version]
- Simionescu, M.; Păuna, C.B.; Niculescum, M.D.V. The Relationship between Economic Growth and Pollution in Some New European Union Member States: A Dynamic Panel ARDL Approach. Energies 2021, 14, 2363. [Google Scholar] [CrossRef]
- The Eurostat Website. Available online: https://ec.europa.eu/eurostat/en/web/main/data/database (accessed on 2 February 2021).
- World Bank Website. Available online: https://data.worldbank.org (accessed on 3 February 2021).
- ILO Website. Available online: https://ilostat.ilo.org/topics/labour-productivity (accessed on 1 February 2021).
Variable | Mean | Standard Deviation | Minimum | Maximum |
---|---|---|---|---|
GHG emissions (GHG) | 90,884.52 | 119,272.8 | 59.71 | 422,764.3 |
Real GDP per capita (GDP) | 24,433.86 | 6912.45 | 9892.485 | 40,862.21 |
Share of energy consumption (EC) | 3.098166 | 0.812457 | 1.382274 | 4.54796 |
FDI | 5.185719 | 8.279625 | 4.4143 | 54.2391 |
Labour productivity (LP) | 44,904.59 | 17,941.57 | 13,883.2 | 80,539.48 |
Share of domestic credit to private sector (DC) | 47.24903 | 16.63993 | 12.86938 | 58.8176 |
Share of renewable energy consumption (REC) | 16.63846 | 10.47484 | 3.630589 | 40.36562 |
Variable | Statistic | p-Value |
---|---|---|
ln_GDP | 21.92 | <0.05 |
ln_GHG | 2.32 | <0.05 |
ln_EC | 6.30 | <0.05 |
ln_FDI | 5.60 | <0.05 |
ln_LP | 21.84 | <0.05 |
ln_DC | 2.19 | <0.05 |
ln_REC | 19.45 | <0.05 |
Variable | Statistic (Constant and Trend) (No Lag) Data in Level | Statistic (Constant and Trend) (One Lag) Data in Level | Statistic (Constant and Trend) (No Lag) Data in the First Difference | Statistic (Constant and Trend) (One Lag) Data in the First Difference |
---|---|---|---|---|
ln_GDP | −0.1403 | −2.3502 * | −4.5002 * | −5.7298 * |
ln_GHG | −0.1279 | −0.8382 | −3.6416 * | −2.8106 * |
ln_EC | −3.1173 * | −2.6906 * | ||
ln_FDI | −4.9810 * | −4.0176 * | ||
ln_LP | 6.4658 | 2.9180 | −4.6318 * | −4.0683 * |
ln_DC | −4.8820 * | −4.2022 * | ||
ln_REC | 4.0165 | 1.4987 | −6.6699 * | −2.8610 * |
Statistic | p-Value | |
---|---|---|
Pedroni test | ||
Modified Phillips | 0.2627 | 0.3964 |
Phillips | −1.8774 | 0.0302 |
Augmented Dickey | −1.4996 | 0.0669 |
Westerlund test | ||
Variance ratio | −1.6039 | 0.0544 |
Variable | EKC | RKC | |
---|---|---|---|
Long-run relationship | ln_GDP | −1021.59 * | −2.0183 * |
ln2_GDP | 101.1758 * | 0.1171 * | |
ln3_GDP | −3.338095 * | - | |
ln_REC | - | −0.3282 * | |
Error correction term | −1.2331 * | −0.8842 * | |
Short-run relationship | ln_GDP | −3074.806 | −26.433 |
ln2_GDP | 309.7856 | 1.2930 | |
ln3_GDP | −10.39557 | - | |
ln_REC | - | 0.3054 | |
Constant | 4251.86 | 18.207 * | |
Residuals | I(0) | I(0) |
Variable | Coefficients | |
---|---|---|
EKC | RKC | |
ln_GDPt | −114.573 ** | −114.0228 ** |
ln2_GDP ln3_GDP | 5.817 ** −2.223 ** | 5.836 ** |
ln_REC | - | −0.476 ** |
Constant | 54.334 | 58.498 * |
Variable | EKC | RKC | |
---|---|---|---|
Long-run relationship | ln_GDP | −1001.22 * | −2.341 * |
ln2_GDP | 100.9887 * | 0.1022 * | |
ln3_GDP | −3.4405 * | - | |
ln_REC | - | −0.7126 * | |
ln_EC | 2.0334 * | ||
ln_DC ln_LP ln_FDI | −0.223 * 3.0056 * 0.0956 | −0.592 * 4.175 * 0.1123 | |
Error correction term | −0.3044 * | −0.2577 ** | |
Short-run relationship | ln_GDP | −3109.99 | −2.0204 |
ln2_GDP | 305.885 | 0.1443 | |
ln3_GDP | −9.8905 | - | |
ln_REC | - | −0.3653 | |
ln_EC | 3.0089 | - | |
ln_DC −0.289 ln_LP ln_FDI 0.135 | 0.338 | −0.326 0.810 0.103 | |
Constant | 15.946 | 8.9609 | |
Residuals | I(0) | I(0) |
Variable | Coefficients | |
---|---|---|
EKC | RKC | |
ln_GDPt | −2.751 ** | −50.5425 ** |
ln2_GDP ln3_GDP | 0.310 ** −2.678 ** | 2.568 ** - |
ln_REC ln_EC | - 0.988 ** | −0.934 ** |
ln_DC | −1.060 ** | −1.093 ** |
ln_LP | 0.205 ** | 3.651 |
ln_FDI | 0.0087 | 0.018 |
Constant | 70.225 | −389.218 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simionescu, M.; Wojciechowski, A.; Tomczyk, A.; Rabe, M. Revised Environmental Kuznets Curve for V4 Countries and Baltic States. Energies 2021, 14, 3302. https://doi.org/10.3390/en14113302
Simionescu M, Wojciechowski A, Tomczyk A, Rabe M. Revised Environmental Kuznets Curve for V4 Countries and Baltic States. Energies. 2021; 14(11):3302. https://doi.org/10.3390/en14113302
Chicago/Turabian StyleSimionescu, Mihaela, Adam Wojciechowski, Arkadiusz Tomczyk, and Marcin Rabe. 2021. "Revised Environmental Kuznets Curve for V4 Countries and Baltic States" Energies 14, no. 11: 3302. https://doi.org/10.3390/en14113302
APA StyleSimionescu, M., Wojciechowski, A., Tomczyk, A., & Rabe, M. (2021). Revised Environmental Kuznets Curve for V4 Countries and Baltic States. Energies, 14(11), 3302. https://doi.org/10.3390/en14113302