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Abstract: As rooftop PV deployment accelerates around the world, forecasts of rooftop PV penetra-
tion by geographical region and customer group are essential to guide policy and decision-making
by utilities. However, most state-of-the-art forecasting tools require detailed data that are often
unavailable for developing countries. A simplified analytical tool with limited data is proposed
to preliminarily identify the rooftop PV “hotspots”—that is, geographical areas where many new
investments into rooftop PV investments are likely to occur. The tool combines the assessment of
financial and technical indicator in form of the optimal PV-to-load ratio indicating the maximum
penetration of solar PV, and the capital-to-expenditure ratio indicating the ease of such investment.
Using Thailand as a case study, the results from this tool show that under the self-consumption and
net-billing scheme, the Northern and Northeastern regions are marked as the potential hotspots
where the utility’s impact will be realized early or strongly or both. The average LCOE and self-
consumption level for all customer classes and regions are in the range of 0.084–0.112 USD/kWh and
41.33–73.13% of PV production, respectively.

Keywords: rooftop solar; photovoltaics; PV forecasts; hotspot; compensation mechanisms; util-
ity’s impact

1. Introduction

Favorable economics of investment in rooftop photovoltaics (PV) in many jurisdictions
around the world has increased self-generation of PV electricity to supplement electricity
purchased from the power grid [1,2]. This trend has implications for utilities’ planning
and operation, as increased self-generation from PV can have technical impacts on the grid
as well as reduce utilities’ revenue from electricity sale [3,4]. For this reason, countries
or regions with high penetration of rooftop PV systems have developed advanced tools
for forecasting how rooftop PV penetration is likely to evolve over the short- and long-
term [5–11].

As rooftop PV markets are just beginning to grow in many developing countries,
rooftop PV penetration is presently low and has only minimal impacts on the power
system. Yet, forecasts of rooftop PV penetration are still useful. Such forecasts can inform
policy to ensure equitable access to PV, as well as stimulate innovative business models
for targeted consumer groups in different regions. State-of-the-art tools for PV forecasting
are related to modeling the adoption of PV and the modeling methods are various and
come from research institutes, industry experts and utility companies. Research institutes
and industry experts often develop sophisticated and comprehensive tools such as bottom-
up customer adoption while utility companies prefer uncomplicated methods such as
extrapolating from historical data [12]. Generally, comprehensive tools rely on data sets
that are largely unavailable in developing countries. Additionally, the historical data of PV
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capacity for self-consumption are available only a few years as PV deployment is at the
early stage.

To address this challenge, we developed a simplified analytical tool for assessing
rooftop PV “hotspots”—that is, geographical areas where a large number of new invest-
ments into rooftop PV investments are likely to occur and impose a high financial impact
on the utility. The tool combines the assessment of two indicators, (1) a financial indica-
tor (represented by the capital-to-expenditure ratio and the capital-to-bill ratio) and (2) a
technical indicator (represented by the PV-to-load ratio). Combined assessment of these
two indicators enables users to compare the relative level of rooftop PV adoption across
regions.

Despite its simplicity, the tool presented in this paper has several advantages compared
to the state-of-the-art PV forecasting tools. First, it relies on relatively few data sets that are
more readily available in developing countries. This means the tool can be easily adapted
to be used in other countries. Second, it is transparent and allows the users to clearly
understand the relationship between the financial and technical indicators. Third, the tool
treats the electricity consumer as a rational economic agent who maximizes his net benefit,
in this case the Net Present Value (NPV) of rooftop PV installation. By solving for the
optimal PV size that maximizes the NPV under different compensation mechanisms, the
tool can provide an upper bound of the suitable PV compensation rate. However, several
limitations of this tool are also acknowledged. Therefore, this tool can be deployed as a
quick first screener for the potential PV hotspots. Once the market becomes more mature
and data become more available, stakeholders can utilize the advanced state-of-the-art
methods for a more detailed forecast.

Lastly, we demonstrate the use of this tool for the case of Thailand. Customer eco-
nomics of rooftop PV adoption under two compensation mechanisms—self-consumption
and net billing—are analyzed for different customer groups in different regions. Then,
the potential rooftop PV hotspots are identified for the early and late stage. The results
from the tool are helpful for policymakers or businesses seeking to design regionally tai-
lored programs to stimulate rooftop PV adoption as discussed in the section of policy
implications.

2. Literature Review
2.1. Forecasting Rooftop PV Deployment

There are various approaches to model PV expansion as the PV adoption is related
to technology adoption where various theories and models of technology diffusion are
deployed, such as diffusion theories, user acceptance theories, decision making theories,
personality theories, and organization structure theories [13]. For solar PV, modelling
on the expansion of decentralized PV can be divided into three main families: economic
regression, diffusion theories, and behavior of individual adoption [14].

Economic regression analysis can be used to determine the relation between the rates
of expansion and the macro-economic factors. For instance, a diffusion model using the
logistic growth theory is used to predict the diffusion of renewable electricity in South
Korea [15]. In [16], regression and correlational analysis are conducted to investigate the
trends in rooftop solar adoption with socioeconomic, health and environmental indicators
in California. Authors of [17] combine different regression models to project PV installations
for 1–5 years ahead at a subnational level. In [11], the potential areas where rooftop PV
systems are likely to be installed in Indian cities are estimated by using a regression model.

Another family of studies on PV adoption focuses on theories of diffusion. A large
number of studies deploy the Bass diffusion model to estimate the solar PV market [5–10].
For instance, the Bass model is deployed to forecast the rooftop PV adoption as a part of
the Distributed Generation Market Demand Model (dGen) developed by National Renew-
able Energy Laboratory (NREL) and the National Energy Modeling System constructed
by Energy Information Administration [8]. Other diffusion theories, such as the theory
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of disruptive innovation and the prospect theory, are applied to forecast the solar PV
adoption [18,19].

The behavior of individual adoption is usually modeled by agent-based modeling
approaches [20,21]. An integration of agent-based modeling with other approaches can
be performed [22–24]. For instance, in the dGen model [23], customer decision making in
PV adoption is modeled by an agent-based approach. The dGen model employs cash-flow
analysis coupled with projections of market growth rates and overall market potential.

Selecting models of PV adoption depends on the objectives of studies and data avail-
ability. The larger scale of analysis with the inclusion of the economic and social perspec-
tives, the more complexity of modelling and the greater data requirement. For instance,
the economic regression analysis and Bass model need historical data at least five years to
analyze the relation of parameters. The agent-based model demands individual data such
as factors where customers use to decide in installing a PV system. Such individual data
can be acquired through a survey where is usually required more resources.

Models for forecasting rooftop PV deployment help users understand the extent to
which rooftop PV is likely to affect net demand for grid electricity. This understanding
helps utilities plan for future capital and operating costs, ensure resource adequacy, and
estimate possible revenue shortfalls. However, as an adoption of rooftop PV is increasing,
collecting data on capacity and demographic data related to such rooftop PV adoption is
difficult in developing countries.

The simplified model presented in this paper departs from the previous works in
several respects. First, our approach identifies PV array sizes that maximize customer
benefits to assess the maximum impacts of solar PV. This likely represents a conservative,
upper-bound estimate of solar PV impacts, as there is not always suitable rooftop space
available to accommodate the optimal array size. (Note that array size is constrained by
a maximum allowable size for each customer class, as described in the section providing
details of the optimization algorithm). Second, our model takes a static, rather than
dynamic, approach to assess rooftop PV hotspots to reduce the data requirement. Third, our
model examines the unconstrained maximization problem where a representative customer
chooses a PV size that maximizes his or her NPV. The result provides the maximum PV
penetration relative to load for different customer classes. As our model does not make
assumptions about technology-adoption behavior, our results can be interpreted either as a
“snapshot” of rooftop PV hotspots in the early stage when there is just one representative
customer in all regions, or as the equilibrium landscape of rooftop PV hotspots in the long
term, when all financial constraints are removed. Our model is simple, transparent, and
relies on a minimum number of data sets while providing a geographically comparative
analysis that can inform policymaking and business decisions. These characteristics are
essential for stakeholders in developing countries, where rooftop PV markets are just
beginning to take shape.

2.2. Factors of PV Adoption

Factors or predictors to decide on PV adoption are various [12,25–27]. Multiple
models exist to forecast how these factors will combine to affect rooftop PV deployment.
Basically, these factors can be classified into four main groups: PV economics, public
policies, customer preferences, and macro factors according to [12].

First, customer economics of rooftop PV are a key factor determining whether a
customer chooses to adopt a rooftop PV system [27–30]. The customer economics of
rooftop PV Customer benefits can be measured by financial indicators such as NPV, internal
rate of return (IRR), payback period, and levelized cost of electricity (LCOE) [28,29,31].
Many factors, such as PV installation costs, PV system performance, government policies,
electricity prices, and new business models, can affect the economics of rooftop PV.

Second, public policies include government programs (i.e., tax incentives, subsidies,
feed-in-tariff, self-consumption, net metering, net billing, etc.) [14,29,31] and other form
of policy support, such as renewable portfolio standards and climate change mitigation



Energies 2021, 14, 3329 4 of 30

policies [12,32,33]. Public policies have major influences on the solar PV adoption, especially
in nascent markets. Additionally, availability of financing options is linked to regulations
allowed in those countries [34–36].

Third, decision making of customer to adopt solar PV is directly linked to the PV
adoption rate. Examples of factors affecting customer decision are customer access to
trustworthy information [37], peer effects [38–40], environmental concern [41,42], and the
customer’s socioeconomic characteristics [43–45]. For a residential customer, income has
been the most frequently used to predict the PV adoption [26]. Early adopters of rooftop
PV systems tend to be high-income customers [44,46,47].

Lastly, macro-economic factors, such as economic growth, load growth, oil and gas
prices, and interest rates, also drive the adoption of PV and renewable energy [7,14,15,48–51].

For this work, the factors of PV economics, PV policies, and customer preferences are
considered since the analysis aims to help a utility company to identify the potential areas
that could have comparatively high investment of solar PV based on the existing data.

3. Methodology and Data

Rooftop PV “hotspots” are defined as the geographical areas where abundant new
rooftop PV investments are likely to occur. The hotspots are classified based on potential
impacts on utilities and the likely timing of rooftop PV adoption. With respect to the former,
areas exhibiting a favorable load profile, high irradiation levels, and suitable roofs will
incentivize customers to invest in large PV systems (relative to a customer’s electricity
demand) under a given compensation mechanism. This results in a high PV-to-load ratio
and hence a high impact on the electric utility serving that area. Second, an area with
wealthy customers (both residential and industrial) is likely to see early investments in
rooftop PV systems if the investment yields favorable economic returns. (Poorer customers
may not be able to finance the initial capital demands of even favorable investments).

The analysis is performed in two steps. First, the “optimal” PV size that maximizes the
NPV of various customer classes in different provinces in Thailand is solved. The customer
classes are considered according to the classes of retail electricity customers in Thailand:
Residential (Res), Small General Service (SGS), Medium General Service (MGS), and Large
General Service (LGS). Descriptions of these customer classes and tariff structure are in the
Appendix A.

Second, the optimal PV size is converted to the associated PV-to-load ratio. The
ratio indicates the potential financial impact to the utility in the area [52]. The PV-to-load
ratio is then overlay with regional socioeconomic variables such as household income (for
residential customers) or the level of industrial activity (for commercial and industrial
customers). These socioeconomic variables serve as proxies for a customer’s wealth and
for how easy it is to invest in the optimal rooftop PV in different regions. Investments
in the rooftop PV are assumed to be made in 100% cash, as there are presently limited
financing options in Thailand’s nascent rooftop PV market. As financing options expand
and investment becomes easier, the likelihood of PV adoption in Thailand will increase.

It should be noted that although this paper illustrates the application at a provincial
level, the level of aggregation under this framework is rather flexible. In particular, the
financial and technical indicators proposed by this framework can be constructed based on
finer geographical level as long as credible data on PV capacity factor, load profile, and
other socio-economic indicators are available. In fact, the finer the geographical grid, the
more precise the impact identified.

3.1. Solving for the Optimal Investment

In this study, an optimization objective is to maximize the NPV of PV investment as:

NPV(k) =
20

∑
t=1

Bill saving(k)t

(1 + i)t − Capital cost (k)0 (1)
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where i represents the discount rate for each customer group considered and k represents the
PV size. The details of the financial and technical assumptions are provided in Section 3.4
and in the Appendix A.

A customer’s bill savings in each period (year) will result from two PV output parts.
The first is the self-consumed part, which occurs when PV output (depending on the PV size
and weather data) directly offsets a customer’s instantaneous load and thus the customer’s
electricity bill. In other words, the self-consumed part is calculated from a subtraction
between the hourly PV output and load profile. The second is the excess generation part,
which is the PV output that exceeds the instantaneous load in each one-hour interval.
Under some PV compensation policies described below, the excess generation can be sold
back to the electricity grid in exchange for monetary credits.

Given the objective function, the optimal PV size that maximizes the NPV is solved
by building a simulation tool based on the System Advisory Model (SAM) from the
NREL. The SAM module simulates the PV output and computes NPV under various
parameters [53,54]. The simulation tool varies the PV system size and calls SAM to search
for the highest NPV for each customer class, location, and compensation mechanism.
Once the optimal PV sizes are obtained, LCOE, IRR, and payback period are determined
to quantify customer economics. The details of optimization algorithm and economic
measures are in the Appendices B and C.

It should be noted that in determining the optimal PV size, the algorithm was done
in iteration within the range of possible PV system sizes based on the observed typical
PV sizing. The algorithm is not complicated, and it does not consume time to solve for
one case. However, it was time-consuming to solve for all customer classes and provinces.
In addition, the optimal value can converge to zero, infinity, or a non-zero finite value. If
the optimal value goes to zero, it means that the consumer should not invest in the PV
system at all. If the optimal value goes to infinity, it means the consumer should increase
the size of the PV system to the largest possible. If the optimal value goes to a non-zero
finite number, it means the customer should install a PV system of that size.

3.2. Determining the Investment Hotspots

The rooftop PV hotspots are defined by using two indicators: (1) the PV-to-load ratio
and (2) the capital-to-wealth ratio. Rooftop PV hotspots are geographical areas with high
PV-to-load ratios and low capital-to-wealth ratios, as discussed below. The two indicators
are determined for each customer class, location, and compensation mechanism.

(1) The PV-to-load ratio is the ratio between the total PV output (from the “optimal” PV
system size) and the total electricity demand in a year for a given customer, location,
and compensation mechanism. In other words:

PV − to − load (%) =
Total output from optimal PV size in one year

Total demand in one year
∗ 100 (2)

Note that this PV-to-load ratio measures the maximum installation size likely to be
adopted by a representative customer when all the financial constraints are removed. A
higher PV-to-load ratio implies that the customer of that particular group in that particular
geographical area will likely adopt a larger PV system size compared to the existing load.

From a utility’s perspective, a utility in an area with a high optimal PV-to-load ratio
will likely face a higher maximum financial impact due to reduced electricity purchases
from the grid relative to a scenario in which rooftop PV is not available. Utility revenue
reduction caused by rooftop PV is heightened when net metering is combined with a rate
structure that is primarily based on volumetric charges [4,55].

One caveat is that the PV-to-load ratio can only suggest the level of impact relative to
the status quo of no PV penetration within the same area. It cannot be used to compare the
absolute level of PV penetration across areas. For example, a small province can have a
high optimal PV-to-load ratio, but the absolute level of PV penetration—and hence the net
financial impact on the utility serving the area—will remain small due to the small size of
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the population. Forecasting the absolute level of penetration and utility’s financial impact
requires additional assumptions regarding consumer income distribution as well as the
technology-adoption behavior, both of which are beyond the scope of the paper.

(2) The capital-to-wealth ratio is the ratio between the capital cost for an optimally sized
PV system and a customer’s wealth. This indicator measures how easy it is for an
average customer to finance the optimally sized PV system.

For residential and SGS customers, monthly expenditure per capita—averaged over all
households in each province—is used as a proxy for wealth. The same proxy for residential
and SGS customers’ wealth is used since they represent similar decision-making units (i.e.,
SGS customers are residential customers who run their small business locally). In essence,
the “capital-to-expenditure” ratio for these customer classes asks how many months of
expenditure it takes for a customer to be able to invest in the optimally sized PV. The lower
the capital-to-expenditure ratio, the easier it is to finance such investment.

It should be noted that an ideal proxy for the ability to finance an optimally sized PV
system would be the customer’s saving (income minus expenditures). However, data on
monthly household income in Thailand is often underreported. Monthly expenditure per
capita, on the other hand, reflects real behavior and is much less likely to be underreported.
Therefore, monthly expenditure per capita is used rather than saving as a proxy for a
household’s real wealth. The per-capita definition also implicitly accounts for the different
average household sizes in different locations.

Due to data limitations, the financial constraint indicator for MGS and LGS customers
is the capital-to-(electricity) bill ratio instead of the capital-to-(household) expenditure ratio
used for residential and SGS customers. The median monthly electricity bill is used as a
proxy for business performance. The higher the electricity bill, the larger and more active
a business is. This “capital-to-bill ratio” has a different denominator than the capital-to-
expenditure ratio used for residential and SGS customers; therefore, these ratios are not
directly comparable. It should be noted that the monthly electricity bill is not a perfect
measure for the real business activity since some types of business are by nature more
energy-intensive than others. However, the ability to pay for the electricity bill does reflect
the financial capability of the customer (regardless of the business type) and the ability to
finance a rooftop PV.

Figure 1 illustrates the concept of the rooftop PV hotspot. An area with a high PV-
to-load ratio and a low capital-to-wealth ratio is likely to be a rooftop PV hotspot in the
early stage of PV market development (dark grey area). This is because the representative
customer in this area already faces a lower financial constraint (low capital-to-wealth ratio)
and can afford to invest up to the large optimal rooftop PV size (high PV-to-load ratio). The
light grey area indicates the area where the customer can afford to invest in the optimal
rooftop PV size (low capital-to-wealth ratio), but the optimal PV sizes may not be as high
as in the dark grey area (low PV-to-load ratio). By contrast, customers in the top area in
Figure 1 have higher capital-to-wealth ratios and will likely be late adopters of rooftop PV.

To determine the investment hotspots, the procedure can be summarized as shown in
Figure 2.
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3.3. Compensation Policies

Two PV compensation mechanisms are considered in this study: self-consumption
and net billing, both of which assume that output from rooftop PV first serves the load. The
major difference between the two policies is how the excess PV generation is compensated.

First, the self-consumption policy allows excess PV output to be sent back to the
grid. However, this excess output will be valued at zero THB (Thai baht). Examining
the self-consumption compensation mechanism is useful for the following reasons. First,
self-consumption requires minimal governmental support. Second, self-consumption does
not depend on the existence of a third-party consumer. Finally, self-consumption of rooftop
PV is already permitted in Thailand.

Second, the net billing policy allows excess PV output to be sent back to the grid and
compensated at a non-zero “buyback rate.” The compensation is first used to offset the
customer’s electricity bill at the end of the month. Any remaining monetary credits can
be “rolled over” to offset future bills for up to 12 months. The net-billing compensation
mechanism is chosen for the following reasons. First, net billing is flexible enough to
encompass other well-known compensation mechanisms (e.g., net metering). Second, net
billing is largely displacing net metering as the compensation mechanism of choice. Net
billing has been the most common compensation mechanism adopted in the U.S. states
that have opted for something other than net metering [56]. Net billing is being considered
to replace existing compensation mechanisms in the Philippines [57] and has recently been
approved as a new compensation mechanism for rooftop PV in Thailand [58].

In many jurisdictions employing net billing, the buyback rate has fallen to a level
lower than the retail rate as declining costs of rooftop PV have made it less necessary to
provide strong financial incentives for consumers to invest in solar. This study includes a
sensitivity analysis of buyback rate by considering three buyback rate levels: 1 THB/kWh
(0.029 USD/kWh), 2 THB/kWh (0.058 USD/kWh), and 3 THB/kWh (0.086 USD/kWh).
As governmental stakeholders including policymakers, utilities, and regulators prefer a
buyback rate lower than the retail rate [28], the highest buyback rate considered in our
sensitivity analysis is approximately the average wholesale time-of-use (TOU) electricity
price at the lowest voltage level.
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3.4. Data
3.4.1. Data for Calculating the Optimal PV Size

Data used to perform the rooftop PV economic analysis comes from two sources. The
load profile data come from the Load Profile Study conducted in 2015 by the Provincial
Electricity Authority (PEA). The PEA is the largest distribution utility in Thailand. It serves
retail customers throughout Thailand except in the Bangkok Metropolitan area. The load
profile data for each customer type consists of 12-month hourly power in four different
geographical regions: North (N), the Northeast, Central (C), and South (S) Thailand
(Figure 3). There are hence four different 8760-hour load profiles for each customer type
as shown in the Appendix A. The hourly weather data needed to simulate rooftop PV
output were obtained from White Box Technologies, which provides “typical year” weather
profiles for 56 weather stations in Thailand [59].
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Figure 4 shows the average capacity factor for a modeled rooftop PV system in
provinces where weather data is available. The figure reveals that PV productivity is
highest in the northern and northeastern provinces and lowest in the southern provinces.
Table 1 shows the average capacity factor across the four regions.

Table 1. Capacity factor by region.

North Northeast Central South

Average capacity
factor (%)

15.50 15.52 14.55 13.30
(14.95–16.22) (14.85–16.09) (12.86–15.48) (12.84–15.13)

Note: The top figures represent the average capacity factor for all provinces within a particular geographical
region. The range in parentheses displays the minimum and maximum capacity factors in each region.

The PV system optimization is conducted at the provincial level—the finest geographic
scale at which sufficient data are available. This means that for each customer type and
compensation policy, 56 optimal PV values are generated associated with 56 provinces.
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3.4.2. Technical and Financial Assumptions for Calculating the Optimal PV Size

Technical details of the system-design and financial assumptions used as inputs into
SAM are summarized in the Appendix A. Electricity rates are those published by the PEA.
The installation costs of solar PV systems are based on the market price survey from EPC
and other financial assumptions to reflect the conditions of Thailand’s solar PV market
between the months of August and December 2016.

3.4.3. Data on Regional Economic Activity

The regional socioeconomic data in this study come from two different sources. The
province-level average household monthly expenditures per capita (used as a proxy for
residential and SGS customers’ wealth) in 2015 come from Thailand’s National Statistical
Office [60]. The province-level median per-meter electricity bills (used as a proxy for MGS
and LGS customers’ economic activity) come from the PEA.

Figure 5 shows the socioeconomic measures for each customer group studied. On aver-
age, residential and SGS customers in the Southern and Eastern provinces have the highest
expenditures per capita (wealth) and thus should face the lowest financial constraints for
rooftop PV investment. A similar pattern of MGS customers is observed—the median
bill payment (economic activity) is highest in the Southern and Eastern provinces. On the
other hand, LGS customers exhibit the highest bill payment in the Northern provinces and
Nakhon Ratchasima (a province in Northeastern Thailand).

The geographical distributions of median electricity bill payment for MGS and LGS
customers in Figure 5 are consistent with the major economic activities in each region.
Specifically, the MGS’ median electricity consumption is highest in the South, which is
driven mainly by the tourism industry. The LGS’ median electricity consumption, on
the other hand, is highest in the North and Eastern provinces due to manufacturing
activities [61].
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4. Results and Discussions

This section discusses the resulting optimal PV investment and the potential PV
hotspots for each customer group. As stated above, there are 56 optimal PV values asso-
ciated with 56 provinces for each customer class and compensation scheme. To simplify
the discussion, the averaged values of the results across all provinces within the same
geographical region are presented. Detailed results on LCOEs, IRRs, and payback periods
for each customer class are shown in the Appendix C.

4.1. Optimal PV Investment

When the buyback rate for excess generation is 3 THB/kWh, the optimal PV size for
all customer classes hits an upper optimization bound. This suggests that the gain from
selling the excess generation exceeds the additional cost of investment. It also implies
that the buyback rate that encourages self-consumption for all customers should be below
3 THB/kWh. For the rest of discussion, the optimization results when the buyback rate is
3 THB/kWh are omitted, since these do not reflect reasonable optimal values but rather
values at the optimization bound.

4.1.1. Residential and Small General Service Customers

For residential customers, a higher buyback rate results in a larger optimal PV system
size as well as a higher optimal NPV in each region (Figure 6). For buyback rates at
2 THB/kWh and below, PV investment offers the highest NPV in the Northeastern region
followed by the Central, Southern, and Northern regions, respectively. The average NPV
in the North is lower than the average NPV in other regions mainly because of the amount
of electricity consumption and the shape of the load profile.
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Figure 6. Comparison of (a) average optimal PV size and (b) average NPV by region for residential customers under a block
rate. (Note: The average optimal PV size and the average NPV are the average values among all provinces within a region).

According to the load profile (in the Appendix A), residential customers in the North
consume the least electricity and exhibit a very low loads during the day and high loads in
the morning and evening compared to other regions. Therefore, most electricity generated
from PV systems in the North will be exported to the grid and compensated at the low
values. This suggests that electricity-consumption level and load-profile shape are key
factors in determining optimal PV size.

Similar trends are observed for average optimal PV system size and NPV for residen-
tial customers with a TOU rate (Figure 7). When a buyback rate is higher, an optimal PV
system size and NPV are also higher. However, when compared to residential customers
with a block rate, the TOU customers obtain slightly higher NPV despite the same average
optimal PV system size. This observation implies that the tariff structures (block rate versus
TOU rate) have some impacts on PV investments.
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Figure 7. Comparison of (a) average optimal PV size and (b) average NPV by region for residential customers under a TOU
rate. (Note: The average optimal PV size and the average NPV are the average values among all provinces within a region).

Like residential customers, SGS customers in each region are induced to install larger
PV systems as the buyback rate for excess generation increases. Under the block rate with a
buyback rate of 2 THB/kWh, average optimal PV sizes across all regions are approximately
the same but the average NPV varies. The average NPV is highest in the Northeastern
region followed by the Northern, Central, and Southern regions, respectively (Figure 8). A
buyback rate of 2 THB/kWh likely induces all SGS customers to install larger PV systems
to gain benefits from surplus PV generation. It is likely that surplus PV generation depends
heavily on geographical capacity factor, as average consumption during the day for SGS
customers does not vary significantly by region. Variation in capacity factor leads to the
average NPV ranking stated above.
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If the buyback rate is below 2 THB/kWh, though, average NPVs stay the same across
all regions while average optimal PV sizes are larger in regions with the lower capacity
factors. This is likely because a lower buyback rate results in the geographical capacity
factor assuming more weight in the determination of optimal PV size.

Similar patterns for average optimal PV size are observed for SGS customers under
a TOU rate as (Figure 9). SGS customers in each region are induced to install larger PV
systems as a buyback rate is higher. However, SGS customers under a TOU rate install PV
systems of approximately the same size as the SGS customers under a block rate but obtain
a higher NPV. This implies that tariff structures impact PV investments.
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Based on the optimal PV sizes, the average LCOE range across all regions (Table 2) is
0.096–0.112 USD/kWh for both customer classes. These LCOEs are higher than the lowest
block rate (0.0929 USD/kWh) and TOU rate during off-peak period (0.0754 USD/kWh).
This implies that, given this paper’s set of assumptions, grid parity does not occur even
if customers install the optimal PV size. The average electricity demand met by solar
across all regions is 24.99–30.03% for residential customers and 29.53–40.86% for SGS
customers. For the self-consumption ratios (Table 3), based on the optional PV sizes,
the average self-consumption range across all regions and schemes is 41.33–61.45% for
residential customers and 41.37–58.70% for SGS customers. The net-billing scheme leads to
lower self-consumption ratios because customers install larger PV systems when receiving
compensation for excess PV electricity.
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Table 2. Average LCOE and level of PV generation supplied to load by region for residential and
SGS customers.

Customer Class North Northeast Central South

Residential
LCOE (USD/kWh) 0.096 0.096 0.103 0.112

Electricity demand met by
solar (% of total consumption) 24.99 30.03 26.61 28.54

SGS
LCOE (USD/kWh) 0.096 0.096 0.103 0.112

Electricity demand met by
solar (% of total consumption) 40.86 32.39 29.53 33.14

Note: The figures represent the values averaged over all provinces within a region.

Table 3. Self-consumption level by region for residential and SGS customers.

Customer Class Scheme
Self-Consumption (% of PV Production)

North Northeast Central South

Residential
Self-consumption only 55.99 55.94 58.81 61.45

Net billing 41.33 43.18 44.76 53.42

SGS
Self-consumption only 55.50 56.08 58.70 61.32

Net billing 43.42 41.37 47.21 54.13
Note: The figures represent the values averaged over all provinces within a region.

4.1.2. Medium General Service and Large General Service Customers

The optimal PV size for MGS customers increases with the buyback rate (Figure 10).
Given that the MGS load profiles are similar across regions (in the Appendix A), the major
determinants of optimal PV size are buyback rate and geographical capacity factor. In the
regions with a relatively good capacity factor (North, Northeast, and Central), the optimal
PV size at a buyback rate of 2 THB/kWh is significantly higher than the optimal PV size at
1 THB/kWh. This suggests that the benefit from excess electricity sales starts to exceed
the cost of investment at a buyback rate of 2 THB/kWh. On the other hand, optimal PV
size at a buyback rate of 1 THB/kWh is more similar to the size under a self-consumption
scheme in all regions, which implies a limited return on excess electricity compared to the
2 THB/kWh buyback rate case.
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The Northern and Northeastern regions feature the highest average NPV for MGS
customers, followed by the Central and Southern regions, respectively. Geographical
capacity factor is likely a key determinant of NPV for MGS customers. In addition, benefits
for MG customers increase even more since the shape of generated PV profile matches the
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shape of the load profile. This means that PV helps meet peak demand and hence reduces
demand charges.

The optimal PV size for LGS customers increases as the buyback rate increases
(Figure 11). The major determinants of optimal PV size for LGS customers are buyback
rate and geographical capacity factor. The Central region offers the highest NPV, followed
by the Northeastern, Southern, and Northern regions, respectively. Although the average
optimal PV size in the Central region is larger than the average optimal size in the North-
eastern region, the NPV in the Central region is higher than the NPV in the Northeastern
region since customers in the Central region benefit more from reduction of consumption
and peak demand. Average NPV is lowest in the Northern region, mainly because of the
low amount of electricity consumption that generally occurs in Northern provinces.
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Table 4 reports LCOEs associated with the optimal PV size by region for MGS and
LGS customers. These LCOEs are higher than the off-peak rate (0.07514 USD/kWh)
and peak rate (0.1203 USD/kWh). This implies that, given the set of assumptions used
by this paper, grid parity does not occur even if customers install the optimal PV size.
The average electricity demand met by solar across all regions is 32.95–44.22% for MGS
customers and 31.22–36.66% for LGS customers. For the self-consumption ratios (Table 5),
based on the optional PV sizes, the average self-consumption range across all regions
and schemes is 53.97–73.13% for MGS customers and 47.42–69.36% for LGS customers.
The self-consumption ratios under the net-billing scheme are lower than those under
self-consumption scheme for both customer classes.

Table 4. Average LCOE and level of PV generation supplied to load by region for MGS and LGS
customers.

Customer Class North Northeast Central South

MGS
LCOE (USD/kWh) 0.094 0.094 0.101 0.110

Electricity demand met by
solar (% of total consumption) 44.22 38.87 33.91 32.95

LGS
LCOE (USD/kWh) 0.084 0.084 0.090 0.098

Electricity demand met by
solar (% of total consumption) 36.66 31.22 32.26 35.25

Note: The figures represent the values averaged over all provinces within a region.
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Table 5. Self-consumption level by region for MGS and LGS customers.

Customer Class Scheme
Self-Consumption (% of PV Production)

North Northeast Central South

MGS
Self-consumption only 67.66 67.08 70.23 73.13

Net billing 54.61 53.97 56.47 71.64

LGS
Self-consumption only 63.15 62.03 65.63 69.36

Net billing 48.21 47.42 51.35 64.18
Note: The figures represent the values averaged over all provinces within a region.

The results of optimal PV investment across geographical regions suggest that different
load profiles and support schemes can lead to different self-consumption levels. For
residential and SGS customers, the average self-consumption range is 55.50–61.45% for the
self-consumption scheme and 41.33–54.42% for the net-billing scheme. For MGS and LGS
customers, the average self-consumption range is 63.15–73.13% for the self-consumption
scheme and 47.42–71.64% for the net-billing scheme. The ratios for self-consumption in this
study may be too high for residential customers while too low for the SGS, MGS, and LGS
customers according to the self-consumption ratios in [62]. The self-consumption share of
residential customers should be low since no one is likely to be home during the day, so
the electricity generated from a PV system is not used at the site. On the other hand, the
load profiles of SGS, MGS, and LGS have higher demand during the day, which is aligned
with the profile of PV production. Therefore, the self-consumption share could be up to
80% [62].

For the studies related to self-consumption of solar PV in Thailand, the self-consumption
level is rarely mentioned [28,29,63]. In [63], the self-consumption level for residential is
84.25% for the PV size of 5 kW. For [28,29], there are not data on self-consumption ra-
tios, but the PV-to-load ratios are mentioned. In [29] with the closest assumptions of the
buyback rate for net-billing, but the different methods for setting PV sizes, the authors
suggested that the appropriate PV systems should give the PV-to-load ratios approximately
not greater than 30% for residential and SGS customers, and not greater than 40–50% for
MGS and LGS customers. This is different from this study where the PV-to-load ratios for
the net billing scheme are far higher (56.27–103.28% for residential and SGS customers and
48.74–85.84% for MGS and LGS customers).

4.2. Investment Hotspots

For simplicity, the investment hotspot results under the net billing consumption
scheme with a buyback rate of 1 THB/kWh are presented. The results under other com-
pensation policies are similar in relative terms.

4.2.1. Residential Customers

Figure 12 shows the relationship between the optimal PV-to-load ratio and the capital-
to-expenditure ratio for residential customers in each province. Panel A shows the scat-
terplot of the relationship by province and Panel B displays the outcome variables by
geographical location. Higher PV-to-load ratio indicates higher maximum financial im-
pacts likely felt by the utility serving a region. A higher capital-to-expenditure ratio
indicates that it is harder to self-finance such investment.

Three key insights emerge. First, homeowners in the Northeastern provinces are likely
to be the late adopters of rooftop PV due to high financial constraints. The capital costs
of rooftop PV in Northeastern provinces can be as high as 35× the average household
monthly expenditure per capita. If optimal PV investments materialized, the PV-to-load
ratios and the financial impact on utilities in this region will be higher relative to the case
with no PV penetration. Second, the early residential rooftop PV adopters will likely be
homeowners in the Northern provinces, which are characterized by an average PV-to-load
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ratio of 50%. Finally, the Central and Southern regions yield inconclusive results since there
is less clustering of the capital-to-expenditure ratios compared to the other two regions.
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Among residential customers, the early rooftop PV hotspots will be concentrated in
the Northern region. The maximum financial impacts of these early hotspots on utilities
will be moderate. Hotspots will likely emerge in the Northeastern region later on, with
larger financial impacts on utilities.

4.2.2. Small General Service Customers

The relationship between the optimal PV-to-load ratio and the capital-to-expenditure
ratio for SGS customers is shown in Figure 13. The major difference between the SGS and
the residential customer is that the SGS customers exhibit higher loads during the day.

For SGS customers, there is little clustering of capital-to-expenditure ratios by region.
In other words, no region stands out as considerably better than others in terms of PV
affordability. Regional trends do emerge for PV-to-load ratios. If financial constraints are
removed and optimal PV investments are realized, the Northern region exhibits the highest
PV-to-load ratios and the largest utility impacts relative to the case with no PV penetration.

In short, there are no obvious early rooftop PV hotspots for SGS customers. As the
rooftop PV market matures, hotspots are likely to emerge in the Northern region, with
large impacts on utilities.

4.2.3. Medium General Service Customers

The relationship between the optimal PV-to-load ratio and the capital-to-bill ratio for
MGS customers is shown in Figure 14. Similar to SGS customers, there is little clustering of
capital-to-bill ratios by region for MGS customers. In other words, no region stands out as
considerably better than others in terms of PV affordability. Regional trends do emerge
for PV-to-load ratios. If financial constraints are removed and optimal PV investments are
realized, the Northern and Northeastern regions exhibit the highest PV-to-load ratios and
the largest utility impacts relative to the case with no PV penetration.
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For MGS customers, there are no obvious early rooftop PV hotspots for MGS cus-
tomers. As the rooftop PV market matures, hotspots are likely to emerge in the Northern
and Northeastern regions, with large impacts on utilities.
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4.2.4. Large General Service Customers

Figure 15 shows the relationship between the optimal PV-to-load ratio and the capital-
to-expenditure ratio for LGS customers. Unlike the SGS and MGS customers, there is a clear
clustering of the Northern provinces around the low capital-to-bill and high PV-to-load
region of the scatterplot. This suggests that provinces in the Northern region will be early
rooftop PV hotspots for LGS customers, imposing large financial impacts on utilities. The
maximum penetration of rooftop PV for LGS customers is observed in the Northern region
could be as high as 65% of load.
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4.3. Policy Implications

Table 6 summarizes the findings of the previous sections by listing the regions where
optimal PV investment can occur more easily (“early hotspots”) and where optimal PV
investment faces higher financial constraint (“late hotspots”), as well as the penetration
level (PV-to-load ratio) if such investment materializes. The Northern and Northeastern
regions are clearly marked as the potential hotspots where the utility’s impact will be
realized early or strongly or both.

Table 6. Summary of potential hotspots.

Customer
Segment

Early Hotspots Late Hotspots (High Revenue
Impacts on Utilities)Region Revenue Impact on Utilities

Residential North Low Northeast
SGS Inconclusive N/A North
MGS Inconclusive N/A North and Northeast
LGS North High N/A

Note: Early adopters are in areas with low financial constraints as measured by the capital-to-expenditure ratio.
Late adopters are in areas with high financial constraints as measured by the capital-to-expenditure ratio. A high
revenue impact on utilities means that the PV-to-load ratio associated with the adopter’s optimal PV size is higher
than 60%. A moderate revenue impact on utilities means that the PV-to-load ratio falls between 40% and 60%.
A low revenue impact on utilities means that the PV-to-load ratio is lower than 40%.
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This study reveals substantial variation in the optimal PV-to-load ratio (i.e., PV pene-
tration) across four regions in Thailand. This variation results from regional heterogeneity
in the load profiles and PV capacity factors. Yet, the optimal level of penetration may
not materialize initially due to financial constraints faced by customers. Indeed, our
analysis also reveals substantial variation in financial constraints (as measured by the
capital-to-expenditure ratio) faced by different customer types in different regions.

These results can inform policy to ensure that customers in all parts of Thailand have
equal access to rooftop PV. For example, the government can target solar programs (such
as incentive programs or financing assistance) in provinces or regions disadvantaged by
lower solar irradiation, high financial constraints, or both. A precedent for this approach
comes from Vietnam, where stakeholders have proposed feed-in tariff rates that vary by
region based on the level of solar irradiation [64,65].

The results also show that the optimal PV-to-load ratio generally increases with the
capital-to-expenditure ratio for residential, SGS, and MGS customers. This means that
early adopters in these customer classes will likely have only a moderate impact (in terms
of the PV-to-load ratio) on utility revenue. Early LGS adopters will have a high impact on
utilities, primarily in the Northern region. As financial constraints decline (due to declining
costs of PV and/or the emergence of innovative financing models), late adopters in the
residential, SGS, and MGS customer classes will enter the solar PV market with a high
penetration level in the Northern and Northeastern regions. Utilities operating in these
regions need to be well prepared for high impacts of PV penetration the Northern (earlier)
and Northeastern (later) regions.

Business opportunities for self-financing rooftop PV would start among LGS cus-
tomers in the few areas that face little financial constraints (lower capital-to-bill ratio).
New financing models will expand such opportunities to additional customer types in
additional regions. For example, residential customers in the Northeastern region tend to
face higher financial barriers for rooftop PV investment than other customers. Third-party
financing has the potential to help these customers overcome this barrier while potentially
enabling higher IRRs and shorter payback periods compared to other regions.

4.4. Broader Applicability and Limitations of Research

The proposed methodology for identifying rooftop PV hotspots has broad applica-
bility, particularly in jurisdictions at the early stages of rooftop PV development. Such
jurisdictions have limited data related to rooftop PV, which are required for the state-of-
the-art models reviewed in Section 2. These data include information specific to rooftop
PV deployment, such as historical data on the size and distribution of rooftop PV systems,
data on roof suitability, and data on consumer preferences. These data also include more
general information, such as on home ownership and building characteristics. By contrast,
our methodology requires data that are more readily available. These include informa-
tion typical of techno-economic analysis of rooftop PV investments, such as data on load
profiles, system costs, electric rates, and compensation mechanisms. These also include
financial data on average monthly expenditure per capita and monthly electric bills, both
of which are likely to be available in developing rooftop PV markets.

It should be noted that there are several limitations of and caveats to the proposed
approach. First, PV uptake behavior is not modeled explicitly. This means that absolute
levels of PV penetration and financial impacts on utilities cannot be compared across
provinces. Rather, the comparison must be performed against the status quo of zero
rooftop PV penetration. Additionally, due to the hourly profiles were collected in averaged
values by month and customer class, this can lead to over-estimates of self-consumption
levels. Second, the results of our hotspot identification cannot be verified by actual data
since installation of rooftop PV for self-consumption in Thailand is relatively limited.
Furthermore, neither the utilities nor the regulator are able collect a complete set of data
on the amount of rooftop PV installed in each area. The problem is particularly severe
among the rooftop PV installed for self-consumption which the owners have no incentive
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to report such installation. The owners of PV systems are likely to avoid reporting such
installation if permitting process is excessive and bureaucratic. It should be noted that
either utilities or regulators must find a way to acquire the data on rooftop PV installation
for self-consumption since such data are necessary not only for forecasting the solar PV
adoption, but to operating and planning power generation. In addition to these limitations,
more work is needed to update and improve the model with additional data, as well as to
verify our hotspot assessment.

5. Conclusions

Declining PV system costs has made investing in rooftop PV for self-consumption
an attractive option for many customers. Being able to identify areas with high potential
for rooftop PV penetration is important for many stakeholders. This information can
help utilities prepare to mitigate financial and technical impacts associated with increased
PV penetration, help PV project developers identify business opportunities, and help
policymakers design policies that promote equitable access to cheap and clean electricity.

However, comprehensive methods for forecasting rooftop PV deployment generally
rely on large data sets that are largely unavailable in developing countries. In addition, the
historical data of PV capacity for self-consumption are available only for a few years as PV
deployment is at the early stage.

The current study aims to overcome this challenge by proposing a simple method
that relies only on publicly available data as a quick first step screener for the potential PV
hotspots. The proposed method relies on two key indicators: (i) the optimal PV-to-load
ratio, which indicates the maximum penetration possible and (ii) the capital-to-expenditure
ratio, which indicates the ease of such investment from a financial standpoint.

With its simplicity, several limitations of this tool are acknowledged. To improve the
procedure accuracy of this tool, it is required to acquire reliable data on load profile, PV
generation profile (capacity factor), and socio-economics variable at a finer geographical
level. If additional data on homeownership and available rooftop area for different building
types are available, they can also be added as constraint for PV size. This can further
improve the accuracy of the result. Lastly, if complete data on all rooftop PV is available
(including the problematic self-consuming ones), we can use this data to validate the
accuracy of our procedure and identify the areas that can be improved.

As a demonstration, we use the tool to identify potential rooftops PV hotspots in
Thailand. The results show that customers facing high financial constraints in the Northern
and Northeastern regions of Thailand will likely find it especially difficult to access rooftop
PV. To promote equitable PV adoption, policymakers should focus on addressing financial
constraints faced by customers in these regions. Furthermore, financial impacts on utilities
operating in these regions will be high as solar becomes more ubiquitous. This highlights a
need for utilities to develop new models of revenue generation, including by rethinking
existing rate designs.
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Appendix A

Descriptions of customer classes and their tariff structure are provided in Tables A1
and A2. Technical, economic, and financial assumptions used in the study are shown in
Tables A3 and A4. The data of load profiles are given in Table A5 and Figures A1–A4. The
hourly load profiles for different customer classes and regions are accessible at [66], while
the number of customers is available to the public upon request.

Table A1. Descriptions of customer classes.

Customer Class Description

Residential Customers in this class include households and places of worship.
Members of this group can choose to subscribe to either progressive block rates or TOU rates.

Small General Service (SGS)

Customers in this class include residential buildings used for business purposes, government
buildings, small industries, office buildings, or other buildings with peak demand (averaged

over 15 min intervals) not exceeding 30 kW.
Members can choose to subscribe to either progressive block rates or TOU rates.

Medium General Service (MGS)

Customers in this class include businesses, government buildings, industries, office buildings,
or other buildings with peak demand (averaged over 15 min intervals) between 30 and 999 kW

and electricity consumption (averaged over 3 months) not exceeding 250,000 kWh/month.
Members can only subscribe to TOU rates.

Large General Service (LGS)

Customers in this class include businesses, government buildings, industries, office buildings,
or other buildings with peak demand (averaged over 15 min intervals) of more than 1000 kW

and electricity consumption (averaged over 3 months) not exceeding 250,000 kWh/month.
Members can only subscribe to TOU rates.

Table A2. Tariff structure for different customer classes.

Customer Type Tariff Structure

Residential customers

0–150 kWh: 3.25 THB/kWh
151–400 kWh: 4.22 THB/kWh

400 kWh and above: 4.42 THB/kWh
Fixed monthly charge: 38.22 THB

Residential customers under a TOU tariff
Peak rate: 5.8 THB/kWh

Off-peak rate: 2.64 THB/kWh
Fixed monthly charge: 38.22 THB

Small General Service customers

0–150 kWh: 3.25 THB/kWh
151–400 kWh: 4.22 THB/kWh

400 kWh and above: 4.42 THB/kWh
Fixed monthly charge: 46.16 THB

Small General Service customers under a TOU tariff
Peak rate: 5.8 THB/kWh

Off-peak rate: 2.64 THB/kWh
Fixed monthly charge: 312.24 THB

Medium General Service customers

Peak rate: 4.21 THB/kWh
Off-peak rate: 2.63 THB/kWh

Demand charge: 132.93 THB/kW
Fixed monthly charge: 312.24 THB

Large General Service customers

Peak rate: 4.21 THB/kWh
Off-peak rate: 2.63 THB/kWh

Demand charge: 132.93 THB/kW
Fixed monthly charge: 312.24 THB

Note: Peak hours are 9:00–21:59; off-peak hours are 22:00–8:59.
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Table A3. Technical assumptions.

Parameters Content/Amount

Module type Standard (Crystalline Silicon)
Nominal efficiency 15%

Module cover Glass
Temperature coefficient of power −0.47%/Celsius

DC to AC ratio 1.1
Inverter efficiency 96%

Orientation Facing south
Array type Fixed open rack

Tilt 13.7 Degrees
Azimuth 180 Degrees

System losses 14.08%
System lifetime 25 Years

Degradation rate 0.5% per year

Table A4. Economic and financial assumptions.

Customer Class Parameters Content/Amount

Residential and SGS

Module costs 0.79 USD/W
Inverter costs 0.34 USD/W

Other costs (e.g., labor) 0.31 USD/W
Installation costs 0.31 USD/W

Other soft costs (e.g., permitting) 0.17 USD/W
Total installation cost in 2016 (include VAT) 1.93 USD/W

Real discount rate 2.67% per year

MGS

Module costs 0.52 USD/W
Inverter costs 0.23 USD/W

Other costs (e.g., labor) 0.21 USD/W
Installation costs 0.21 USD/W

Other soft costs (e.g., permitting) 0.11 USD/W
Total installation cost in 2016 (include VAT) 1.29 USD/W

Real discount rate 6.62% per year

LGS

Module costs 0.47 USD/W
Inverter costs 0.20 USD/W

Other costs (e.g., labor) 0.19 USD/W
Installation costs 0.19 USD/W

Other soft costs (e.g., permitting) 0.10 USD/W
Total installation cost in 2016 (include VAT) 1.14 USD/W

Real discount rate 6.62% per year

All customer classes
Analysis period 25 years

Inflation rate 2.5%
Insurance costs 0.25% of installed cost

Table A5. Annual load in the first year of each customer type by region (kWh).

Customer Class North Northeast Central South

Residential 4860 6020 7086 7600
SGS 4857 6008 7088 7585
MGS 816,408 911,318 999,817 1,199,783
LGS 4,609,565 10,800,000 11,800,000 11,800,000

Figures A1–A4 show the hourly average load profiles for various customer classes by
geographical region. Residential customers exhibit flat consumption during the day, with a
low morning peak and a much higher evening peak. SGS customers have a similar level of
peak electricity as the residential customers but use considerably more electricity during
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the day. This reflects the fact that SGS customers are mostly residential customers who run
their small businesses at home. MGS and LGS customers exhibit very similar load profiles.
Electricity consumption is high during the day, with peak consumption occurring in the
late morning and mid-afternoon. MGS and LGS consumption decline by half or more in
the evening and at night.

Energies 2021, 14, 3329 24 of 31 
 

 

a low morning peak and a much higher evening peak. SGS customers have a similar level 
of peak electricity as the residential customers but use considerably more electricity 
during the day. This reflects the fact that SGS customers are mostly residential customers 
who run their small businesses at home. MGS and LGS customers exhibit very similar 
load profiles. Electricity consumption is high during the day, with peak consumption 
occurring in the late morning and mid-afternoon. MGS and LGS consumption decline by 
half or more in the evening and at night. 

 

Figure A1. Hourly average load profile of residential customers in Northern region (N), 
Northeastern region (NE), Central region (C), and Southern region (S). 

 

Figure A2. Hourly average load profile of SGS customers in Northern region (N), Northeastern 
region (NE), Central region (C), and Southern region (S). 

Figure A1. Hourly average load profile of residential customers in Northern region (N), Northeastern
region (NE), Central region (C), and Southern region (S).

Energies 2021, 14, 3329 24 of 31 
 

 

a low morning peak and a much higher evening peak. SGS customers have a similar level 
of peak electricity as the residential customers but use considerably more electricity 
during the day. This reflects the fact that SGS customers are mostly residential customers 
who run their small businesses at home. MGS and LGS customers exhibit very similar 
load profiles. Electricity consumption is high during the day, with peak consumption 
occurring in the late morning and mid-afternoon. MGS and LGS consumption decline by 
half or more in the evening and at night. 

 

Figure A1. Hourly average load profile of residential customers in Northern region (N), 
Northeastern region (NE), Central region (C), and Southern region (S). 

 

Figure A2. Hourly average load profile of SGS customers in Northern region (N), Northeastern 
region (NE), Central region (C), and Southern region (S). 

Figure A2. Hourly average load profile of SGS customers in Northern region (N), Northeastern
region (NE), Central region (C), and Southern region (S).



Energies 2021, 14, 3329 24 of 30Energies 2021, 14, 3329 25 of 31 
 

 

 

Figure A3. Hourly average load profile of MGS customers in Northern region (N), Northeastern 
region (NE), Central region (C), and Southern region (S). 

 

Figure A4. Hourly average load profile of LGS customers in Northern region (N), Northeastern 
region (NE), Central region (C), and Southern region (S). 

Appendix B 
Logic of optimization algorithm is shown as follows. 

1. For a given consumption (load) profile, tariff structure, and compensation 
mechanism, compute the NPV of the investment over various rooftop PV sizes in 
various locations. The range of possible PV system sizes is designed based on the 
observed typical PV sizing, as follows: 

Figure A3. Hourly average load profile of MGS customers in Northern region (N), Northeastern
region (NE), Central region (C), and Southern region (S).

Energies 2021, 14, 3329 25 of 31 
 

 

 

Figure A3. Hourly average load profile of MGS customers in Northern region (N), Northeastern 
region (NE), Central region (C), and Southern region (S). 

 

Figure A4. Hourly average load profile of LGS customers in Northern region (N), Northeastern 
region (NE), Central region (C), and Southern region (S). 

Appendix B 
Logic of optimization algorithm is shown as follows. 

1. For a given consumption (load) profile, tariff structure, and compensation 
mechanism, compute the NPV of the investment over various rooftop PV sizes in 
various locations. The range of possible PV system sizes is designed based on the 
observed typical PV sizing, as follows: 

Figure A4. Hourly average load profile of LGS customers in Northern region (N), Northeastern
region (NE), Central region (C), and Southern region (S).

Appendix B

Logic of optimization algorithm is shown as follows.

1. For a given consumption (load) profile, tariff structure, and compensation mechanism,
compute the NPV of the investment over various rooftop PV sizes in various locations.
The range of possible PV system sizes is designed based on the observed typical PV
sizing, as follows:

• 1–10 kW for residential and SGS customers (1 kW increment);
• 100–1000 kW for MGS customer (100 kW increments);
• 1000–10,000 kW for LGS customers (1000 kW increments).
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2. For each location, find the “optimal” size of PV installations that maximizes the NPV
as a return to the rooftop PV owner.

• If the optimal value is in the size range, we narrow the range of interest to refine
the optimal value.

• If the optimal value is at the lower bound of the range, we extend the lower
bound of the range relative to the previous range.

• If the optimal value is at the upper bound of the range, we extend the upper
bound of the range relative to the previous range.

Figure A5 shows an example of the optimization procedure based on two different
sets of load profiles and locations under the net billing compensation mechanism with
1 THB buyback. In the left panel, the optimization algorithm converges to the non-zero
finite value of 425 kW. In the right panel, the optimization value goes to infinity.
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Appendix C

According to the optimal PV sizes, LCOE, IRR, and payback period are determined to
quantify customer economics by using the following Equations:

LCOE =
C0 + ∑n

1
Cn

(1−i)n

∑n
1

Qn
(1−i)n

(A1)

C0 =
∑n

1 Cn

(1 + IRR)n (A2)

PB = min
m

{
C0 =

m

∑
1

Cn

}
(A3)

where C0 is the initial capital cost (USD). For Equation (A1), Cn is annual cost but for
Equations (A2) and (A3), Cn is the annual cash flow at time n (USD). Qn is the energy
generated by the PV system in year n (kWh), i is the discount rate (%), and n is the analysis
period (years).

The minimum and maximum LCOEs and self-consumption level observed in a region
at the province level are provided in Tables A6 and A7, respectively.
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Table A6. Minimum and maximum LCOE by customer class and region.

Customer Class
LCOE (USD/kWh)

North Northeast Central South

Residential 0.092–0.100 0.093–0.100 0.096–0.116 0.099–0.116
SGS 0.092–0.100 0.093–0.100 0.096–0.116 0.099–0.116
MGS 0.090–0.097 0.090–0.098 0.094–0.113 0.096–0.113
LGS 0.080–0.087 0.081–0.088 0.084–0.101 0.086–0.101

Note: The figures represent the minimum and maximum LCOE observed in a region at the province level.

Table A7. Minimum and maximum self-consumption level by customer class and region.

Scheme
Customer

Class
Self-Consumption (% of PV Production)

North Northeast Central South

Self-
consumption

only

Residential 49.41–62.74 48.79–71.17 48.79–71.17 50.12–70.80

SGS 48.25–62.54 48.87–64.59 49.50–70.52 31.15–63.22

MGS 66.42–68.73 65.52–68.66 67.66–75.11 68.10–74.79

LGS 61.82–64.52 60.93–63.64 63.22–70.13 64.34–70.82

Net billing

Residential 27.37–51.04 28.98–56.72 30.50–56.65 32.88–62.32

SGS 30.62–54.34 27.89–53.71 31.15–63.22 34.98–62.33

MGS 42.91–65.46 42.36–65.22 44.52–68.61 50.26–80.14

LGS 28.38–61.48 29.28–62.09 34.97–69.10 39.81–76.04
Note: The figures represent the minimum and maximum LCOE observed in a region at the province level.

IRR and payback period by customer group and region is shown in Tables A8–A11.

1. Residential Customers

The average IRR and payback period for the block and TOU rates indicate that the
Northern and Northeastern regions offer greater benefits than the Central and Southern
regions. IRR and payback period both depend on the costs of PV investment and the
benefits of generated PV energy, which are related to PV size, capacity factor, and rate
structure. For the Northern and Northeastern regions, the capacity factors are high enough
to outweigh the lower savings caused by smaller optimal PV sizes. Furthermore, high-
capacity factors in these regions help customers avoid oversizing PV systems, which leads
to lower investment costs. Last, PV investment under the TOU rate offers greater benefits
than investment under the block rate.

Table A8. IRR and payback period by region for residential customers under a block rate and TOU
rate when buyback rate is less than 3 THB/kWh.

Tariff
Structure North Northeast Central South

Block rate
IRR (%) 8.1–9.3 (8.8) 8.1–9.3 (8.9) 7.5–9.2 (8.5) 7.6–9.0 (8.1)

Payback period
(years)

12.1–13.2
(12.6)

12.1–13.1
(12.5)

12.2–13.6
(12.8)

12.3–13.5
(13.1)

TOU rate
IRR (%) 8.5–10.0 (9.3) 8.5–9.8 (9.3) 7.9–9.6 (8.9) 8.1–9.4 (8.5)

Payback period
(years)

11.6–12.8
(12.1)

11.7–12.8
(12.1)

11.9–13.3
(12.4)

12.0–13.1
(12.7)

Note: The figures represent the minimum and maximum IRR and payback period observed in a region at the
province level. The figures in parentheses represent the averaged IRR and payback period over all provinces
within a region.
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2. SGS Customers

IRRs and payback periods for SGS customers under the block and TOU rate indicate
that the Northern and Northeastern regions exhibit better economics than the Central and
Southern regions due to variation in geographical capacity factor. In addition, the TOU
tariff structure offers a better economic return than the block rate.

Table A9. IRR and payback period by region for SGS customers under a block rate and TOU rate
when buyback rate is less than 3 THB/kWh.

Tariff
Structure North Northeast Central South

Block rate
IRR (%) 8.1–9.4 (8.8) 8.1–9.3 (8.8) 7.6–9.3 (8.5) 7.7–9.1 (8.1)

Payback period
(years)

12.2–13.2
(12.6)

12.1–13.1
(12.5)

12.1–13.6
(12.7)

12.3–13.5
(13.1)

TOU rate
IRR (%) 8.6–10.0 (9.3) 8.4–9.8 (9.2) 8.0–9.6 (9.0) 8.1–9.5 (8.5)

Payback period
(years)

11.6–12.7
(12.1)

11.7–12.9
(12.2)

11.9–13.2
(12.4)

12.0–13.1
(12.7)

Note: The figures represent the minimum and maximum IRR and payback period observed in a region at the
province level. The figures in parentheses represent the averaged IRR and payback period over all provinces
within a region.

3. MGS Customers

IRR and payback period for MGS indicate that the Northern and Northeastern regions
offer better IRR and payback than the Central and Southern regions. This is because the
IRR and payback period depend on the costs of PV investment and the returns from the
generated PV energy. Since the optimal PV size and the PV investment cost do not vary
much by region, the better IRR and payback observed in the Northern and Northeastern
regions are driven by better geographical capacity factors.

Table A10. IRR and payback period by region for MGS customers under a buyback rate below
3 THB/kWh.

North Northeast Central South

IRR (%) 11.8–13.2 (12.5) 11.6–12.8 (12.3) 10.8–12.5 (11.8) 10.6–12.3 (11.0)

Payback period (years) 9.0–9.9 (9.5) 9.2–10.0 (9.5) 9.4–10.5 (9.8) 9.5–10.5 (10.3)
Note: The figures represent the minimum and maximum IRR and payback period observed in a region at the
province level. The figures in parentheses represent the averaged IRR and payback period over all provinces
within a region.

4. LGS Customers

The average IRR and payback period for LGS customers indicate that the Northern
region offers better IRR and payback than the other regions. This is because optimal PV
size (and hence investment cost) is smaller for LGS customers in the Northern region,
while geographical capacity factor is higher. This makes it easier for LGS customers in the
Northern region to break even.

Table A11. IRR and payback period by region for LGS customers under a buyback rate below 3
THB/kWh.

North Northeast Central South

IRR (%) 12.2–14.0 (13.2) 12.0–13.6 (12.9) 11.4–13.4 (12.6) 11.6–13.4 (12.2)

Payback period (years) 8.7–9.7 (9.1) 8.9–9.8 (9.3) 8.9–10.1 (9.4) 8.9–10.0 (9.6)
Note: The figures represent the minimum and maximum IRR and payback period observed in a region at the
province level. The figures in parentheses represent the averaged IRR and payback period over all provinces
within a region.
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