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Abstract: The most general quantities of interest (called “responses”) produced by the computa-
tional model of a linear physical system can depend on both the forward and adjoint state functions
that describe the respective system. This work presents the Fourth-Order Comprehensive Adjoint
Sensitivity Analysis Methodology (4th-CASAM) for linear systems, which enables the efficient com-
putation of the exact expressions of the 1st-, 2nd-, 3rd- and 4th-order sensitivities of a generic system
response, which can depend on both the forward and adjoint state functions, with respect to all of
the parameters underlying the respective forward/adjoint systems. Among the best known such
system responses are various Lagrangians, including the Schwinger and Roussopoulos function-
als, for analyzing ratios of reaction rates, the Rayleigh quotient for analyzing eigenvalues and/or
separation constants, etc., which require the simultaneous consideration of both the forward and
adjoint systems when computing them and/or their sensitivities (i.e., functional derivatives) with
respect to the model parameters. Evidently, such responses encompass, as particular cases, re-
sponses that may depend just on the forward or just on the adjoint state functions pertaining to
the linear system under consideration. This work also compares the CPU-times needed by the
4th-CASAM versus other deterministic methods (e.g., finite-difference schemes) for computing re-
sponse sensitivities These comparisons underscore the fact that the 4th-CASAM is the only practically
implementable methodology for obtaining and subsequently computing the exact expressions (i.e.,
free of methodologically-introduced approximations) of the 1st-, 2nd, 3rd- and 4th-order sensitivities
(i.e., functional derivatives) of responses to system parameters, for coupled forward/adjoint linear
systems. By enabling the practical computation of any and all of the 1st-, 2nd, 3rd- and 4th-order
response sensitivities to model parameters, the 4th-CASAM makes it possible to compare the relative
values of the sensitivities of various order, in order to assess which sensitivities are important and
which may actually be neglected, thus enabling future investigations of the convergence of the
(multivariate) Taylor series expansion of the response in terms of parameter variations, as well as
investigating the range of validity of other important quantities (e.g., response variances/covariance,
skewness, kurtosis, etc.) that are derived from Taylor-expansion of the response as a function of the
model’s parameters. The 4th-CASAM presented in this work provides the basis for significant future
advances towards overcoming the “curse of dimensionality” in sensitivity analysis, uncertainty
quantification and predictive modeling.

Keywords: forward model; adjoint model; Rayleigh quotient; Schwinger functional; Roussopoulos
functional; first-order adjoint sensitivity analysis methodology; second-order adjoint sensitivity
analysis methodology; third-order adjoint sensitivity analysis methodology; fourth-order adjoint
sensitivity analysis methodology; curse of dimensionality

1. Introduction

The functional derivatives of results (customarily called “responses”) produced by
computational models of physical systems with respect to the model’s parameters are
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customarily called the “response sensitivities.” The first-order sensitivities have been used
for a variety of purposes, including: (i) understanding the model by ranking the importance
of the various parameters; (ii) performing “reduced-order modeling” by eliminating unim-
portant parameters and/or processes; (iii) quantifying the uncertainties induced in a model
response due to model parameter uncertainties; (iv) performing “model validation,” by
comparing computations to experiments to address the question “does the model represent
reality?” (v) prioritizing improvements in the model; (vi) performing data assimilation
and model calibration as part of forward “predictive modeling” to obtain best-estimate
predicted results with reduced predicted uncertainties; (vii) performing inverse “predictive
modeling”; and (viii) designing and optimizing the system.

As is well known, non-linear operators do not admit adjoint operators; only linear op-
erators admit corresponding adjoint operators. For this reason, many of the most important
responses for linear systems involve the solutions of both the forward and the adjoint linear
models that correspond to the respective physical system. Included among the widest
used system responses that involve both the forward and adjoint functions are the various
forms of Lagrangian functionals, the Raleigh quotient for computing eigenvalues and/or
separation constants when solving partial differential equations, the Schwinger functional
for first-order “normalization-free” solutions, and many others (see, e.g., [1,2]). These
functionals play a fundamental role in optimization and control procedures, derivation of
numerical methods for solving equations (differential, integral, integro-differential), etc.
The analysis of responses that simultaneously involve both forward and adjoint functions
makes it necessary to treat linear systems in their own right, rather than treating them as
particular cases of nonlinear systems. This is in contradistinction to responses for a nonlin-
ear system, which can depend only on the forward functions, since nonlinear operators do
not admit bona-fide adjoint operators; only a linearized form of a nonlinear operator admits an
adjoint operator.

As is well known, even the approximate determination of the first-order sensitivities
∂R/∂αi, i = 1, . . . , Nα of a model response R to Nα parameters αi using conventional
finite-difference methods would require at least Nα large-scale computations with altered
parameter values. The computation of the distinct second-order response sensitivities
would require Nα(Nα + 1)/2 large-scale computations, which rapidly becomes unfeasible
for large-scale models comprising many parameters, even using supercomputers. The
computation of higher-order sensitivities by conventional methods is limited in practice by
the so-called “curse of dimensionality” [3] since the number of large-scale computations
needed for computing higher-order response sensitivities increases exponentially with the
order of the response sensitivities. Already the First-Order Adjoint Sensitivity Analysis
Methodology for Nonlinear Systems, conceived and developed by Cacuci [4–6], provides a
considerable step forward in the direction of overcoming the “curse of dimensionality”. For
the exact computation of the first- and second-order response sensitivities to parameters,
the “curse of dimensionality” has been overcome by the Second-Order Adjoint Sensitivity
Analysis Methodology conceived and developed by Cacuci [7–9], as was demonstrated by
the application of this methodology to compute [10–15], comprehensively and efficiently,
the exact expression of the first- and second-order sensitivities of a the leakage response
(which has also been measured experimentally) to the model parameters of an OECD/NEA
reactor physics benchmark [16]. The neutron transport code PARTISN [17] has been used
to computationally model this reactor physics benchmark, which comprises 21,976 model
parameters. Hence, there are 21,976 first-order sensitivities (of which 7477 have nonzero
values) and 241,483,276 second-order sensitivities (of which 27,956,503 have nonzero
values) of the benchmark’s leakage response to the model parameters. The work presented
in [10–15] has been extended to third-order in [18], which has subsequently been applied
in [19–21] to the computation of the third-order sensitivities of the leakage response of the
OECD/NEA benchmark [16] to the benchmark’s total microscopic nuclear cross sections,
which turned out to be the most important model parameters.
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This work presents the Fourth-Order Comprehensive Adjoint Sensitivity Analysis
Methodology (4th-CASAM) for general response-coupled forward/adjoint systems. The
4th-CASAM enables the efficient computation of the exact expressions of the 1st-, 2nd-,
3rd- and 4th-order sensitivities of a generic system response, which depends on both
the forward and adjoint state functions with respect to all of the parameters underlying
the respective systems. The qualifier “comprehensive” is used because this methodology
provides exact expressions for the sensitivities of a system response not only to the system’s
internal parameters, but also to its (possibly uncertain) boundaries and internal interfaces
in phase-space. The development of the 4th-CASAM for coupled forward/adjoint linear
system will provide the basis for significant advances towards overcoming the “curse of
dimensionality” in sensitivity analysis, uncertainty quantification, as well as forward and
inverse predictive modeling [22–24].

This work is structured as follows: Section 2 presents the generic mathematical
formulation of the forward and adjoint equations that underlies the computational model
of a linear physical system, having a response that depends nonlinearly on the forward and
adjoint state functions and parameters. Section 3 presents the development of the novel 4th-
CASAM, which is developed successively from the 1st-, 2nd- and 3rd-CASAM. Section 3
also presents, for comparison, the expressions and number of large-scale computations that
would be needed if the 1st-, 2nd-, 3rd-, and 4th-order response sensitivities were computed
by using finite-difference formulas (which would not only be impractical for large-scale
systems, but would provide only approximate values for the respective sensitivities)
and the Forward Sensitivity Analysis Methodology (FSAM), which would provide exact
expressions for the respective sensitivities, but would also be prohibitively expensive in
terms of computational costs for large-scale systems. Finally, Section 4 offers conclusions
regarding the significance of this work’s novel results in the quest to overcome the curse of
dimensionality in sensitivity analysis, uncertainty quantification and predictive modeling.

2. Background: Mathematical Description of the Physical System

A physical system is modeled by using independent variables, dependent variables
(“state functions”), as well as parameters which are seldom, if ever, known precisely. With-
out loss of generality, the model parameters can be considered to be real scalar quantities,
having known nominal (or mean) values and, possibly, known higher-order moments or
cumulants (i.e., variance/covariances, skewness, kurtosis), which are determined outside
the model, e.g., from experimental data. These imprecisely known model parameters
will be denoted as α1, . . . ,αNα , where Nα denotes the total number of imprecisely known
parameters underlying the model under consideration. These model parameters are consid-
ered to include imprecisely known geometrical parameters that characterize the physical
system’s boundaries in the phase-space of the model’s independent variables. For subse-
quent developments, it is convenient to consider that these parameters are components
of a “vector of parameters” denoted as α , (α1, . . . , αNα)

†; α ∈ RNα , where RNα denotes
the Nα-dimensional subset of the set of real scalars. The vector α ∈ RNα is considered
to include any imprecisely known model parameters that may enter into defining the
system’s boundary in the phase-space of independent variables. The symbol “,” will be
used to denote “is defined as” or “is by definition equal to.” Matrices and vectors will be
denoted using bold letters. All vectors in this work are considered to be column vectors,
and transposition will be indicated by a dagger (†) superscript.

The model is considered to comprise Nx independent variables which are denoted as
xi, i = 1, . . . , Nx, and are considered to be components of the vector x , (x1, . . . , xNx)

† ∈
RNx .The vector x ∈ RNx of independent variables is considered to be defined on a phase-
space domain, denoted as Ωx, and defined as follows:
Ωx , {−∞ ≤ λi(α) ≤ xi ≤ ωi(α) ≤ ∞; i = 1, . . . , Nx}. The lower boundary-point of an
independent variable is denoted as λi(α) (e.g., the inner radius of a sphere or cylinder, the
lower range of an energy-variable, etc.), while the corresponding upper boundary-point
is denoted as ωi(α) (e.g., the outer radius of a sphere or cylinder, the upper range of
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an energy-variable, etc.). A typical example of boundaries that depend on imprecisely
known parameters is provided by the boundary conditions needed for models based
on diffusion theory, in which the respective “flux and/or current conditions” for the
“boundaries facing vacuum” are imposed on the “extrapolated boundary” of the respective
spatial domain. As is well known, the “extrapolated boundary” depends not only on
the imprecisely known physical dimensions of the problem’s domain, but also on the
medium’s microscopic transport cross sections and atomic number densities. The bound-
ary of Ωx, which will be denoted as ∂Ωx(α), comprises the set of all of the endpoints
λi(α), ωi(α), i = 1, . . . , Nx, of the respective intervals on which the components of x are
defined, i.e., ∂Ωx(α) , {λi(α) ∪ ωi(α), i = 1, . . . , Nx}.

The model is considered to comprise Nϕ dependent variables (also called “state
functions”), denoted as ϕi(x), i = 1, . . . Nϕ, which are considered to be the components of

the “vector of dependent variables” defined as ϕ(x) ,
[
ϕ1(x), . . . ,ϕNϕ(x)

]†
.

A linear physical system is generally modeled by a system of Nϕ linear operator-
equations which can be generally represented as follows:

L(x; α)ϕ(x) = qϕ(x; α) , x ∈ Ωx, (1)

where (x; α) ,
[
Lij(x; α)

]
, i, j = 1, . . . , Nϕ, is a matrix of dimensions Nϕ × Nϕ, while

qϕ(x; α) ,
[
qϕ,1(x; α), . . . ., qϕ,Nϕ

(x; α)
]†

is a column vector of dimension Nϕ. The com-
ponents Lij(x; α) are operators that act linearly on the dependent variables ϕj(x) and
are, in general, nonlinear functions of the imprecisely known parameters α ∈ RNα . The
components Lij(α) are operators that act linearly on the dependent variables ϕj(x) and are,
in general, nonlinear functions of the imprecisely known parameters α ∈ RNα . The compo-
nents qϕ,i(x; α) of qϕ(x; α), where the subscript “ϕ” indicates sources associated with the
“forward” system of equations, are also nonlinear functions of α ∈ RNα . Since the right-side
of Equation (1) may contain distributions, the equality in this equation is considered to hold
in the weak (“distributional”) sense. Similarly, all of the equalities that involve differential
equations in this work will be considered to hold in the weak/distributional sense.

When L(x; α) contains differential operators, a set of boundary and/or initial condi-
tions which define the domain of L(x; α) must also be given. Since the complete mathe-
matical model is considered to be linear in ϕ(x), the boundary and/or initial conditions
needed to define the domain of L(x; α) must also be linear in ϕ(x). Such a linear boundary
and/or initial conditions are represented in the following operator form:

Bϕ(x; α) ϕ(x)− cϕ(x; α) = 0, x ∈ ∂Ωx(α). (2)

In Equation (2), the operator Bϕ(x; α) ,
[
bij(x; α)

]
; i = 1, . . . , Nb; j = 1, . . . , Nϕ is a

matrix comprising, as components, operators that act linearly on ϕ(x) and nonlinearly
on α; the quantity NB denotes the total number of boundary and initial conditions. The
operator cϕ(x; α) ,

[
cϕ,1(x; α), . . . , cϕ,NB(x; α)

]† is a NB-dimensional vector comprising
components that are operators acting, in general, nonlinearly on α. The subscript “ϕ” in
Equation (2) indicates boundary conditions associated with the forward state function
ϕ(x). In this work, capital bold letters will be used to denote matrices (whose components
may be operators rather than just functions) while lower case bold letter will be used to
denote vectors.

The nominal solution of Equations (1) and (2) is denoted as ϕ0(x), and is obtained by
solving these equations at the nominal (or mean) values of the model parameter α0. The
superscript “zero” will henceforth be used to denote “nominal” (or, equivalently, “expected”
or “mean” values). Thus, the vectors ϕ0(x) and α0 satisfy the following equations:

L
(

x; α0
)

ϕ0(x) = qϕ

(
x; α0

)
, x ∈ Ωx, (3)
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Bϕ

(
x; α0

)
ϕ0(x)− cϕ

(
x; α0

)
= 0, x ∈ ∂Ωx

(
α0
)

. (4)

Linear systems differ fundamentally from nonlinear systems in that linear operators
admit adjoint operators, whereas nonlinear operators do not admit adjoint operators.
Furthermore, important model responses of linear systems can be functions of both the
forward and the adjoint state functions, a situation that cannot occur for nonlinear problems.
Therefore, linear physical systems cannot be simply considered to be particular cases of
linear systems (although they may be just that in particular cases), but need to be treated
comprehensively in their own right.

Physical problems modeled by linear systems and/or operators are naturally defined
in Hilbert spaces. Thus, for physical systems represented by Equations (1) and (2), the
components ϕi(x), i = 1, . . . , Nϕ are considered to be square-integrable functions and
ϕ(x) ∈ H0, where H0 is the “original”, or “zeroth-level” Hilbert space, as denoted by the
subscript “zero”. Subsequently in this work, higher-level Hilbert spaces, which will be
denoted as H1, H2, etc., will also be introduced. Evidently, all of the elements of H0 are
Nϕ-dimensional vectors that are functions of the independent variables x. For two elements
ϕ(x) ∈ H0 and ψ(x) ∈ H0, the Hilbert space H0 is endowed with an inner product that
will be denoted as 〈ϕ(x), ψ(x)〉0 and which is defined as follows:

〈ϕ(x), ψ(x)〉0 ,
∫

Ωx
ϕ(x)·ψ(x)dx ,

Nx
∏
i=1

∫ ωi(α)
λi(α)

ϕ(x)ψ(x)dx

=
Nϕ

∑
i=1

∫ ω1(α)
λ1(α)

. . .
∫ ωi(α)

λi(α)
. . .
∫ ωNx (α)

λNx (α)
ϕi(x)ψi(x)dx1dx2 . . . dxi . . . dxNx .

(5)

In Equation (5), the product-notation
Nx
∏
i=1

ωi(α)∫
λi(α)

[] dxi compactly denotes the respective

multiple integrals, while the dot indicates the “scalar product of two vectors” defined
as follows:

ϕ(x)·ψ(x) ,
Nu

∑
i=1

ϕi(x)ψi(x). (6)

In most practical situations the Hilbert space H0 is self-dual. The operator L(x; α)
admits an adjoint (operator), which will be denoted as L∗(x; α), and which is defined
through the following relation for an arbitrary vector ψ(x) ∈ Hϕ:

〈ψ(x), L(x; α) ϕ(x)〉0 = 〈L∗(x; α) ψ(x),ϕ(x)〉0. (7)

In Equation (7), the formal adjoint operator L∗(x; α) is the Nϕ× Nϕ matrix

L∗(x; α) ,
[
L∗ji(x; α)

]
, i, j = 1, . . . , Nϕ, (8)

comprising elements L∗ji(x; α) which are obtained by transposing the formal adjoints of
the operators Lij(x; α) . Thus, the system adjoint to the linear system represented by
Equations (1) and (2) has the following general representation in operator form:

L∗(x; α) ψ(x) = qψ(x; α) , x ∈ Ωx, (9)

Bψ(x; α) ψ(x) − cψ(x; α) = 0, x ∈ ∂Ωx(α). (10)

The domain of L∗(x; α) is determined by selecting the adjoint boundary and/or initial
conditions represented in operator form in Equation (10), where the subscript “ψ” indicates
adjoint boundary and/or initial conditions associated with the adjoint state function ψ(x).
These adjoint boundary and/or initial conditions are selected so as to ensure that the
boundary terms that arise in the so-called “bilinear concomitant” when going from the
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left-side to the right side of Equation (7) vanish, in conjunction with the forward boundary
conditions given in Equation (2).

The nominal solution of Equations (9) and (10) is denoted as ψ0(x), and is obtained
by solving these equations at the nominal parameter values α0, i.e.,

L∗
(

x; α0
)

ψ0(x) = qψ

(
x; α0

)
, x ∈ Ωx, (11)

Bψ

(
x; α0

)
ψ0
(

x; α0
)
− cψ

(
x; α0

)
= 0, x ∈ ∂Ωx

(
α0
)

. (12)

In view of Equations (1) and (9), the relationship shown in Equation (7), which is the ba-
sis for defining the adjoint operator, also provides the following fundamental “reciprocity-
like” relation between the sources of the forward and the adjoint
equations, respectively:

〈ψ(x), qϕ(x; α)〉0 = 〈qψ(x; α),ϕ(x)〉0. (13)

The functional on the right-side of Equation (13) represents a “detector response”,
i.e., a particle reaction-rate representative of the “count” of particles incident on a de-
tector of particles, measuring the respective particle flux ϕ(x). Thus, the source term

qψ(x; α) ,
[
qψ,1(x; α), . . . ., qψ,Nϕ

(x; α)
]†

in Equation (11) is usually associated with the
“result of interest” to be measured and/or computed, which is customarily called the
system’s “response”.

The system response generally depends on the model’s state-functions and on the
system parameters, which are considered to also include parameters that may specifically
appear only in the definition of the response under consideration (but which may not
appear in the definition of the model). Thus, the (physical) “system” is defined in this
work to comprise both the system’s computational model and the system’s response. The
system’s response will be denoted as R[ϕ(x), ψ(x); α] and, in the most general case, is a
nonlinear operator acting on the model’s forward and adjoint state functions, as well as on
imprecisely known parameters, both directly and indirectly through the state functions.
The nominal value of the response, R

[
ϕ0(x), ψ0(x); α0], is determined by using the nominal

parameter values α0, the nominal value ϕ0(x) of the forward state function [obtained by
solving Equations (3) and (4)] and the nominal value ψ0(x) of the adjoint function [obtained
by solving Equations (11) and (12)].

A particularly important class of system responses comprises (scalar-valued) func-
tionals of the forward and adjoint state functions. Such responses occur in many fields,
including optimization, control, model verification, data assimilation, model validation and
calibration, predictive modeling, etc. For example, the well-known Lagrangian functional
is usually represented in the following form:

Nx

∏
i=1

∫ ωi(α)

λi(α)

{
ϕ(x)qψ(α) + ψ(x)

[
L(α)ϕ(x)− qϕ(α)

]}
dxi. (14)

In particular, the Schwinger “normalization-free Lagrangian” is usually represented
in the following form [1,2]:{

∏Nx
i=1

∫ ωi(α)
λi(α)

ϕ(x)qψ(α)dxi

}{
∏Nx

i=1

∫ ωi(α)
λi(α)

ψ(x)qϕ(α)dxi

}
∏Nx

i=1

∫ ωi(α)
λi(α)

ψ(x)L(α)ϕ(x)dxi

. (15)

When Equation (1) takes on the eigenvalue (or “separated”) form M[α(x)]ϕ(x) =
µ N[α(x)]ϕ(x), which implies that the adjoint function ψ(x) is the solution of the cor-
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responding adjoint equation M∗[α(x)]ψ(x) = µ N∗[α(x)]ψ(x), the well-known Raleigh
quotient is usually represented in the following form:

∏Nx
i=1

∫ ωi(α)
λi(α)

ψ(x)M[α(x)]ϕ(x)dxi

∏Nx
i=1

∫ ωi(α)
λi(α)

ψ(x)N[α(x)]ϕ(x)dxi

. (16)

Actually, any response can be represented in terms of functionals using the inner
product underlying the Hilbert space in which the physical problem is formulated (in this
case, H0). For example, a measurement of a physical quantity can be represented as a
response Rp

[
ϕ
(
xp
)
, ψ
(
xp
)
; α
]

which is located at a specific point, xp, in phase-space. Such
a response can be represented mathematically as a functional of the following form:

Rp
[
ϕ
(
xp
)
, ψ
(
xp
)
; α
]

,
∫ ω1(α)

λ1(α)
. . .
∫ ωi(α)

λi(α)
. . .
∫ ωNx (α)

λNx (α)
R[ϕ(x), ψ(x); α]δ

(
x− xp

)
dx1dx2 . . . dxi . . . dxNx .

(17)

where δ
(
x− xp

)
denotes the multidimensional Dirac-delta functional. Furthermore, a

function-valued (operator) response Rop[ϕ(x), ψ(x); α] can be represented by a spectral (in
multidimensional orthogonal polynomials or Fourier series) expansion of the form:

Rop[ϕ(x), ψ(x); α] = ∑
m1

. . . ∑
mNx

cm1 ...mNx
Pm1(x1)Pm2(x2) . . . PmNx

(xNx), (18)

where the quantities Pmi (xi), i = 1, . . . , Nx, denote the corresponding spectral functions
(e.g., orthogonal polynomials or Fourier exponential/trigonometric functions) and where
the spectral Fourier) coefficients cm1 ...mNx

are defined as follows:

cm1 ...mNx
,∫ ω1

λ1
. . .
∫ ωi

λi
. . .
∫ ωNx

ιNx
Rop[ϕ(x), ψ(x); α]Pm1 (x1) . . . Pmi (xi) . . . PmNx (xNx )dx1 . . . dxi . . . dxNx . (19)

The coefficients cm1 ...mNx
can themselves be considered as system responses since the

spectral polynomials Pmi (xi) are perfectly well known while the expansion coefficients
will contain all of the dependencies of the respective response on the imprecisely known
model and response parameters. Consequently, the sensitivity analysis of operator-valued
responses can be reduced to the sensitivity analysis of scalar-valued responses. The
expressions in both Equations (17) and (19) are functionals of the forward and adjoint state
functions and can be represented in the following general form:

R[ϕ(x), ψ(x); α]

,
∫ ω1(α)

λ1(α)
. . .
∫ ωi(α)

λi(α)
. . .
∫ ωNx (α)

λNx (α)
S[ϕ(x), ψ(x); α]dx1dx2 . . . dxi . . . dxNx ,

(20)

where S[ϕ(x), ψ(x); α] denotes a suitably Gateaux- (G-) differentiable function of the indi-
cated arguments. Specific examples that illustrate the effects of the first- and second-order
sensitivities of responses of the form shown in Equations (14)–(20) to imprecisely known
model and domain-boundary parameters are provided in [25–34].

The generic response defined in Equation (20) provides the basis for constructing any
other responses of specific interest, and will therefore be used for the generic “Fourth-Order
Comprehensive Sensitivity Analysis Methodology (4th-CASAM) for Linear Systems” to
be developed in the remainder of this work. Note that the generic response defined in
Equation (20) is, in general, a nonlinear function of all of its arguments, i.e., S[ϕ(x), ψ(x); α]
is nonlinear in ϕ(x), ψ(x), and α.

3. The Fourth-Order Comprehensive Adjoint Sensitivity Analysis Methodology
(4th-CASAM) for Linear Systems

The model parameters αi are imprecisely known quantities, so their actual values may
differ from their nominal values by quantities denoted as δαi , αi − α0

i , i = 1, . . . , Nα. Since
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the model parameters α and the state functions are related to each other through the forward
and adjoint systems, it follows that variations δα , (δα1, . . . , δαNα) in the model parameters

will cause corresponding variations δϕ ,
(

δϕ1, . . . , δϕNϕ

)
, δϕi , ϕi −ϕ0

i , i = 1, . . . , Nu

and δψ ,
(

δψ1, . . . , δψNϕ

)
, δψi , ψi −ψ0

i , i = 1, . . . , Nu in the forward and, respectively,
adjoint state functions. In turn, the variations δα, δϕ, and δψ cause a response variation
R
(
ϕ0 + δϕ; ψ0 + δψ; α0 + δα

)
around the nominal response value R

[
ϕ0(x), ψ0(x); α0].

3.1. Computation of the First-Order Sensitivities of R[ϕ(x), ψ(x); α]

Since the closed-form analytical expression of the response R[ϕ(x), ψ(x); α] is not avail-
able in practice, the first-order sensitivities of the response cannot be computed directly
from Equation (20), but need to be computed by other means. There are three methods for
computing response sensitivities: (i) by using finite-difference formulas or statistical pro-
cedures to approximate Equation (20) in conjunction with “brute-force” re-computations
using altered parameter values in Equations (1) and (2); (ii) by using the “forward sensi-
tivity analysis methodology (FSAM),” which requires solving the differentiated forms of
Equations (1), (2), (9) and (10), evaluated at the known nominal and response parameter values;
(iii) by applying the “comprehensive adjoint sensitivity analysis methodology” which has
been developed based on the pioneering work of Cacuci [4–6]. These methods will be
discussed in Sections 3.1.1–3.1.3 below.

3.1.1. Finite-Difference Approximation Using Re-Computations with
User-Modified Parameters

The first-order sensitivities of the response, R[ϕ(x), ψ(x); α], can be computed approx-
imately using the well-known finite-difference formula presented below:

∂R(α)
∂αj

≈ 1
2hj

(
Rj+1 − Rj−1

)
+ O

(
hj

2
)

, (21)

where Rj+1 , R
[
ϕ
(
αj + hj; x

)
, ψ
(
αj + hj; x

)
; αj + hj

]
,

Rj−1 , R
[
ϕ
(
αj − hj; x

)
, ψ
(
αj − hj; x

)
; αj − hj

]
, and where hj denotes a “judiciously-chosen”

variation in the parameter αj around its nominal value α0
j . The values Ri+1 and Ri−1 are

obtained by re-solving the original forward and adjoint systems of equations repeatedly,
using the changed parameter values (αi ± hi). The value of the variation hj is chosen
by “trial and error” for each parameter αi, and varies from parameter to parameter. If
the value of hj is too large or too small, the result produced by Equation (21) will be in
considerable error from the exact value of the derivative ∂R(α)/∂αi, and this negative
outcome may be exacerbated by the fact that the user may not be aware of this error since
the exact result for the respective sensitivity can computed only by using the forward or
the adjoint sensitivity analysis methods (to be presented in Sections 3.1.2 and 3.1.3). It is
important to note that finite difference formulas introduce their intrinsic “methodological
errors,” such as the error O

(
hj

2) indicated in Equation (21), which are in addition to, and
independent of, the errors that might be incurred in the computation of R

[
ϕ0(x), ψ0(x); α0].

In other words, even if the computation of R
[
ϕ0(x), ψ0(x); α0] were perfect (error-free), the

finite-difference formulas nevertheless introduce their own, intrinsic, numerical errors into
the computation of the sensitivity

{
dR(α)/dαj

}
α0 . This statement is also valid for any of

the statistical methods (e.g., Latin-hypercubes, etc.) that might be used in conjunction with
re-computations.

3.1.2. Forward Sensitivity Analysis Methodology (FSAM)

The aim of the Forward Sensitivity Analysis Methodology (FSAM) is to compute the
response sensitivities without introducing approximations of their own (i.e., methodolog-
ical errors), as was the case when using methods that need brute-force re-computations
(e.g., finite-difference errors, statistical errors). The mathematical framework of the FSAM
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is set in the vector-space of the model parameters α. In this vector-space, the first-order
partial sensitivity of R[ϕ(x), ψ(x); α] to a generic model parameter, αi, can in principle be
obtained by taking the first-order partial of the response and equations underlying the
model with respect to a generic model/respond parameter αi, evaluated at the nominal
parameter values α0. Recall that in a linear vector space comprising function-valued el-
ements of the form η(x) , [η1(x), . . . , ηK(x)]

†, the most comprehensive—and practically
computable—concept of a “partial derivative” of a nonlinear operator F[η1(x), . . . , ηK(x)]
with respect to any one of its arguments, ηi, stems from the properties of the 1st-order
partial Gateaux- (G-) variation, δFi[η1(x), . . . , ηK(x); hi(x)], of F[η1(x), . . . , ηK(x)], which is
defined as follows:

δFi[η1(x), . . . , ηK(x); hi(x)] ,
{

d
dε

F[η1(x), . . . , ηi(x) + εhi(x), . . . , ηK(x)]
}

sε0
, (22)

where ε is a scalar (i.e., ε ∈ F, where F denotes the underlying field of real scalars) and
where hi(x) denotes an arbitrary variation in ηi(x).

The total G-variation δFi[η1(x), . . . , ηK(x); h1(x), . . . , hK(x)] of F[η1(x), . . . , ηK(x)] for
arbitrary variations h , (h1, . . . , hK)

† is defined as follows:

δFi[η1(x), . . . , ηK(x); h1(x), . . . , hK(x)]
,
{

d
dε F[η1(x) + εh1(x), . . . , ηk(x) + εhK(x)]

}
ε=0

. (23)

The first-order G-variation δF(η; h) is an operator defined on the same domain as
F(η), and has the same range as F(η). The G-variation δF(η; h) satisfies the relation
F(η+ εh)− F(η) = δF(η; h) + ∆(h) , with Lim

ε→0

[∆(εh)]
ε = 0 . The existence of the G-variation

δF(η; h) does not guarantee its numerical computability. Numerical methods most often
require that δF(η; h) be linear in the variations h in a neighborhood (η+ εh) around η. The
necessary and sufficient conditions for the G-differential δF(η; h) of a nonlinear operator
F(η) to be linear in the variations h in a neighborhood (η+ εh) around η are as follows:

(i) F(η) satisfies a weak Lipschitz condition at η; (24)

(ii) For two arbitrary vectors of variations h1 and h2, the operator F(η) satisfies
the relation

F(η+ εh1 + εh2)− F(η+ εh1)− F(η+ εh2) + F(η) = o(ε) . (25)

In practice, it is not necessary to investigate if F(η) satisfies the conditions presented
in Equations (24) and (25) since it is usually evident if the right-side of Equation (23) is
linear (or not) in the variations h. When the total variation δF(η; h) is linear in h, it is called
the “total differential of F(u)” and is denoted as DF(η; h). In this case, the partial variation
δFi(η1, . . . , ηK; hi) is called the “partial differential δFi(η1, . . . , ηK; hi) of F(η) with respect
to ηi” and the following representation holds:

DF(η1, . . . , ηK; h1, . . . , hK) =
K

∑
k=1

∂F(η1, . . . , ηK)

∂ηi
hi, (26)

where the quantities ∂F(η1, . . . , ηK)/∂ηi denote the partial derivatives of F(u) with respect
to its arguments ηi. It will henceforth be assumed that all of the operators considered in
this work satisfy the conditions presented in Equations (24) and (25), so that they admit
partial G-derivatives such that the representation shown in Equation (26) exists.

The sensitivity
{

∂R[ϕ(x), ψ(x); α]/∂αj
}
(α0)

of R[ϕ(x), ψ(x); α] to a model parameter

αj, evaluated at the nominal parameter values α0 is obtained by determining the partial G-
differential δR

[
ϕ0(x), ψ0(x); α0; δαj

]
=
{

∂R[ϕ(x), ψ(x); α]/∂αj
}
(α0)

δαj of R[ϕ(x), ψ(x); α]
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with respect to the respective parameter αj, for each j = 1, . . . , Nα. Since the forward state
function ϕ(x) is the solution of Equations (1) and (2), while the adjoint state function ψ(x)
is the solution of Equations (9) and (10), it follows that both ϕ(x) and ψ(x) are implicit
functions of the model parameters α , (α1, . . . , αNα)

†. Hence, considering that ϕ(x) =
ϕ(x; α), ψ(x) = ψ(x; α), and applying the definition provided in Equations (20)–(22) yields
the following expression for the 1st-order partial sensitivity

{
∂R[ϕ(x), ψ(x); α]/∂αj

}
(α0)

,
for each j = 1, . . . , Nα:{

∂R[ϕ(x),ψ(x);α]
∂αj

}
α0

, 1
δαj

{
d
dε R
[
ϕ
(

α0
j + εδαj

)
; ψ
(

α0
j + εδαj

)
;
(

α0
j + εδαj

)]}
ε=0

=
Nα

∑
j=1

Nx

∏
k=1

{∫ ωk(α)
λk(α)

dxk
∂S[ϕ(x),ψ(x);α]

∂αj

}
α0

+
Nα

∑
j=1

Nx

∑
k=1

Nx

∏
m=1,k 6=j

{∫ ωm(α)
λm(α)

dxmS[ϕ(x1, . . . , bk, . . . , xNx ), ψ(x1, . . . , bk, . . . , xNx ); α]
∂ωk(α)

∂αj

−S[ϕ(x1, . . . , ak, . . . , xNx ), ψ(x1, . . . , ak, . . . , xNx ); α]
∂λk(α)

∂αj

}
α0

+
Nx

∏
k=1

{∫ ωk(α)
λk(α)

dxk
∂S[ϕ(x),ψ(x);α]

∂ϕ
∂ϕ
∂αj

+
∂S[ϕ(x),ψ(x);α]

∂ψ
∂ψ
∂αj

}
α0

, j = 1, . . . , Nα.

(27)

The functions ∂ϕ(x)/∂αj and ∂ψ(x)/∂αj are obtained by solving the system of equa-
tions obtained by taking the first partial G-derivative of Equations (1), (2), (9) and (10) with
respect to the model parameter αj. Applying the definition provided in Equation (22) to
Equations (1), (2), (9) and (10) yields, after cancelling the scalar parameter variation δαj on
both sides of the equal signs in resulting expressions, the following First-Order Forward
Sensitivity System (1st-OFSS):

L
(
x; α0) ∂ϕ

∂αj

∣∣∣∣= { f (1)(j;ϕ; α)
}
(α0)

; f (1)(j;ϕ; α)∣∣∣∣, ∂qϕ(x;α)
∂αj

− ∂L(x;α)
∂αj

ϕ(x); x ∈ Ωx; j = 1, . . . , Nα;
(28)

{
Bϕ(x; α)

}
(α0)

∂ϕ
∂αj

=
{

c(1)ϕ (j;ϕ; α)
}
(α0)

;

c(1)ϕ (j;ϕ; α) ,
∂[bϕ(x;α)ϕ−cϕ(x;α)]

∂αj
; x ∈ ∂Ωx

(
α0); (29)

L∗
(
x; α0) ∂ψ(x)

∂αj
=
{

g(1)(j; ψ; α)
}
(α0)

;

g(1)(j; ψ; α) ,
∂qψ(x;α)

∂αj
− ∂L∗(α)

∂αj
ψ(x); x ∈ Ωx; j = 1, . . . , Nα;

(30)

{
Bψ(x; α)

}
(α0)

∂ψ(x)
∂αj

=
{

c(1)ψ (j; ψ; α)
}
(α0)

;

c(1)ψ (j; ψ; α) ,
∂bψ(x;α)

∂αj
ψ(x)− ∂cψ(x;α)

∂αj
; x ∈ ∂Ωx

(
α0). (31)

The system of equations comprising Equations (28) through (31) is called the 1st-
OFSS because its solutions are the first-order derivatives of the forward and adjoint state
functions ∂ϕ(x)/∂αj and ∂ψ(x)/∂αj, respectively. Evidently, the 1st-OFSS would need to
be solved 2Nα-times, with different right-sides in order to compute the 1st-order deriva-
tives of the forward and, respectively, adjoint state functions with respect to all model
parameters αj, j = 1, . . . , Nα. Subsequently, the solutions ∂ϕ(x)/∂αj and ∂ψ(x)/∂αj of
the 1st-OFSS would be used in Equation (27) to compute the first-order response sensi-
tivity

{
∂R[ϕ(x), ψ(x); α]/∂αj

}
(α0)

, for each j = 1, . . . , Nα, using quadrature formulas. The
quadrature computations are small-scale inexpensive computations but solving the 1st-
OFSS entails large-scale computations, even if the same linear operators, namely L(x; α) and
L∗(x; α), would need to be inverted each time (which means that the same code/solvers
would be used, without needing additional programming for inverting this operator).
Thus, the FSAM is advantageous to employ only if, in the problem under consideration,
the number Nα of model parameters is considerably less than the number of responses



Energies 2021, 14, 3335 11 of 45

of interest. This is rarely the case in practice, however, since most problems of practical
interest are characterized by many model parameters and comparatively few responses.

It is evident from Equations (27)–(31) that the 1st-order partial sensitivities{
∂R[ϕ(x), ψ(x); α]/∂αj

}
(α0)

are functions of the quantities ∂ϕ(x)/∂αj and ∂ψ(x)/∂αj, as
well as of the index j = 1, . . . , Nα. Therefore, for the subsequent derivation of the 2nd-
and higher-order sensitivities of the response with respect to the model parameters, it
is convenient to introduce the following notation for the 1st-order response sensitivities
obtained by using the FSAM:

R(1)

(
j;ϕ; ψ; α;

∂ϕ

∂αj
;

∂ψ

∂αj

)
,

∂R(ϕ; ψ; α)

∂αj
. (32)

3.1.3. First-Order Comprehensive Adjoint Sensitivity Analysis Methodology (1st-CASAM)

The aim of the First-Order Comprehensive Adjoint Sensitivity Analysis Methodology
(1st-CASAM) is to find an alternative way for expressing the contribution of the flux
variation (the so-called “indirect-effect term” contribution) to the total response sensitivity,
so as to avoid the need for having to compute the derivatives ∂ϕg(r, Ω)/∂αi of the state
functions with respect to the model’s parameters, as is the case when using the FSAM. In
contradistinction to the FSAM, which is framed in the vector-space of the parameters α, the
1st-CASAM is framed in the combined phase-space of the parameters α and state-functions ϕ(x)
and ψ(x).

The 1st-order Gateaux- (G-) variation, denoted as δR
(
ϕ0, ψ0, α0; δϕ, δψ, δα

)
, of the re-

sponse R(e) for arbitrary variations δϕ(x), δψ(x), δα in the model parameters and state func-
tions, in a neighborhood

[
ϕ0(x) + εδϕ(x), ψ0(x) + εδψ(x); α0 + εδα

]
around

(
ϕ0, ψ0, α0),

where ε ∈ F is a real scalar (F denotes the underlying field of scalars), is defined as follows:

δR
(
ϕ0, ψ0, α0; δϕ, δψ, δα

)∣∣∣, { d
dε R
[
ϕ0(x) + εδϕ(x), ψ0(x) + εδψ(x); α0 + εδα

]}
ε=0∣∣= {δR

(
ϕ0, ψ0, α0; δϕ, δψ

)}
dir +

{
δR
(
ϕ0, ψ0, α0; δα

)}
ind,

(33)

where the “direct-effect” term
{

δR
(
ϕ0, ψ0, α0; δα

)}
dir depends only on the parameter vari-

ations δα and is defined as follows:{
δR
(
ϕ0, ψ0, α0; δα

)}
dir ,

{
∂

∂α

Nx

∏
k=1

∫ ωk(α)
λk(α)

dxkS[ϕ(x), ψ(x); α]

}
α0

δα

=
Nx

∏
k=1

{∫ ωk(α)
κk(α)

dxk
∂S[ϕ(x),ψ(x);α]

∂α δα
}

α0

+
Nx

∑
k=1

Nx

∏
m=1,k 6=j

{∫ ωm(α)
λm(α)

dxmS[ϕ(x1, . . . , bk, . . . , xNx ), ψ(x1, . . . , bk, . . . , xNx ); α]
∂ωk(α)

∂α

}
α0

δα

−
Nx

∑
k=1

Nx

∏
m=1,k 6=j

{∫ ωm(α)
λm(α)

dxmS[ϕ(x1, . . . , ak, . . . , xNx ), ψ(x1, . . . , ak, . . . , xNx ); α]
∂λk(α)

∂α

}
α0

δα,

(34)

while the “indirect-effect” term
{

δR
(
ϕ0, ψ0, α0; δϕ, δψ

)}
ind depends only on the variations

δϕ and δψ in the state functions, and is defined as follows:{
δR
(
ϕ0, ψ0, α0; δϕ, δψ

)}
ind

=
Nx
∏

k=1

{∫ uk(α)
`k(α)

dxk

[
∂S[ϕ(x),ψ(x);α]

∂ϕ δϕ+ ∂S[ϕ(x),ψ(x);α]
∂ψ δψ

]}
α0

.
(35)

In Equations (34) and (35), the notation {}α0 has been used to indicate that the quantity
within the brackets is to be evaluated at the nominal values of the parameters and state
functions. This simplified notation is justified by the fact that when the parameters take on
their nominal values, it implicitly means that the corresponding state functions also take
on their corresponding nominal values, in view of Equations (3), (4), (11) and (12). This
simplified notation will be used throughout this work.
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The “direct effect” term
{

δR
(
ϕ0, ψ0, α0; δα

)}
dir defined in Equation (34) depends

directly on the parameter variations δα, and can be computed immediately since it does
not depend on the variations δϕ and δψ(x). On the other hand, the “indirect effect” term{

δR
(
ϕ0, ψ0, α0; δϕ, δψ

)}
ind defined in Equation (35) depends indirectly on the parameter

variations δα, through the variations δϕ(x) and δψ(x) in the forward state functions ϕ(x)
and ψ(x), and can be computed only after having computed the values of the variations
δϕ(x) and δψ(x).

The variations δϕ(x) and δψ(x) are the solutions of the system of equations obtained
by taking the G-differentials of Equations (1), (2), (9) and (10), which can be written in the
following matrix-vector form:{

V(1)(α)δu(1)(x)
}

α0
=
{

q(1)
(

u(1); α; δα
)}

α0
, x ∈ Ωx, (36)

{
b(1)V

(
u(1); α; δu(1); δα

)}
α0

= 0, x ∈ ∂Ωx

(
α0
)

, (37)

where

V(1)(α) ,
(

L(α) 0
0 L∗(α)

)
; u(1)(x) ,

(
ϕ(x)
ψ(x)

)
; δu(1)(x) ,

(
δϕ(x)
δψ(x)

)
;

q(1)
(

u(1); α; δα
)
,

(
q(1)1 (ϕ; α; δα)

q(1)2 (ψ; α; δα)

)
;

b(1)V

(
u(1); δu(1); α; δα

)
,

(
b(1)1 (ϕ; α; δα)

b(1)2 (ψ; α; δα)

)
.

(38)

{
q(1)1 (ϕ, α; δα)

}
α0

,

∂
[
qϕ(α)− L(α)ϕ

]
∂α


α0

δα, (39)

{
q(1)2 (ψ, α; δα)

}
α0

,

∂
[
qψ(α)− L∗(α)ψ(x)

]
∂α


α0

δα, (40)

The matrices ∂qϕ(α)/∂α and ∂[L(α)ϕ]/∂α, which appear on the right-side of
Equation (36), are defined as follows:

∂qϕ(α)

∂α ,


∂qϕ,1
∂α1

. . .
∂qϕ,1
∂αNα

...
. . .

...
∂qϕ,Nϕ

∂α1
· · ·

∂qϕ,Nϕ

∂αNα

,

∂[L(α)ϕ]
∂α ,


∂
[
∑

Nϕ
j=1 L1,j(α)ϕj

]
∂α1

. . .
∂
[
∑

Nϕ
j=1 L1,j(α)ϕj

]
∂αNα

...
. . .

...
∂
[
∑

Nϕ
j=1 LNϕ,j(α)ϕj

]
∂α1

· · ·
∂
[
∑

Nϕ
j=1 LNϕ,j(α)ϕj

]
∂αNα

.

(41)

The system of equations comprising Equations (36) and (37) will be called the “1st-
Level Variational Sensitivity System” (1st-LVSS) and its solution, δu(1)(x), will be called
the “1st-Level variational sensitivity function.” The superscript “(1)” used in Equations (36)
and (37) indicates “1st-Level” (as opposed to “first-order”) because the 1st-LVSS differs
from the 1st-OFSS in that the 1st-LVSS involves the total first-order differential δu(1)(x)
of the state functions whereas the 1st-OFSS involves the first-order partial derivatives of
the state functions with respect to a single model parameter αj. In principle, the 1st-LVSS
could be solved for each possible component of the vectors of parameter variations δα to
obtain the functions δϕ(x) and δψ(x). Subsequently, the solutions δϕ(x) and δψ(x) of the
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1st-LVSS could be used together with the known parameter variations δα in Equation (35)
to compute the indirect-effect term

{
δR
(
ϕ0, ψ0, α0; δϕ, δψ

)}
ind. Computing the indirect-

effect term
{

δR
(
ϕ0, ψ0, α0; δϕ, δψ

)}
ind by solving the 1st-LVSS would require at least 2Nα

large-scale computations (to solve the 1st-LVSS) for every independent component of the
vectors of parameter variations δα. Therefore, solving the 1st-LVSS is advantageous to
employ only if, in the problem under consideration, the number Nα of model and boundary
parameters is considerably less than the number of responses of interest. This is rarely the
case in practice, however, since most problems of practical interest are characterized by
many model parameters and comparatively few responses.

The indirect-effect term
{

δR
(
ϕ0, ψ0, α0; δϕ, δψ

)}
ind defined in Equation (35) can be

computed by applying of the First-Order Comprehensive Adjoint Sensitivity Analysis
Methodology (1st-CASAM), which avoids the need for computing the functions δϕ(x) and
δψ(x). The principles underlying the 1st-CASAM are as follows:

1 Introduce a Hilbert space, denoted as H1, comprising square-integrable functions

vector-valued elements of the form η(1)(x) ,
[
η
(1)
1 (x), η

(1)
2 (x)

]†
, with η

(1)
i (x) ,[

η
(1)
i,1 (x), . . . , η

(1)
i,j (x), . . . , η

(1)
i,Nϕ

(x)
]†

, i = 1, 2, and endowed with an inner product be-

tween two elements, η(1)(x) ∈ H1, ξ(1)(x) ∈ H1, of this Hilbert space, which will be
denoted as 〈η(1)(x),ξ(1)(x)〉1 and defined as follows:

〈η(1)(x), ξ(1)(x)〉1 ,
2

∑
i=1
〈η(1)i (x), ξ

(1)
i (x)〉0. (42)

2 In the Hilbert H1, form the inner product of Equation (36) with a yet undefined vector-

valued function a(1)(x) ,
[
a(1)

1 (x), a(1)
2 (x)

]†
∈ H1 to obtain the following relation:{

〈a(1)(x), V(1)(α)δu(1)(x)〉1
}

α0
=
{
〈a(1)(x), q(1)(ϕ; ψ; α; δα)〉1

}
α0

. (43)

3 Using the definition of the adjoint operator in the Hilbert space H1, recast the left-side
of Equation (43) as follows:{

〈a(1)(x), V(1)(α)δu(1)(x)〉1
}

α0

=
{

δu(1)(x), A(1)(α)a(1)(x)1

}
α0
+
{

P(1)
[
δu(1)(x); a(1)(x); α; δα

]}
α0

,
(44)

where
{

P(1)
[
δu(1)(x); a(1)(x); α; δα

]}
α0

denotes the bilinear concomitant defined on

the phase-space boundary x ∈ ∂Ωx
(
α0), and where A(1)(α) is the operator formally

adjoint to V(1)(α), i.e.,

A(1)(α) ,
[
V(1)(α)

]∗
=

(
L∗(α) 0

0 L(α)

)
. (45)

4 Require the first term on right-side of Equation (44) to represent the indirect-effect
term defined in Equation (35), to obtain the following relation:

A(1)(α)a(1)(x) = s(1)
(

u(1)(x); α
)

, (46)
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where

s(1)
[
u(1)(x); α

]
,
[
s(1)1

(
u(1); α

)
, s(1)2

(
u(1); α

)]†
,


[

∂S(u(1);α)
∂ϕ

]†

[
∂S(u(1);α)

∂ψ

]†

. (47)

5 Implement the boundary conditions given in Equation (37) into Equation (44) and
eliminate the remaining unknown boundary-values of the functions δϕ and δψ from
the expression of the bilinear concomitant

{
P(1)

[
δu(1)(x); a(1)(x); α

]}
α0

by selecting

appropriate boundary conditions for the function a(1)(x) ,
[
a(1)

1 (x), a(1)
2 (x)

]†
, to

ensure that Equation (46) is well-posed while being independent of unknown values
of δϕ, δψ, and δα. The boundary conditions thus chosen for the function a(1)(x) ,[
a(1)

1 (x), a(1)
2 (x)

]†
can be represented in operator form as follow{

b(1)A

[
u(1)(x); a(1)(x); α;

]}
α0

= 0, x ∈ ∂Ωx

(
α0
)

. (48)

6 The selection of the boundary conditions for the adjoint function

a(1)(x) ,
[
a(1)

1 (x), a(1)
2 (x)

]†
represented by Equation (48) eliminates the appearance

of the unknown values of δu(1)(x) in
{

P(1)
[
δu(1)(x); a(1)(x); α; δα

]}
α0

and reduces this
bilinear concomitant to a residual quantity that contains boundary terms involving
only known values of ϕ(x), ψ(x), a(1)(x), α and δα. This residual quantity will be
denoted as

{
P̂(1)

[
u(1)(x); a(1)(x); α; δα

]}
α0

. In general, this residual quantity does
not automatically vanish, although it may do so occasionally.

7 The system of equations comprising Equation (46) together with the boundary condi-
tions represented by Equation (48) constitute the 1st-Level Adjoint Sensitivity System

(1st-LASS). the solution a(1)(x) ,
[
a(1)

1 (x), a(1)
2 (x)

]†
of the 1st-LASS will be called

the 1st-level adjoint function. The 1st-LASS is called “first-level” (as opposed to
“first-order”) because it does not contain any differential or functional-derivatives, but
its solution a(1)(x) will be used below to compute the first-order sensitivities of the
response with respect to the model parameters. This terminology will be also used in
the sequel, when deriving the expressions for the 2nd- and 3rd-order sensitivities.

8 It follows from Equations (43) and (44) that the following relation holds:{
〈a(1)(x), q(1)

(
u(1); α; δα

)
〉1
}

α0

=
{
〈δu(1)(x), A(1)(α)a(1)(x)〉1

}
α0
+
{

P̂(1)
[
u(1)(x); a(1)(x); α; δα

]}
α0

.
(49)

9 Recalling that the first term on the right-side of Equation (49) is, in view of Equation
(46), the indirect-effect term

{
δR
(
ϕ0, ψ0, α0; δϕ, δψ

)}
ind, it follows from Equation (49)

that the indirect-effect term can be expressed in terms of the 1st-level adjoint function

a(1)(x) ,
[
a(1)

1 (x), a(1)
2 (x)

]†
as follows:

{
δR
(
ϕ0, ψ0, α0; δϕ, δψ

)}
ind

=
{
〈a(1)(x), q(1)

(
u(1); α; δα

)
〉1
}

α0
−
{

P̂(1)
[
u(1); a(1); α; δα

]}
α0

=

{
2
∑

i=1
〈a(1)

i (x), q(1)i

(
u(1); α; δα

)
〉0
}

α0
−
{

P̂(1)
[
u(1); a(1); α; δα

]}
α0

≡
{

δR
(

u(1),0; a(1),0; α0; δα
)}

ind
.

(50)
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As has been indicated by the last equality in Equation (50), the variations δϕ and δψ
have been eliminated from the original expression of the indirect-effect term, which now

instead depends on the 1st-level adjoint function a(1)(x) ,
[
a(1)

1 (x), a(1)
2 (x)

]†
. As indicated

in Equation (46), solving the 1st-Level Adjoint Sensitivity System (1st-LASS) entails the
following operations: (i) inverting (i.e., solving) the original left-side of the adjoint equation

with the source
[

∂S(u(1);α)
∂ϕ

]†
to obtain the 1st-level adjoint function ψ

(1)
1 (x); and (ii) invert-

ing the original left-side of the forward equation with the source
[

∂S(u(1);α)
∂ψ

]†
to obtain

the 1st-level adjoint function ψ
(1)
2 (x). It is very important to note that the 1st-LASS is inde-

pendent of parameter variations δα. Hence, the 1st-LASS needs to be solved only once (as
opposed to the 1st-LFSS, which would need to be solved anew for each parameter variation)

to determine the 1st-level adjoint function a(1)(x) ,
[
a(1)

1 (x), a(1)
2 (x)

]†
. Subsequently, the

“indirect-effect term”
{

δR
(

u(1),0; a(1),0; α0; δα
)}

ind
is computed efficiently and exactly by

simply performing the integrations over the adjoint function a(1)(x) ,
[
a(1)

1 (x), a(1)
2 (x)

]†
,

as indicated on the right-side of Equation (50).
As indicated in Equation (33), the total 1st-order sensitivity of the response

R[ϕ(x), ψ(x); α] to the model parameters is obtained by adding the expressions of the direct-
effect term defined in Equation (34) and indirect-effect term as obtained in Equation (50),
which yields the following expression:{

δR
[
u(1)(x), α; δϕ, δψ, δα

]}
α0

=
Nx

∏
k=1

{∫ ωk(α)
κk(α)

dxk
∂S[u(1)(x);α]

∂α δα

}
α0

+
Nx

∑
k=1

Nx

∏
m=1,k 6=j

{∫ ωm(α)
λm(α)

dxmS[ϕ(x1, . . . , bk, . . . , xNx ), ψ(x1, . . . , bk, . . . , xNx ); α]
∂ωk(α)

∂α δα
}

α0

−
Nx

∑
k=1

Nx

∏
m=1,k 6=j

{∫ ωm(α)
λm(α)

dxmS[ϕ(x1, . . . , ak, . . . , xNx ), ψ(x1, . . . , ak, . . . , xNx ); α]
∂λk(α)

∂α

}
δα
}

α0

+

{
2
∑

i=1
a(1)i (x), q(1)i

(
u(1); α; δα

)
0

}
α0
−
{

P̂(1)
[
u(1); a(1); α; δα

]}
α0

≡
{

δR
[
u(1)(x); a(1)(x); α; δα

]}
α0

.

(51)

The expression in Equation (51) no longer depends on the variations the variations δϕ
and δψ, which are expensive to compute, but instead depends on the 1st-level adjoint func-

tion a(1)(x) ,
[
a(1)

1 (x), a(1)
2 (x)

]†
. In particular, this expression also reveals that the sensitiv-

ities of the response R[ϕ(x), ψ(x); α] to parameters that characterize the system’s boundary
and/or internal interfaces can arise both from the direct-effect and indirect-effect terms. It
also follows from Equation (51) that the total 1st-order sensitivity δR

(
ϕ0, ψ0; a(1); α0; δα

)
can be expressed in terms of the 1st-level adjoint functions as follows:

{
δR
[
u(1)(x); a(1)(x); α; δα

]}
α0

=
Nα

∑
j=1

∂R
[
u(1)(x); a(1)(x); α

]
∂αj


α0

δαj, (52)

where the quantities

∂R[j;u(1)(x);a(1)(x);α]
∂αj

=
Nx
∏

k=1

∫ uk(α)
`k(α)

dxkS(1)
[

j; u(1)(x); a(1)(x); α
]

, R(1)
[

j1; u(1)(x); a(1)(x); α
]
, j = 1, . . . , Nα.

(53)

Represent the 1st-order response sensitivities, evaluated at the nominal values of the
state functions and model parameters. In particular, if the residual bilinear concomitant is
non-zero, the functions S(1)

[
j;ϕ(x), ψ(x); a(1)(x); α

]
would contain suitably defined Dirac
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delta-functionals for expressing the respective non-zero boundary terms as volume-integrals
over the phase-space of the independent variables. Dirac-delta functionals would also be
needed to represent, within S(1)

[
j;ϕ(x), ψ(x); a(1)(x); α

]
, the terms containing the deriva-

tives of the boundary end-points with respect to the model and/or response parameters.
In the particular case in which the model’s response depended only on the forward

state function ϕ(x), the sensitivities ∂R
[
ϕ(x); a(1)

1 (x); α
]
/∂αj,j = 1, . . . , Nα, would depend

only on the 1st-level adjoint function a(1)
1 (x), which is the solution of an adjoint-like 1st-

LASS. Conversely, if the model’s response depended only on the adjoint state function
ψ(x), then the sensitivities ∂R

[
ψ(x); a(1)

2 (x); α
]
/∂αj,j = 1, . . . , Nα, would depend only on

the 1st-level adjoint function a(1)
2 (x), which is the solution of a forward-like 1st-LASS.

3.1.4. Comparison of Computational Requirements for Computing the First-Order
Response Sensitivities with Respect to the Model Parameters

From the derivations presented in Sections 3.1.1–3.1.3, it is evident that the computa-
tional requirements for the three deterministic methods discussed therein for computing
the sensitivities of a scalar valued response R[ϕ(x), ψ(x); α] with respect to the Nα model
parameters α , (α1, . . . , αNα)

† are as follows:

A. The 1st-Order Comprehensive Adjoint Sensitivity Analysis Methodology (1st-CASAM)
requires 2 large-scale computations: one large-scale computation for computing the
first-level adjoint state function a(1)

1 (x) and one large-scale computation for comput-

ing the first-level adjoint state function a(1)
2 (x).

B. The Forward Sensitivity Analysis Method (FSAM) requires 2Nα large-scale computa-
tions: Nα large-scale computations for computing the first-order derivatives of the
forward state function ϕ(α; x) and Nα large-scale computations for computing the
first-order derivatives of the adjoint state function ψ(α; x).

C. The finite-difference (FD) method requires 4Nα large-scale computations: 2Nα large-
scale computations for computing the forward state functions ϕ

(
αj ± hj; x

)
and 2Nα

large-scale computations for computing the adjoint state functions ψ
(
αj ± hj; x

)
.

If the response depends only on the forward state function, the following simplifica-
tions occur:

V(1)(α) = L(α); A(1)(α) = L∗(α); a(1)(x) = a(1)
1 (x). (54)

A similar simplification occurs in the boundary conditions represented by
Equation (48).

If the response depends only on the adjoint state function, the following
simplifications occur:

V(1)(α) = L∗(α); A(1)(α) = L(α); a(1)(x) = a(1)
2 (x). (55)

A similar simplification occurs in the boundary conditions represented by Equation (48).
Hence, if the response depends only on the forward or only on the adjoint state function,
then only half of the number of large-scale computations discussed in points A–C, above,
would be needed.

It is evident that the 1st-CASAM is the most efficient of all of the above methods for
computing the first-order sensitivities of scalar-valued responses to parameters, and the
relative superiority of the 1st-CASAM over the other methods increases as the number of
model parameters increases. This efficiency was evidently illustrated in [10–15], which
presented the CPU times needed to compute the first-order sensitivities of the response to
the model parameters for an OECD/NEA reactor physics benchmark [16], which consists
of a plutonium metal sphere surrounded by a spherical shell made of polyethylene. The
benchmark’s response of interest was the experimentally measured leakage of particles
(neutrons) out of the sphere’s outer boundary, which depends only on the forward state
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function, but does not depend on the adjoint state-function (adjoint flux), so this response
was modeled using a particular form of the right-side of Equation (13) within the PARTISN
neutron transport code [17]. To compute the 7477 non-zero 1st-order sensitivities of the
benchmark’s neutron leakage response to the benchmark’s parameters, the 1st-CASAM
needed 1 large-scale adjoint computation for computing the 1st-level adjoint function
[the equivalent of the function a(1)

1 (x)], which required 85 CPU-seconds. In addition, the
1st-CASAM required 10 CPU-seconds for computing the 7477 integrals over the adjoint
functions [i.e., the equivalent of computing Equation (50)] for computing the numerical
values of all of the 7477 1st-order sensitivities. In contradistinction, the FSAM required
7477 large-scale computations for solving the respective 1st-OFSS [i.e., the equivalent of
solving Equations (28) and (29)], which required 694-CPU Hours. The finite-difference (FD)
approximation would have required 1388-CPU Hours for obtaining approximate values
for the 7477 1st-order sensitivities.

3.2. Computation of the Second-Order Sensitivities of R[ϕ(x), ψ(x); α]

Since this work ultimately aims at deriving the explicit expressions of the 4th-order
sensitivities of the response R[ϕ(x), ψ(x); α] with respect to the model parameters, the pro-
liferation of indices, superscripts and subscripts is unavoidable. Nevertheless, “subscripted-
subscripts” can be avoided by using subscripts of the form j1 = 1, . . . , Nα; j2 = 1, . . . , j1,
where the index j1 will replace the index j (which was used in the Section 3.1) to index the
1st-order sensitivities, and where the index j2 will be used (in addition to j1) to index the
2nd-order sensitivities. Furthermore, anticipating the notation to be used in subsequent
Subsections, the index j3 will be used (in addition to the indices j1 and j2) to index the
3rd-order sensitivities and the index j4 will be used (in addition to j1, j2 and j3) to index
the 4th-order sensitivities.

There are Nα(Nα + 1)/2 distinct second-order sensitivities of the response with respect
to the model and response parameters. Section 3.2.1, below, summarizes the computational
aspects of using finite-difference formulas and Section 3.2.2 describes the “forward sen-
sitivity analysis methodology” for computing the 2nd-order response sensitivities to the
model parameters. Section 3.2.3 presents the 2nd-Order Comprehensive Adjoint Sensitivity
Analysis Methodology (2nd-CASAM), for computing the 2nd-order response sensitivities
along the concepts originally developed by Cacuci [7–9].

3.2.1. Finite-Difference Approximation Using Re-Computations with
User-Modified Parameters

The second-order responses sensitivities could be computed approximately by “brute
force” re-computations using standard forward or backward differences. Thus, the second-
order unmixed sensitivities can be calculated using the following formula:

∂2R(α)(
∂αj1

)2 ≈
1

hj1
2

(
Rj1+1 − Rj1 + Rj1−1

)
+ O

(
hj1

2
)

, j1 = 1, . . . , Nα, (56)

where Rj1+1 , R
(
αj1 + hj1

)
, Rj1 , R

(
αj1
)
, Rj1−1 , R

(
αj1 − hj1

)
and hj1 denotes a

“judiciously-chosen” variation in the parameter αj1 around its nominal value α0
j1.

The 2nd-order mixed sensitivities, ∂2R(α)/∂αj1∂αj2, can be calculated by using the
following finite-difference formula:

∂2R(α)
∂αj1∂αj2

≈ 1
4hj1hj2

(
Rj1+1,j2+1 − Rj1−1,j2+1 − Rj1+1,j2−1 + Rj1−1,j2−1

)
+O

(
hj1

2, hj2
2),

f or j1 = 1, . . . , Nα; j2 = 1, . . . , j1,

(57)

where hj1 and hj2 denote the variations in the parameters αj1 and αj2, respectively. The val-
ues of the quantities Rj1+1,j2+1 , R

(
αj1 + hj1, αj2 + hj2

)
, Rj1−1,j2+1 , R

(
αj1 − hj1, αj2 + hj2

)
,
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Rj1+1,j2−1 , R
(
αj1 + hj1, αj2 − hj2

)
, and Rj1−1,j2−1 , R

(
αj1 − hj1, αj2 − hj2

)
are obtained

by repeatedly re-solving Equations (1), (2), (9) and (10), using the changed parameter
values

(
αj1 ± hj1

)
and

(
αj2 ± hj2

)
. The values of hj1 and hj2, respectively, must be chosen

“judiciously” by “trial and error” for each of the parameters αj1 and αj2; otherwise, the
result produced by Equation (57) will be erroneous, significantly removed from the exact
value of the derivative ∂2R(α)/∂αj1∂αj2. These finite-difference formulas introduce their
intrinsic “methodological errors” of order O

(
hj1

2) and/or O
(
hj1

2, hj2
2), as indicated in

Equations (56) and (57), which are in addition to, and independent of, the errors that might
be incurred in the computation of L(α). In other words, even if the computation of R(α)
were perfect (error-free), the finite-difference formulas nevertheless introduce their own,
intrinsic, numerical errors into the computation of ∂2R(α)/∂αj1∂αj2.

3.2.2. Forward Sensitivity Analysis Methodology (FSAM)

Within the framework of the FSAM, the second-order sensitivities ∂2R(α)/∂αj1∂αj2,
j1, j2 = 1, . . . , Nα, of the response to the model and response parameters are obtained
by computing the partial G-derivatives of the first-order sensitivities represented by
Equation (32), which yields the following result:

∂2R(ϕ;ψ;α)
∂αj1∂αj2

, 1
δαj2

{
d
dε R(1)

[
j1;ϕ

(
α0

j2 + εδαj2

)
; ψ
(

α0
j2 + εδαj2

)
; α0

j2 + εδαj2;

∂ϕ
(

α0
j2+εδαj2

)
∂αj1

;
∂ψ
(

α0
j2+εδαj2

)
∂αj1

]}
ε=0

= R(2)
[

j2; j1;ϕ; ψ; α; ∂ϕ
∂αj2

; ∂ψ
∂αj2

; ∂2ϕ
∂αj1∂αj2

; ∂2ψ
∂αj1∂αj2

]
; j1, j2 = 1, . . . , Nα.

(58)

As indicated by the functional dependence of the last term in Equation (58), the
evaluation of the second-order response sensitivities requires prior knowledge of the 1st-
and 2nd-order derivatives of the state functions with respect to the model parameters. The
functions ∂ϕ(x)/∂αj1 and ∂ψ(x)/∂αj1 are obtained by solving the 1st-OFSS. The functions
∂2ϕ/∂αj1∂αj2 and ∂2ψ/∂αj1∂αj2 are the solutions of the following Second-Order Forward
Sensitivity System (2nd-OFSS), which is obtained by taking the partial G-derivative of the
1st-OFSS with respect to a generic model parameter αj2:

L
(
x; α0) ∂2ϕ

∂αj2∂αj1
=
{

f (2)(j2; j1;ϕ; α)
}

α0
; x ∈ Ωx;

j1 = 1, . . . , Nα; j2 = 1, . . . , j1;
(59)

{
Bϕ(x; α)

}
(e0)

∂2ϕ
∂αj2∂αj1

=
{

c(2)ϕ (j2; j1;ϕ; α)
}

α0
; x ∈ ∂Ωx

(
α0);

j1 = 1, . . . , Nα; j2 = 1, . . . , j1;
(60)

L∗
(
x; α0) ∂2ψ

∂αj2∂αj1
=
{

g(2)(j2; j1; ψ; α)
}

α0
; x ∈ Ωx;

j1 = 1, . . . , Nα; j2 = 1, . . . , j1;
(61)

{
Bψ(x; α)

}
(e0)

∂2ψ
∂αj2∂αj1

=
{

c(2)ψ (j2; j1; ψ; α)
}

α0
; x ∈ ∂Ωx

(
α0);

j1 = 1, . . . , Nα; j2 = 1, . . . , j1;
(62)

where
f (2)(j2; j1;ϕ; α) , ∂ f (1)(j1;ϕ;α)

∂αj2
− ∂L(x;α)

∂αj2

∂ϕ
∂αj1

;

j1 = 1, . . . , Nα; j2 = 1, . . . , j1;
(63)

g(2)(j2; j1; ψ; α) , ∂g(1)(j1;ψ;α)
∂αj2

− ∂L∗(x;α)
∂αj2

∂ψ
∂αj1

;

j1 = 1, . . . , Nα; j2 = 1, . . . , j1;
(64)

c(2)ϕ (j2; j1;ϕ; α) ,
∂c(1)ϕ (j1;ϕ;α)

∂α2
− ∂Bϕ(x;α)

∂α2

∂ϕ
∂αj1

; x ∈ ∂Ωx
(
α0);

j1 = 1, . . . , Nα; j2 = 1, . . . , j1;
(65)
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c(2)ψ (j2; j1; ψ; α) ,
∂c(1)ψ (j1;ψ;α)

∂αj2
− ∂Bψ(x;α)

∂αj2

∂ψ(x)
∂αj1

; x ∈ ∂Ωx
(
α0);

j1 = 1, . . . , Nα; j2 = 1, . . . , j1.
(66)

Evidently, the 1st-OFSS would need to be solved 2Nα-times, with different right-sides
in order to compute the 1st-order derivatives ∂ϕ(x)/∂αj1 and ∂ψ(x)/∂αj1 with respect to
all model parameters, which will entail large-scale computations. Furthermore, there are
Nα(Nα + 1)/2 distinct 2nd-order functions ∂2ϕ/∂αj1∂αj2 and just as many distinct 2nd-
order functions ∂2ψ/∂αj1∂αj2. This means that the 2nd-OFSS would need to be solved
Nα(Nα + 1) times to compute these 2nd-order functions. Hence, the computation of the
Nα(Nα + 1)/2 distinct 2nd-order response sensitivities to the model parameters using the
FSAM would necessitate a total number of N2

α + 3Nα large-scale computations, evidently
highlighting the impact of the “curse of dimensionality” [Bellman, 1957].

3.2.3. The 2nd-Order Comprehensive Adjoint Sensitivity Analysis Methodology
(2nd-CASAM)

The starting point for the development of the 2nd-CASAM is the expressions of the sen-
sitivities provided in terms of the 1st-level adjoint functions, namely Equation (53), rather
that expression of the 1st-order sensitivities produced by the FSAM [cf. Equation (32)].
Thus, the 2nd-order total sensitivity of the model response is obtained by applying the defi-
nition of the 1st-order G-differential to Equation (53), which yields the
following result:{

δR(1)
[

j1; u(1)(x); a(1)(x); α; δu(1)(x); δa(1)(x); δα
]}

α0

,
{

d
dε

[
Nx
∏

k=1

∫ ωk(α
0+εδα)

λk(α0+εδα)
dxkS(1)

[
j1;ϕ0 + εδϕ;

ψ0 + εδψ; a(1),0(x) + εδa(1); α0 + εδα

]]}
ε=0

=
{

δR(1)
[

j1; u(1)(x); a(1)(x); α; δα
]}

dir
+
{

δR(1)
[

j1; u(1)(x); a(1)(x); α; δu(1)(x); δa(1)(x)
]}

ind
, j1 = 1, . . . , Nα,

(67)

where the direct-effect term
{

δR(1)
[

j1; u(1)(x); a(1)(x); α; δα
]}

dir
is defined as follows:

{
δR(1)

[
j1; u(1)(x); a(1)(x); α; δα

]}
dir

,
{

∂
∂α

Nx
∏

k=1

∫ ωk(α)
λk(α)

dxkS(1)
[

j1; u(1)(x); a(1)(x); α
]}

α0
δα,

(68)

while the “indirect-effect term”
{

δR(1)
[

j1; u(1)(x); a(1)(x); α; δu(1)(x); δa(1)(x)
]}

ind
is de-

fined as follows: {
δR(1)

[
j1; u(1)(x); a(1)(x); α; δu(1)(x); δa(1)(x)

]}
ind

,
Nx
∏

k=1

∫ ωk(α)
λk(α)

dxk
∂S(1)(j1;u(1);a(1);α)

∂ϕ δϕ(x)

+
Nx
∏

k=1

∫ ωk(α)
λk(α)

dxk
∂S(1)(j1;u(1);a(1);α)

∂ψ δψ(x)

+
Nx
∏

k=1

∫ ωk(α)
λk(α)

dxk
∂S(1)(j1;u(1);a(1);α)

∂a(1)1

δa(1)
1 (x)

+
Nx
∏

k=1

∫ ωk(α)
λk(α)

dxk
∂S(1)(j1;u(1);a(1);α)

∂a(1)2

δa(1)
2 (x).

(69)

Note that the left-side of Equation (69) is to be computed at nominal parameter and
state function values but the corresponding indication (namely, the superscript “zero”) has
been omitted in Equation (69) in order to simplify the notation.
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The direct-effect term
{

δR(1)
[

j1; u(1)(x); a(1)(x); α; δα
]}

dir
can be computed immedi-

ately, while the “indirect-effect term”
{

δR(1)
[

j1; u(1)(x); a(1)(x); α; δu(1)(x); δa(1)(x)
]}

ind
depends on the variations δϕ, δψ(x) and δa(1)(x) in the forward state functions and, re-
spectively, the components of the first-level adjoint function. Recall that the functions
δϕ and δψ(x) are the solutions of the 1st-LVSS defined by Equations (36) and (37). On
the other hand, the function δa(1)(x) is the solution of the system of equations obtained
by G-differentiating the 1st-LASS. By definition, the first G-differential of the 1st-LASS is
obtained as follows:{

d
dε

[
L∗
(

α0 + εδα
)(

a(1),0
1 + εδa(1)

1

)
−

∂S
(
ϕ0 + εδϕ; ψ0 + εδψ; α0 + εδα

)
∂ϕ

]}
ε=0

= 0, (70)

{
d
dε

[
L
(

α0 + εδα
)(

a(1),0
2 + εδa(1)

2

)
−

∂S
(
ϕ0 + εδϕ; ψ0 + εδψ; α0 + εδα

)
∂ψ

]}
ε=0

= 0, (71)

{
d
dε

b(1)A

[
ϕ0 + εδϕ; ψ0 + εδψ; a(1),0 + εδa(1); α0 + εδα

]}
ε=0

= 0, x ∈ ∂Ωx

(
α0
)

. (72)

Carrying out the operations in Equations (70)–(72) yields the following equations:

L∗
(
α0)δa(1)

1 −
{

∂2S(u(1);α)
∂ϕ∂ϕ

}
α0

δϕ−
{

∂2S(u(1);α)
∂ϕ∂ψ

}
α0

δψ

=
{

p(2)1

(
u(1); a(1)

1 ; α; δα
)}

α0
,

p(2)1

(
ϕ; ψ; a(1)

1 ; α; δα
)
,

∂2S(u(1);α)
∂α∂ϕ δα−

∂
[
L∗(α)a(1)1

]
∂α δα,

(73)

L
(
α0)δa(1)

2 −
{

∂2S(u(1);α)
∂ϕ∂ψ

}
α0

δϕ−
{

∂2S(u(1);α)
∂ψ∂ψ

}
α0

δψ

=
{

p(2)2

(
u(1); a(1)

2 ; α; δα
)}

α0
,

p(2)2

(
u(1); a(1)

2 ; α; δα
)
,

∂2S(u(1);α)
∂α∂ψ δα−

∂
[
L(α)a(1)2

]
∂α δα,

(74)

{
δb(1)A

(
u(1); a(1); α

)}
α0

,
{

∂b(1)A (u(1);a(1);α)
∂ϕ

}
α0

δϕ+

{
∂b(1)A (u(1);a(1);α)

∂ψ

}
α0

δψ

+

{
∂b(1)A (u(1);a(1);α)

∂a(1)1

}
α0

δa(1)
1 +

{
∂b(1)A (u(1);a(1);α)

∂a(1)2

}
α0

δa(1)
2

+

{
∂b(1)A (u(1);a(1);α)

∂α

}
α0

δα = 0.

(75)

Recalling the 1st-LVSS defined in Equations (36) and (37), and considering
Equations (73) and (74), it follows that the functions δϕ, δψ(x) and

δa(1)(x) ,
[
δa(1)

1 (x), δa(1)
2 (x)

]†
are the solution of the following system of equations:{

V(2)
(

u(1); α
)

δu(2)(x)
}

α0
=
{

q(2)
(

u(2); α; δα
)}

α0
, x ∈ Ωx, (76)

{
b(2)v

[
u(2); α; δu(2)(x); δα

]}
α0

,


 b(1)v

(
u(1); α; δu(1); δα

)
δb(1)A

(
u(2); α; δu(2); δα

) 
α0

=

(
0
0

)
,

x ∈ ∂Ωx
(
α0), (77)
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where

V(2)
(

u(1); α
)
,


L(α) 0 0 0

0 L∗(α) 0 0

− ∂2S(u(1);α)
∂ϕ∂ϕ − ∂2S(u(1);α)

∂ϕ∂ψ L∗(α) 0

− ∂2S(u(1);α)
∂ψ∂ϕ − ∂2S(u(1);α)

∂ψ∂ψ 0 L(α)

; (78)

u(2)(x) ,

(
u(1)(x)
a(1)(x)

)
=


ϕ(x)
ψ(x)

a(1)1 (x)
a(1)2 (x)

; δu(2)(x) ,

(
δu(1)(x)
δa(1)(x)

)
=


δϕ(x)
δψ(x)

δa(1)1 (x)
δa(1)2 (x)

;

q(2)
(

u(2); α; δα
)
,


q(2)1

(
u(1); α; δα

)
q(2)2

(
u(1); α; δα

)
q(2)3

(
u(2); α; δα

)
q(2)4

(
u(2); α; δα

)

,


q(1)1 (ϕ; α; δα)

q(1)2 (ψ; α; δα)

p(2)1

(
u(2); α; δα

)
p(2)2

(
u(2); α; δα

)

.

(79)

All of the components of the matrices and vectors defined in Equations (76) and (77)
are to be computed at nominal parameter and state function values. The matrix V(2)(ϕ; ψ; α),
which is defined in Equation (78), has the following structure:

V(2)
(

u(1); α
)
=

(
V(1) [0]2×2

V(2)
21 V(2)

22

)
;

V(2)
21 ,

 − ∂2S(u(1);α)
∂ϕ∂ϕ − ∂2S(u(1);α)

∂ϕ∂ψ

− ∂2S(u(1);α)
∂ψ∂ϕ − ∂2S(u(1);α)

∂ψ∂ψ

, V(2)
22 = A(1)(α).

(80)

The matrix V(2)
21 depends only the system’s response and is responsible for coupling

the forward and adjoint systems, even though they could still be solved successively rather
than simultaneously, because the matrix V(2)(ϕ; ψ; α) is block-diagonal.

The system of equations represented by Equation (76) together with the boundary
conditions represented by Equation (77) will be called the “2nd-Level Variational Sen-
sitivity System” (2nd-LVSS). The solution, δu(2)(x), of the 2nd-LVSS will be called the
“2nd-level variational sensitivity function”. The 2nd-LVSS differs from the 2nd-OFSS in
that the 2nd-LVSS involves first-order differentials of the state functions, whereas the
2nd-OFSS involves the second-order partial derivatives of the state functions with re-
spect to model parameters αj2 and αj1, j1 = 1, . . . , Nα; j2 = 1, . . . , j1. In principle,
the 2nd-LVSS could be solved for each possible component of the vectors of parame-
ter variations δα to obtain the 2nd-level variational vector δu(2)(x). Subsequently, δu(2)(x)
could be used together with the known parameter variations δα in Equation (69) to
compute the indirect-effect term

{
δR(1)

[
j1; u(2)(x); α; δu(1)(x); δa(1)(x)

]}
ind

. Computing{
δR(1)

[
j1; u(2)(x); α; δu(1)(x); δa(1)(x)

]}
ind

by solving the 2nd-LVSS would require at least

2Nα(Nα + 1) large-scale computations (to solve the 2nd-LVSS) for every independent
component of the vectors of parameter variations δα. Therefore, solving the 2nd-LVSS
is advantageous to employ only if, in the problem under consideration, the number Nα

of model and boundary parameters is considerably less than the number of responses
of interest. This is rarely the case in practice, however, since most problems of practical
interest are characterized by many model parameters and comparatively few responses.

Following the principles introduced by Cacuci [7–9], the application of the 2nd-
CASAM avoids the need for solving the 2nd-LVSS, by expressing the indirect-effect term{

δR(1)(j1)
}

ind
defined in Equation (69) in an alternative manner, in terms of the solution

of a 2nd-Level Adjoint Sensitivity System (2nd-LASS), so as to eliminate the appearance
of the 2nd-level variational vector δu(2)(x) in the alternative expression of the indirect-
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effect term
{

δR(1)(j1)
}

ind
. The construction of the requisite 2nd-LASS commences by

considering a Hilbert space, denoted as H2, comprising square-integrable vector-valued

elements of the form η(2)(x) ,
[
η
(2)
1 (x), η

(2)
2 (x), η

(2)
3 (x), η

(2)
4 (x)

]†
∈ H2, with η

(2)
i (x) ,[

η
(2)
i,1 (x), . . . , η

(2)
i,j (x), . . . , η

(2)
i,Nϕ

(x)
]†

, i = 1, 2, 3, 4,. The inner product between two elements,

η(2)(x) ∈ H2 and ξ(2)(x) ∈ H2, of this Hilbert space, will be denoted as η(2)(x), ξ(2)(x)2
and is defined as follows:

〈η(2)(x), ξ(2)(x)〉2 ,
2

∑
i=1
〈η(2)i (x), ξ

(2)
i (x)〉2 =

4

∑
i=1
〈η(2)i (x), ξ

(2)
i (x)〉0. (81)

In the Hilbert H2, form the inner product of Equation (76) with a set of yet unde-

fined vector-valued functions a(2)(j1; x) ,
[
a(2)

1 (j1; x), a(2)
2 (j1; x), a(2)

3 (j1; x), a(2)
4 (j1; x)

]†
∈

H2,j1 = 1, . . . , Nα, to obtain the following relation:{
〈a(2)(j1; x), V(2)

(
u(1); α

)
δu(2)(x)〉2

}
α0

=
{
〈a(2)(j1; x), q(2)

(
u(2); α; δα

)
〉2
}

α0
. (82)

Using the definition of the adjoint operator in the Hilbert space H2, recast the left-side
of Equation (82) as follows:{

a(2)(j1; x), V(2)
(

u(1); α
)

δu(2)(x)2

}
α0

=
{

δu(2)(x), A(2)
(

u(1); α
)

a(2)(j1; x)2

}
α0

+
{

P(2)
[
δu(2)(x); u(1)(x); a(2)(j1; x); α; δα

]}
α0

,

(83)

where
{

P(2)
[
δu(2)(x); u(1)(x); a(2)(j1; x); α; δα

]}
α0

denotes the bilinear concomitant de-

fined on the phase-space boundary x ∈ ∂Ωx
(
α0) and where A(2)

(
u(1); α

)
,
[
V(2)

(
u(1); α

)]∗
is the operator formally adjoint to V(2)

(
u(1); α

)
and has therefore the following form:

A(2)
(

u(1); α
)
=

 A(1)(α)
[
V(2)

21

(
u(1); α

)]∗
[0](2×2) V(1)(α)



=


L∗(α) 0 − ∂2S(u(1);α)

∂ϕ∂ϕ − ∂2S(u(1);α)
∂ψ∂ϕ

0 L(α) − ∂2S(u(1);α)
∂ϕ∂ψ − ∂2S(u(1);α)

∂ψ∂ψ

0 0 L(α) 0
0 0 0 L∗(α)

.

(84)

The first term on right-side of Equation (83) is now required to represent the indirect-
effect term

{
δR(1)(j1)

}
ind

defined in Equation (69). This requirement is satisfied by impos-
ing the following relation on each element

a(2)(j1; x) ,
[
a(2)

1 (j1; x), a(2)
2 (j1; x), a(2)

3 (j1; x), a(2)
4 (j1; x)

]†
∈ H2,j1 = 1, . . . , Nα:{

A(2)
(

u(1); α
)

a(2)(j1; x)
}

α0
=
{

s(2)
(

j1; u(2); α
)}

α0
, j1 = 1, . . . , Nα, (85)
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where the block-vector s(2)
(

j1; u(2); α
)

comprises, for each j1 = 1, . . . , Nα, four vector-
components which are defined as follows:

s(2)
(

j1; u(2); α
)

,
[
s(2)1

(
j1; u(2); x

)
, s(2)2

(
j1; u(2); x

)
, s(2)3

(
j1; u(2); x

)
, s(2)4

(
j1; u(2); x

)]†

,
[

∂S(1)(j1;u(2);α)
∂ϕ ,

∂S(1)(j1;u(2);α)
∂ψ ,

∂S(1)(j1;u(2);α)
∂a(1)1

,
∂S(1)(j1;u(2);α)

∂a(1)2

]†
.

(86)

The definition of the set of vectors
a(2)(j1; x) ,

[
a(2)

1 (j1; x), a(2)
2 (j1; x), a(2)

3 (j1; x), a(2)
4 (j1; x)

]†
will be completed by selecting

boundary conditions for this set of vectors, which will be represented in operator form
as follows: {

b(2)A

[
u(2)(x); a(2)(j1; x); α

]}
α0

= 0, x ∈ ∂Ωx

(
α0
)

, j1 = 1, . . . , Nα. (87)

The boundary conditions represented by Equation (87) are selected so as to satisfy the
following requirements:

(i) The boundary conditions Equation (87) together with the operator Equation (85)
constitute a well posed problem for the functions a(2)(j1; x).

(ii) The implementation in Equation (83) of the boundary conditions provided in Equa-
tion (77) together with those provided in Equation (87) eliminates all of the unknown
values of the functions δu(2)(x) and a(2)(j1; x) in the expression of the bilinear con-
comitant

{
P(2)

[
u(2)(x); a(2)(j1; x); α; δu(2)(x); δα

]}
α0

. The bilinear concomitant may
vanish after these boundary conditions are implemented, but if it does not, it will be
reduced to a residual quantity which will be denoted as P̂(2)

[
u(2)(x); a(2)(j1; x); α; δα

]
and which will comprise only known values of u(2)(x), a(2)(j1; x), α and δα. In
principle, the bilinear concomitant can always be “forced” to vanish by introducing
delta-function terms in the definition of the adjoint operator, but such a practice could
lead to severe (and usually unnecessary) difficulties when attempting to solve the
equations that involve such extended adjoint operators.

The system of equations represented by Equation (85) together with the boundary
conditions represented by Equation (87) constitute the 2nd-Level Adjoint Sensitivity Sys-

tem (2nd-LASS). The solution a(2)(j1; x) ,
[
a(2)

1 (j1; x), a(2)
2 (j1; x), a(2)

3 (j1; x), a(2)
4 (j1; x)

]†
∈

H2,j1 = 1, . . . , Nα, of the 2nd-LASS will be called the 2nd-level adjoint function. The results
provided in Equations (82), (83) and (85) are employed in Equation (69) to obtain the fol-
lowing expression for the indirect-effect term

{
δR(1)

[
j1; u(2)(x); α; δu(1)(x); δa(1)(x)

]}
ind

in terms of the 2nd-level adjoint functions a(2)(j1; x), for j1 = 1, . . . , Nα:{
δR(1)

[
j1; u(2)(x); α; δu(1)(x); δa(1)(x)

]}
ind

=
{
〈a(2)(j1; x), q(2)

(
u(2); α; δα

)
〉2
}

α0

−
{

P̂(2)
[
u(2)(x); a(2)(j1; x); α; δα

]}
α0

, j1 = 1, . . . , Nα.

(88)

Inserting the expressions that define the vector q(2)
(

u(2); α; δα
)

from Equation (78)
into Equation (88) and adding the resulting expression for the indirect-effect term with the
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expression of the direct-effect term given in Equation (68) yields the following expression
for the total second-order G-differential of the response R[ϕ(x), ψ(x); α]:{

δR(1)
[

j1; u(2)(x); α; δu(2)(x); δα
]}

α0

=

{
∂

∂α

Nx
∏

k=1

∫ ωk(α)
λk(α)

dxkS(1)
(

j1; u(2); α
)}

α0
δα

+
{〈

a(2)
1 (j1; x), q(1)1 (ϕ; α; δα)

〉
0

}
α0
+
{〈

a(2)
2 (j1; x), q(1)2 (ψ; α; δα)

〉
0

}
α0

+
{〈

a(2)
3 (j1; x), q(2)3

(
u(2); α; δα

)〉
0

}
α0
+
{〈

a(2)
4 (j1; x), q(2)4

(
u(2); α; δα

)〉
0

}
α0

−
{

P̂(2)
[
u(2)(x); a(2)(j1; x); α; δα

]}
α0

≡
Nα

∑
j2=1

{
R(2)

[
j2; j1; u(2)(x); a(2)(j1; x); α

]}
α0

δαj2,

(89)

where R(2)
[

j2; j1; u(2)(x); a(2)(j1; x); α
]

denotes the 2nd-order partial sensitivity of the re-
sponse with respect to the model parameters, evaluated at the nominal parameter values
α0, and has the following expression for j1, j2 = 1, . . . , Nα:

R(2)
[

j2; j1; u(2)(x); a(2)(j1; x); α
]
≡ ∂R(1)[j1;ϕ,ψ;a(1);α]

∂αj2
≡ ∂2R(ϕ;ψ;α)

∂αj2∂αj1

= ∂
∂αj2

{
Nx
∏

k=1

∫ ωk(α)
λk(α)

dxkS(1)
(

j1; u(2); α
)}

α0

+

{〈
a(2)

1 (j1; x),
∂
[
qϕ(α)−L(α)ϕ(x)

]
∂αj2

〉
0

}
α0

+

{〈
a(2)

2 (j1; x),
∂
[
qψ(α)−L∗(α)ψ(x)

]
∂αj2

〉
0

}
α0

+

{〈
a(2)

3 (j1; x),
∂2S(u(1)(x);α)

∂αj2∂ϕ −
∂
[
L∗(α)a(1)1

]
∂αj2

〉
0

}
α0

+

{〈
a(2)

4 (j1; x),
∂2S(u(1)(x);α)

∂αj2∂ψ −
∂
[
L(α)a(1)2

]
∂αj2

〉
0

}
α0

−
{

∂
∂αj2

P̂(2)
[
u(2)(x); a(2)(j1; x); α

]}
α0

.

(90)

Since the 2nd-LASS is independent of parameter variations δα, the exact computation
of all of the partial second-order sensitivities R(2)

[
j2; j1; u(2)(x); a(2)(j1; x); α

]
requires at

most Nα large-scale (adjoint) computations using the 2nd-LASS, rather than O
(

N2
α

)
large-

scale computations as would be required by forward methods. In component form, the
equations comprising the 2nd-LASS are as solved for each j1 = 1, . . . , Nα in the follow-
ing order:

L(α)a(2)
3 (j1; x) =

∂S(1)
(

j1; u(2); α
)

∂a(1)
1

, (91)

L∗(α)a(2)
4 (j1; x) =

∂S(1)
(

j1; u(2); α
)

∂a(1)
2

, (92)

L∗(α)a(2)
1 (j1; x) =

∂2S(u(1);α)
∂ϕ∂ϕ a(2)

3 (j1; x) +
∂2S(u(1);α)

∂ψ∂ϕ a(2)
4 (j1; x)

+
∂S(1)(j1;u(2);α)

∂ϕ ,
(93)

L(α)a(2)2 (j1; x) =
∂2S
(

u(1); α
)

∂ϕ∂ψ
a(2)3 (j1; x) +

∂2S
(

u(1); α
)

∂ψ∂ψ
a(2)4 (j1; x) +

∂S(1)
(

j1; u(2); α
)

∂ψ
. (94)
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It is important to note that by solving the 2nd-LASS Nα-times, the “off-diagonal”
2nd-order mixed sensitivities ∂2R/∂αj1∂αj2 will be computed twice, in two different ways
(i.e., using distinct 2nd-level adjoint functions), thereby providing an independent intrinsic
(numerical) verification that the 1st- and 2nd-order response sensitivities are computed
accurately. The information provided by the 1st-order sensitivities usually indicates which
2nd-order sensitivities are important and which could be neglected. Therefore, it is useful
to prioritize the computation of the 2nd-order sensitivities by using the rankings of the
relative magnitudes of the 1st-order sensitivities as a “priority indicator”: the larger the
magnitude of the relative 1st-order sensitivity, the higher the priority for computing the
corresponding 2nd-order sensitivities. Also, since vanishing 1st-order sensitivities may
indicate critical points of the response in the phase-space of model parameters, it is also
of interest to compute the 2nd-order sensitivities that correspond to vanishing 1st-order
sensitivities. In practice, only those 2nd-order partial sensitivities which are deemed
important would need to be computed.

Dirac delta-functionals in Equation (90) may need to be used for expressing the
non-zero residual terms in the respective residual bilinear concomitant and/or the terms
containing derivatives with respect to the lower- and upper-boundary points, so that the
expression of the partial second-order sensitivities R(2)

[
j2; j1; u(2)(x); a(2)(j1; x); α

]
can be

written in the following form, in preparation for computing the 3rd-order sensitivities:

R(2)
[

j2; j1; u(2)(x); a(2)(j1; x); α
]

=
Nx
∏

k=1

∫ ωk(α)
λk(α)

dxkS(2)
[

j2; j1; u(2)(x); a(2)(j1; x); α
]
.

(95)

3.2.4. Comparison of Computational Requirements for Computing the Second-Order
Response Sensitivities with Respect to the Model Parameters

Numerical results have been presented in [10–15] for the 27,956,503 nonzero 2nd-
order sensitivities that correspond to the 7477 non-zero first-order sensitivities of the
PERP benchmark’s leakage response to the benchmark’s parameters. These numerical
results were computed using the PARTISN neutron transport code [17] running on a DELL
desktop computer (AMD FX-8350) with an 8-core processor. A typical large-scale (forward
or adjoint) computation required ca. 160 s CPU-time while the computation of a single
2nd-order sensitivity, including reading the adjoint functions and the integration over
the adjoint functions, required ca. 0.046 s CPU-time. Altogether, the computation of all
of the 27,956,503 nonzero 2nd-order sensitivities of the PERP leakage response using the
2nd-CASAM required ca. 929 CPU-hours, comprising 735 CPU-hours used for the 14,
843 large-scale computations (needed to compute the 2nd-level adjoint functions) and
194 CPU-hours used for performing the integrations needed to compute the respective
unmixed and mixed second-order sensitivities.

In contradistinction, the FSAM would have required ca. 38,000 CPU-hours; using
finite-differences (FD) would have required over 147,000 CPU-hours to compute the
27,956,503 nonzero 2nd-order sensitivities. Evidently, the 2nd-CASAM is the only method
that can be used in practice for computing accurately and efficiently the 2nd-order response
sensitivities for large-scale systems involving many model parameters.

3.3. Computation of the Third-Order Sensitivities of R[ϕ(x), ψ(x); α]

There are Nα(Nα + 1)(Nα + 2)/3! distinct 3rd-order sensitivities of the response
R[ϕ(x), ψ(x); α] with respect to the model and response parameters. The finite-difference
formulas for computing these sensitivities are presented in Section 3.3.1. The Forward
Sensitivity Analysis Methodology (FSAM) for computing the 3rd-order response sensitivi-
ties are presented in Section 3.3.2 and the 3rd-Order Comprehensive Adjoint Sensitivity
Analysis Methodology (3rd-CASAM) is presented in Section 3.3.3. Section 3.3.4 presents a
comparison of computational requirements for computing the third-order response sen-
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sitivities with respect to model parameters in the case of the OECD/NEA benchmark
measured in [16].

3.3.1. Finite-Difference Approximation Using Re-Computations with
User-Modified Parameters

The 3rd-order unmixed sensitivities, ∂3R(α)/∂α3
j , of the response can be approxi-

mately computed by using the well-known finite-difference formula presented below:

∂3R(α)
∂αj1

3 ≈
1

2hj1
3

(
Rj1+2 − 2Rj1+1 + 2Rj1−1 − Rj1−2

)
+ O

(
hj1

2
)

, j1 = 1, . . . , Nα, (96)

where Rj1+2 , R
(
αj1 + 2hj1

)
, Rj1+1 , R

(
αj1 + hj1

)
, Rj1−1 , R

(
αj1 − hj1

)
, Rj1−2 ,

R
(
αj1 − 2hj1

)
and hj1 denotes a “judiciously-chosen” variation in the parameter αj1 around

its nominal value α0
j1. The 3rd-order mixed sensitivities, ∂3R(α)/∂αj1∂αj2∂αj3, can be

calculated by using the following finite-difference formula:

∂3R(α)
∂αj1∂αj2∂αj3

≈ 1
8hj1hj2hj3

(
Rj1+1,j2+1,j3+1 − Rj1+1,j2+1,j3−1 − Rj1+1,j2−1,j3+1

+Rj1+1,j2−1,j3−1 − Rj1−1,j2+1,j3+1 + Rj1−1,j2+1,j3−1
+Rj1−1,j2−1,j3+1 − Rj1−1,j2−1,j3−1

)
+ O

(
hj1

2, hj2
2, hj3

2), (97)

where Rj1+1,j2+1,j3+1 = R
(
αj1 + hj1, αj2 + hj2, αj3 + hj3

)
, Rj1−1,j2+1,j3+1

= R
(
αj1 − hj1, αj2 + hj2, αj3 + hj3

)
, etc. The values of the quantities on the rights-sides of the

expressions shown in Equations (69) and (70) are obtained by re-solving
Equations (1) and (2) repeatedly, using the changed parameter values

(
αj1 ± hj1

)
,
(
αj1 ± hj2

)
and

(
αj3 ± hj3

)
. As has also been previously discussed, the values of hj1, hj2 and hj3, respec-

tively, must be chosen judiciously by trial and error for each of the parameters αj1, αj2 and
αj3. The finite difference formulas introduce their intrinsic “methodological errors” of order
O
(
hj1

2, hj2
2, hj3

2) which are in addition to, and independent of, the errors that might be
incurred in the computation of ∂3R(α)/∂αj1∂αj2∂αj3.

3.3.2. Forward Sensitivity Analysis Methodology

Within the framework of the FSAM, the third-order sensitivities
∂3R(α)/∂αj1∂αj2∂αj3,j1, j2, j3 = 1, . . . , Nα, of the response to the model parameters are
obtained by computing the partial G-derivatives of the second-order sensitivities repre-
sented by Equation (58), which yields the following result:

∂3R(ϕ;ψ;α)
∂αj1∂αj2∂αj3

, 1
δαj3

{
d
dε R(2)

[
j2; j1;ϕ

(
α0

j3 + εδαj3

)
; ψ
(

α0
j3 + εδαj3

)
; α0

j3 + εδαj3;

∂ϕ
(

α0
j3+εδαj3

)
∂αj1

;
∂ψ
(

α0
j3+εδαj3

)
∂αj1

;
∂2ϕ

(
α0

j3+εδαj3

)
∂αj1∂αj2

;
∂2ψ

(
α0

j3+εδαj3

)
∂αj1∂αj2

]}
ε=0

= R(3)
[

j2; j1;ϕ; ψ; α; ∂ϕ
∂αj2

; ∂ψ
∂αj2

; ∂2ϕ
∂αj1∂αj2

; ∂2ψ
∂αj1∂αj2

; ∂3ϕ
∂αj1∂αj2∂αj3

; ∂3ψ
∂αj1∂αj2∂αj3

]
.

(98)

As indicated by the functional dependence of the last term in Equation (98), the
evaluation of the 3rd-order response sensitivities requires prior knowledge of the 1st-
and 2nd-order derivatives of the state functions with respect to the model parameters.
The functions ∂ϕ(x)/∂αj2 and ∂ψ(x)/∂αj2 are obtained by solving the 1st-OFSS. The func-
tions ∂2ϕ/αj1∂αj2 and ∂2ψ/∂αj1∂αj2 are the solutions of the 2nd-OFSS. The functions
∂αj3∂3ϕ/∂αj1∂αj2∂αj3 and ∂3ψ/∂αj1∂αj2∂αj3 are the solutions of the following “Third-Order
Forward Sensitivity System” (3rd-OFSS), which is obtained by taking the partial G-derivative
of the 2nd-OFSS with respect to a generic model parameter αj3, which yields the follow-
ing system:

L
(

x; α0
) ∂3ϕ

∂αj3∂αj2∂αj1
=
{

f (3)(j3; j2; j1;ϕ; α)
}

α0
; j1, j2, j3 = 1, . . . , Nα; x ∈ Ωx; (99)
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{
bϕ(x; α)

}
α0

∂3ϕ
∂αj3∂αj2∂αj1

=
{

c(3)ϕ (j3; j2; j1;ϕ; α)
}

α0
; j1, j2, j3 = 1, . . . , Nα;

x ∈ ∂Ωx
(
α0); (100)

L∗
(

x; α0
) ∂3ψ

∂αj3∂αj2∂αj1
=
{

g(3)(j3; j2; j1; ψ; α)
}

α0
; j1, j2, j3 = 1, . . . , Nα; x ∈ Ωx; (101)

{
bψ(x; α)

}
α0

∂3ψ
∂αj3∂αj2∂αj1

=
{

c(3)ψ (j3; j2; j1; ψ; α)
}

α0
; j1, j2, j3 = 1, . . . , Nα;

x ∈ ∂Ωx
(
α0); (102)

where

f (3)(j3; j2; j1;ϕ; α) ,
∂ f (2)(j2; j1;ϕ; α)

∂αj3
− ∂L(x; α)

∂αj3

∂2ϕ

∂αj2∂αj1
; (103)

g(3)(j3; j2; j1; ψ; α) ,
∂g(2)(j2; j1; ψ; α)

∂αj3
− ∂L∗(x; α)

∂αj3

∂2ψ

∂αj2∂αj1
; (104)

c(3)ϕ (j3; j2; j1;ϕ; α) ,
∂c(2)ϕ (j2; j1;ϕ; α)

∂αj3
−

∂bϕ(x; α)

∂αj3

∂2ϕ

∂αj2∂αj1
; x ∈ ∂Ωx

(
α0
)

. (105)

c(3)ψ (j3; j2; j1; ψ; α) ,
∂c(2)ψ (j2; j1; ψ; α)

∂αj3
−

∂bψ(x; α)

∂αj3

∂2ψ

∂αj2∂αj1
; x ∈ ∂Ωx

(
α0
)

. (106)

Evidently, the computations of the third-order sensitivities ∂3R(α)/∂αj3∂αj2∂αj1 re-
quire 2Nα(Nα + 1)(Nα + 2)/3! large-scale computations to solve Equations (99)–(102), fol-
lowed by 2Nα(Nα + 1)(Nα + 2)/3! small-scale computations for performing the integra-
tions that define the various sensitivities. These computations would be in addition
to the 2Nα large-scale computations needed to determine the functions ∂ϕ(x)/∂αj2 and
∂ψ(x)/∂αj2 by solving the 1st-OFSS, and the Nα(Nα + 1) large-scale computations needed
to determine the functions ∂2ϕ/∂αj1∂αj2 and ∂2ψ/∂αj1∂αj2 by solving the 2nd-OFSS.

3.3.3. The 3rd-Order Comprehensive Adjoint Sensitivity Analysis Methodology
(3rd-CASAM)

The third-order sensitivities of the response R[ϕ(x), ψ(x); α] with respect to the model
parameters are obtained by determining the first-order G-differential of the 2nd-order sensi-
tivities R(2)

[
j2; j1; u(2)(x); a(2)(j1; x); α

]
= ∂2R(ϕ; ψ; α)/∂αj1∂αj2, which were computed in

Equation (90) in Section 3.2.3. By definition, the total G-differential of
R(2)

[
j2; j1; u(2)(x); a(2)(j1; x); α

]
is obtained as follows:{

δR(2)
[

j2; j1; u(2); a(2)(j1); α
]}

α0

,

{
d
dε

[
Nx
∏

k=1

∫ ωk(α
0+εδα)

λk(α0+εδα)
dxkS(2)

[
j2; j1; u(2),0 + εδu(2);

a(2),0(j1) + εδa(2)(j1); α0 + εδα

]}
ε=0

=
{

δR(2)
[

j2; j1; u(2),0; a(2),0(j1); α0; δα
]}

dir
+
{

δR(2)
[

j2; j1; u(2),0; a(2),0(j1); α0; δu(2); δa(2)(j1)
]}

ind
,

(107)

where the direct-effect term
{

δR(2)(j2; j1)
}

dir
depends directly on the parameter variations

and is defined as follows:{
δR(2)

[
j2; j1; u(2),0; a(2),0(j1); α0; δα

]}
dir

,

{
∂

∂α

Nx
∏

k=1

ωk(α)∫
λk(α)

dxkS(2)
[

j2; j1; u(2)(x); a(2)(j1; x); α
]}

α0

δα,
(108)
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while the “indirect-effect term”
{

δR(2)
[

j2; j1; u(2),0; a(2),0(j1); α0; δu(2); δa(2)(j1)
]}

ind
de-

pends indirectly on the parameter variations through the variations in the forward and
adjoint state functions and is defined as follows:{

δR(2)
[

j2; j1; u(2),0; a(2),0(j1); α0; δu(2); δa(2)(j1)
]}

ind

,
{

Nx
∏

k=1

∫ ωk(α)
λk(α)

dxk
∂S(2)[j2;j1;u(2)(x);a(2)(j1;x);α]

∂ϕ

}
α0

δϕ(x)

+

{
Nx
∏

k=1

∫ ωk(α)
λk(α)

dxk
∂S(2)[j2;j1;u(2)(x);a(2)(j1;x);α]

∂ψ

}
α0

δψ(x)

+

{
2
∑

m=1

Nx
∏

k=1

∫ ωk(α)
λk(α)

dxk
∂S(2)[j2;j1;u(2)(x);a(2)(j1;x);α]

∂a(1)m

}
α0

δa(1)
m (x)

+

{
4
∑

m=1

Nx
∏

k=1

∫ ωk(α)
λk(α)

dxk
∂S(2)[j2;j1;u(2)(x);a(2)(j1;x);α]

∂a(2)m (j1)

}
α0

δa(2)
m (j1; x).

(109)

The indirect-effect term defined in Equation (109) can be computed only after having
computed the functions δu(2)(x) and δa(2)(j1; x) ,[

δa(2)
1 (j1; x), δa(2)

2 (j1; x), δa(2)
3 (j1; x), δa(2)

4 (j1; x)
]†

. The vector of variations δu(2)(x) is the

solution of the 2nd-LVSS while the vector δa(2)(x) is the solution of the system of equations
obtained by G-differentiating the 2nd-LASS defined by Equations (85) and (87).

Applying the definition of the total G-differential, cf. Equation (23), to the 2nd-LASS
yields the following set of equations for the vector of variations δa(2)(x), all to be computed
at the nominal values of the parameters and state functions (although this will not be
indicated explicitly below, in order to keep the notation as simple as possible):

L∗(α)δa(2)
1 (j1; x)− ∂2S(u(1);α)

∂ϕ∂ϕ δa(2)
3 (j1; x)

−
[

∂3S(u(1);α)
∂ϕ∂ϕ∂ϕ δϕ+

∂3S(u(1);α)
∂ϕ∂ϕ∂ψ δψ

]
a(2)

3 (j1; x)− ∂2S(u(1);α)
∂ψ∂ϕ δa(2)

4 (j1; x)

−
[

∂3S(u(1);α)
∂ψ∂ϕ∂ϕ δϕ+

∂2S(u(1);α)
∂ψ∂ψ∂ϕ δψ

]
a(2)

4 (j1; x)− ∂2S(1)(j1;u(2);α)
∂ϕ∂ϕ δϕ

− ∂2S(1)(j1;u(2);α)
∂ϕ∂ψ δψ− ∂2S(1)(j1;u(2);a(1);α)

∂ϕ∂a(1)1

δa(1)
1

− ∂2S(1)(j1;u(2);α)
∂ϕ∂a(1)2

δa(1)
2 = p(2)1

[
u(2); a(2)(j1); α; δα

]
,

(110)

L(α)δa(2)
2 (j1; x)− ∂2S(u(1);α)

∂ϕ∂ψ δa(2)
3 (j1; x)

−
[

∂3S(u(1);α)
∂ϕ∂ϕ∂ψ δϕ+

∂3S(u(1);α)
∂ϕ∂ψ∂ψ δψ

]
a(2)

3 (j1; x)− ∂2S(u(1);α)
∂ψ∂ψ δa(2)

4 (j1; x)

−
[

∂3S(u(1);α)
∂ϕ∂ψ∂ψ δϕ+

∂3S(u(1);α)
∂ψ∂ψ∂ψ δψ

]
a(2)

4 (j1; x)− ∂2S(1)(j1;u(2);α)
∂ϕ∂ψ δϕ

− ∂2S(1)(j1;u(2);α)
∂ψ∂ψ δψ− ∂2S(1)(j1;u(2);α)

∂a(1)1 ∂ψ
δa(1)

1 −
∂2S(1)(j1;u(2);α)

∂a(1)2 ∂ψ
δa(1)

2

= p(2)2

[
u(2); a(2)(j1); α; δα

]
,

(111)

L(α)δa(2)
3 (j1; x)− ∂2S(1)(j1;u(2);α)

∂ϕ∂a(1)1

δϕ− ∂2S(1)(j1;u(2);α)
∂ψ∂a(1)1

δψ

− ∂2S(1)(j1;u(2);α)
∂a(1)1 ∂a(1)1

δa(1)
1 −

∂2S(1)(j1;u(2);α)
∂a(1)1 ∂a(1)2

δa(1)
2

= p(2)3

[
u(2); a(2)(j1); α; δα

]
,

(112)
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L∗(α)δa(2)
4 (j1; x)− ∂2S(1)(j1;u(2);α)

∂ϕ∂a(1)2

δϕ− ∂2S(1)(j1;u(2);α)
∂ψ∂a(1)2

δψ

− ∂2S(1)(j1;u(2);α)
∂a(1)1 ∂a(1)2

δa(1)
1 −

∂2S(1)(j1;u(2);α)
∂a(1)2 ∂a(1)2

δa(1)
2

= p(2)4

[
u(2); a(2)(j1); α; δα

]
,

(113)

where:
p(2)1

[
u(2); a(2)(j1); α; δα

]
, −

∂
[
L∗(α)a(2)1 (j1;x)

]
∂α δα +

[
∂3S(u(1);α)

∂α∂ϕ∂ϕ δα

]
a(2)

3 (j1; x)

+

[
∂3S(u(1);α)

∂α∂ψ∂ϕ δα

]
a(2)

4 (j1; x) +
∂2S(1)(j1;u(2);α)

∂α∂ϕ δα,

(114)

p(2)2

[
u(2); a(2)(j1); α; δα

]
, −

∂
[
L(α)a(2)2 (j1;x)

]
∂α δα

+

[
∂3S(u(1);α)

∂α∂ϕ∂ψ δα

]
a(2)

3 (j1; x) +
[

∂3S(u(1);α)
∂α∂ψ∂ψ δα

]
a(2)

4 (j1; x)

+
∂S(1)(j1;u(2);α)

∂α∂ψ δα,

(115)

p(2)3

[
u(2); a(2)(j1); α; δα

]
, −

∂
[
L(α)a(2)

3 (j1; x)
]

∂α
δα +

∂2S(1)
(

j1; u(2); α
)

∂α∂a(1)
1

δα, (116)

p(2)4

[
u(2); a(2)(j1); α; δα

]
, −

∂
[
L∗(α)a(2)

4 (j1; x)
]

∂α
δα +

∂2S(1)
(

j1; u(2); α
)

∂α∂a(1)
2

δα. (117)

The vector of variations δa(2)(x) is subject to the boundary conditions obtained by
G-differentiating Equation (87), which will be represented in operator form as follows:{

δb(2)A

[
u(2); a(2)(j1); α; δu(1); δa(2)(j1); δα

]}
α0

= 0,x ∈ ∂Ωx

(
α0
)

, j1 = 1, . . . , Nα. (118)

As Equations (110) through (118) indicate, the vector of variations δa(2)(x) and

δu(2)(x) ,
[
δu(1)(x); δa(1)

1 (x), δa(1)
2 (x)

]†
are related to each other, and must be determined

by solving simultaneously the coupled system of equations obtained by concatenating
Equations (110) through (117) to the 2nd-LVSS, while being subject to the boundary condi-
tions obtained by concatenating the boundary conditions which belong to the 2nd-LVSS
with the boundary conditions represented by Equation (118). This coupled system will
comprise 8 (coupled) equations, which can be represented in the following matrix-form:

V(3)
[

j1; u(2)(x)
]
δu(3)(j1; x) = q(3)

[
j1; u(2)(j1; x); a(2)(j1; x); α; δα

]
,

x ∈ Ωx, j1 = 1, . . . , Nα,
(119)

b(3)v

[
j1; u(3)(j1; x); α; δu(3)(j1; x); δα

]
,

 b(2)V

[
u(2)(j1; x); α; δu(2)(j1; x); δα

]
δb(2)A

[
j1; u(3)(j1; x); α; δu(3)(j1; x); δα

]  =

(
0
0

)
, x ∈ ∂Ωx

(
α0), (120)

where all of the components of the matrices and vectors are to be computed at nominal
parameter and state function values, although the corresponding indication (namely, the su-
perscript “zero”) has been omitted in order to simplify the notation. The 8 × 8 block-matrix
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V(3)
[

j1; u(2)(x)
]
, and the 8-component block-vectors δu(3)(j1; x) and q(3)

[
u(3)(j1; x); α; δα

]
have the following structures:

u(3)(j1; x) =
[
u(2)(x); a(2)(j1; x);

]†
; δu(3)(j1; x) =

[
δu(2)(x); δa(2)(j1; x)

]†
;

q(3)
[
u(3)(j1; x); α; δα

]
,

 q(2)
(

u(2); α; δα
)

p(2)
[

j1; u(2)(j1; x); a(2)(j1; x); α; δα
] 

,
[
q(3)1 , q(3)2 , q(3)3 , q(3)4 , q(3)5 (j1), q(3)6 (j1), q(3)7 (j1), q(3)8 (j1)

]†
;

(121)

V(3)
[

j1; u(2)(x)
]
,

 V(2)
(

u(1)
)

[0](4×4)

V(3)
21

(
j1; u(2)

)
V(3)

22

(
u(1)

) ;

V(3)
22

(
u(1)

)
,


L∗(α) 0 − ∂2S(u(1);α)

∂ϕ∂ϕ − ∂2S(u(1);α)
∂ψ∂ϕ

0 L(α) − ∂2S(u(1);α)
∂ϕ∂ψ − ∂2S(u(1);α)

∂ψ∂ψ

0 0 L(α) 0
0 0 0 L∗(α)

;

(122)

and where the components v(3)
21 (i, j) of the matrix V(3)

21 (j1) ,
[
v(3)

21 (i, j)
]
(4×4)

; i, j = 1, . . . , 4

are defined as follows:

v(3)21 (1, 1) = −
∂3S
(

u(1); α
)

∂ϕ∂ϕ∂ϕ
a(2)3 (j1; x)−

∂3S
(

u(1); α
)

∂ψ∂ϕ∂ϕ
a(2)4 (j1; x)−

∂2S(1)
(

j1; u(2); α
)

∂ϕ∂ϕ
, (123)

v(3)21 (1, 2) = −
∂3S
(

u(1); α
)

∂ϕ∂ϕ∂ψ
a(2)3 (j1; x)−

∂2S
(

u(1); α
)

∂ψ∂ψ∂ϕ
a(2)4 (j1; x)−

∂2S(1)
(

j1; u(2); α
)

∂ϕ∂ψ
, (124)

v(3)
21 (1, 3) = −

∂2S(1)
(

j1; u(2); α
)

∂ϕ∂a(1)
1

, v(3)
21 (1, 4) = −

∂2S(1)
(

j1; u(2); α
)

∂ϕ∂a(1)
2

, (125)

v(3)21 (2, 1) = −
∂3S
(

u(2); α
)

∂ϕ∂ϕ∂ψ
a(2)3 (j1; x)−

∂3S
(

u(1); α
)

∂ϕ∂ψ∂ψ
a(2)4 (j1; x)−

∂2S(1)
(

j1; u(2); α
)

∂ϕ∂ψ
, (126)

v(3)21 (2, 2) = −
∂3S
(

u(1); α
)

∂ϕ∂ψ∂ψ
a(2)3 (j1; x)−

∂3S
(

u(1); α
)

∂ψ∂ψ∂ψ
a(2)4 (j1; x)−

∂2S(1)
(

j1; u(2); α
)

∂ψ∂ψ
, (127)

v(3)
21 (2, 3) = −

∂2S(1)
(

j1; u(2); α
)

∂a(1)
1 ∂ψ

, v(3)
21 (2, 4) = −

∂2S(1)
(

j1; u(2); α
)

∂a(1)
2 ∂ψ

, (128)

v(3)
21 (3, 1) = −

∂2S(1)
(

j1; u(2); α
)

∂ϕ∂a(1)
1

, v(3)
21 (3, 2) = −

∂2S(1)
(

j1; u(2); α
)

∂ψ∂a(1)
1

, (129)

v(3)
21 (3, 3) = −

∂2S(1)
(

j1; u(2); α
)

∂a(1)
1 ∂a(1)

1

, v(3)
21 (3, 4) = −

∂2S(1)
(

j1; u(2); α
)

∂a(1)
2 ∂a(1)

1

, (130)

v(3)
21 (4, 1) = −

∂2S(1)
(

j1; u(2); α
)

∂ϕ∂a(1)
2

, v(3)
21 (4, 2) = −

∂2S(1)
(

j1; u(2); α
)

∂ψ∂a(1)
2

, (131)

v(3)
21 (4, 3) = −

∂2S(1)
(

j1; u(2); α
)

∂a(1)
1 ∂a(1)

2

, v(3)
21 (4, 4) = −

∂2S(1)
(

j1; u(2); α
)

∂a(1)
2 ∂a(1)

2

. (132)

The matrix-operator equations represented by Equation (119) together with the bound-
ary conditions represented by Equation (120) will be called the 3rd-Level Variational Sensitiv-
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ity System (3rd-LVSS). The solution, δu(3)(x), of the 3rd-LVSS will be called the “3rd-level
variational sensitivity function”.

In the particular case when the response depends only on the forward function
ϕ(x), i.e., if the response has the functional dependence R[ϕ(x); α], the quantities ψ, a(1)

2 ,

a(2)
2 (j1; x), a(2)

4 (j1; x) and related quantities would not exist. Consequently, the vector
w(3)(j1; x) would reduce to the following 4-component vector:

δu(3)(j1; x) =
[
δϕ(x), δa(1)

1 (x), δa(2)
1 , δa(2)

3

]†
and the 3rd-LVSS would reduce correspond-

ingly to the following system of 4x4 matrix equations:
L(α) 0 0 0

− ∂2S(ϕ;α0)
∂ϕ∂ϕ L∗(α) 0 0

F(3)
31 [j1] F(3)

32 [j1] L∗(α) − ∂2S(ϕ;α)
∂ϕ∂ϕ

F(3)
41 [j1] F(3)

42 [j1] 0 L(α)




δϕ(x)
δa(1)1

δa(2)1 (j1; x)
δa(2)3 (j1; x)

 = (1)(1) =


q(1)1
q(2)3

q(3)5

q(3)7

, (133)

where

F(3)
31 [j1] = − ∂3S(ϕ;ψ;α)

∂ϕ∂ϕ∂ϕ a(2)
3 (j1; x)− ∂2S(1)(j1;ϕ;ψ;a(1);α)

∂ϕ∂ϕ ; F(3)
32 [i1] = −

∂2S(1)(j1;ϕ;a(1);α)
∂ϕ∂a(1)1

;

F(3)
41 [j1] = −

∂2S(1)(j1;ϕ;ψ;a(1);α)
∂ϕ∂a(1)1

; F(3)
42 [i1] = −

∂2S(1)(j1;ϕ;ψ;a(1);α)
∂a(1)1 ∂a(1)1

;

q(1)1 =
∂
[
qϕ(α)−L(α)ϕ

]
∂α ; q(2)3 =

∂2S(ϕ;ψ;α0)
∂α∂ϕ δα−

∂
[
L∗(α0)a(1)1

]
∂α δα;

q(3)5 = −
∂
[
L∗(α)a(2)1 (j1;x)

]
∂α δα + ∂2S(1)(j1)

∂α∂ϕ δα +
[

∂3S(ϕ;α)
∂α∂ϕ∂ϕ δα

]
a(2)

3 (j1; x);

q(3)7 = −
∂
[
L(α)a(2)3 (j1;x)

]
∂α δα +

∂2S(1)(j1;ϕ;a(1);α)
∂α∂a(1)1

δα.

A reduction of the 3rd-LVSS to a 4 × 4 matrix-equation, which would be similar to
the reduction shown in Equation (133), would also occur for a response R[ψ(x); α] which
depended only on the adjoint function ψ(x).

Since the 3rd-LVSS equations depend on the parameter variations δαi, solving them is
prohibitively expensive computationally for large-scale systems involving many parame-
ters. The need for solving the 3rd-LVSS can be avoided by expressing the indirect-effect
term

{
δR(1)(j2; j1)

}
ind

defined in Equation (109) in an alternative way, namely in terms of
the solutions of a 3rd-Level Adjoint Sensitivity System (3rd-LASS), which will not involve
any variations in the state functions. This 3rd-LASS is constructed by implementing the
same sequence of logical steps as used to construct the 1st-LASS and the 2nd-LASS, namely:

1 Define a Hilbert space, denoted as H3, comprising vector-valued elements of the form

η(3)(x) ,
[
η
(3)
1 (x), . . . , η

(3)
8 (x)

]†
∈ H3, with

η
(3)
i (x) ,

[
η
(3)
i,1 (x), . . . , η

(3)
i,j (x), . . . , η

(3)
i,Nϕ

(x)
]†

, i = 1, .., 8. The inner product between

two elements, η(3)(x) ∈ H3 and ξ(3)(x) ∈ H3, of this Hilbert space, will be denoted as
η(3)(x),ξ(3)(x)3 and is defined as follows:

〈η(3)(x), ξ(3)(x)〉3 ,
8

∑
i=1
〈η(3)i (x), ξ

(3)
i (x)〉0. (134)
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2 In the Hilbert H3, form the inner product of Equation (119) with a set of yet un-

defined vector-valued functions a(3)(j2; j1; x) ,
[
a(3)

1 (j2; j1; x), . . . , a(3)
8 (j2; j1; x)

]†
∈

H3,j1, j2 = 1, . . . , Nα, to obtain the following relation:{
〈a(3)(j2; j1; x), V(3)

[
j1; u(2)(x)

]
δu(3)(x)〉3

}
α0

=
{
〈a(3)(j2; j1; x), q(3)

[
j1; u(3)(j1; x); α; δα

]
〉3
}

α0
.

(135)

3 Using the definition of the adjoint operator in the Hilbert space H3, recast the left-side
of Equation (135) as follows:{

a(3)(j2; j1; x), V(3)
[

j1; u(2)(x)
]
δu(3)(x)3

}
α0

=
{

δu(3)(x), A(3)(j1)a(3)(j2; j1; x)3

}
α0

+
{

P(3)
[
δu(3)(x); a(3)(j2; j1; x); u(3)(j1; x); α; δα

]}
α0

,

(136)

where
{

P(3)
[
δu(3)(x); a(3)(j2; j1; x); u(3)(j1; x); α; δα

]}
α0

denotes the bilinear concomi-

tant defined on the phase-space boundary x ∈ ∂Ωx
(
α0) and where A(3)

[
j1; u(2)(x)

]
,[

V(3)
(

j1; u(2)
)]∗

is the operator formally adjoint to V(3)
[

j1; u(2)(x)
]

and has therefore
the following form:

A(3)
[

j1; u(2)(x)
]
=

 A(2)
[
V(3)

21

(
j1; u(2)

)]∗
[0](4×4)

[
V(3)

22

]∗
. (137)

4 The first term on right-side of Equation (136) is now required to represent the indirect-

effect term
{

δR(2)
[

j2; j1; u(2),0; a(2),0(j1); α0; δu(2); δa(2)(j1)
]}

ind
defined in Equation

(109). This requirement is satisfied by imposing the following relation on each element

a(3)(j2; j1; x) ,
[
a(3)

1 (j2; j1; x), . . . , a(3)
8 (j2; j1; x)

]†
∈ H3, j1, j2 = 1, . . . , Nα:{

A(3)
[

j1; u(2)(j1; x)
]
a(3)(j2; j1; x)

}
α0

=
{

s(3)
[

j2; j1; u(3)(j1; x); α
]}

α0
,

j1, j2 = 1, . . . , Nα,
(138)

where the block-vector s(3)
[

j2; j1; u(3)(j1; x); α
]

comprises, for each j1, j2 = 1, . . . , Nα,
eight components (which are themselves block-vectors) defined as follows:

s(3)
[

j2; j1; u(3)(j1; x); α
]

,
[
s(3)1

(
j2; j1; u(3)(j1; x); α

)
, . . . , s(3)8

(
j2; j1; u(3)(j1; x); α

)]†
,

(139)

where

s(3)1

[
j2; j1; u(3)(j1; x); α

]
,

∂S(2)
[

j2; j1; u(3)(j1; x); α
]

∂ϕ
, (140)

s(3)2

[
j2; j1; u(3)(j1; x); α

]
,

∂S(2)
[

j2; j1; u(3)(j1; x); α
]

∂ψ
, (141)

s(3)3

[
j2; j1; u(3)(j1; x); α

]
,

∂S(2)
[

j2; j1; u(3)(j1; x); α
]

∂a(1)
1

, (142)
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s(3)4

[
j2; j1; u(3)(j1; x); α

]
,

∂S(2)
[

j2; j1; u(3)(j1; x); α
]

∂a(1)
2 (j1)

, (143)

s(3)5

[
j2; j1; u(3)(j1; x); α

]
,

∂S(2)
[

j2; j1; u(3)(j1; x); α
]

∂a(2)
1

, (144)

s(3)6

[
j2; j1; u(3)(j1; x); α

]
,

∂S(2)
[

j2; j1; u(3)(j1; x); α
]

∂a(2)
2 (j1)

, (145)

s(3)7

[
j2; j1; u(3)(j1; x); α

]
,

∂S(2)
[

j2; j1; u(3)(j1; x); α
]

∂a(2)
3 (j1)

, (146)

s(3)8

[
j2; j1; u(3)(j1; x); α

]
,

∂S(2)
[

j2; j1; u(3)(j1; x); α
]

∂a(2)
4 (j1)

. (147)

5 The definition of the set of vectors a(3)(j2; j1; x) ,
[
a(3)

1 (j2; j1; x), . . . , a(3)
8 (j2; j1; x)

]†
∈

H3 will now be completed by selecting boundary conditions for this set of vectors,
which will be represented in operator form as follows:{

b(3)A

[
a(3)(j2; j1; x); u(3)(j1; x); α

]}
α0

= 0, x ∈ ∂Ωx

(
α0
)

, j1, j2 = 1, . . . , Nα. (148)

The boundary conditions represented by Equation (148) are selected so as to satisfy
the following requirements:

(i) The boundary conditions Equation (148) together with the operator Equation (138)
constitute a well posed problem for the functions a(3)(j2; j1; x).

(ii) Implementation in Equation (136) of the boundary conditions provided in Equation
(120) together with those provided in Equation (148) eliminates all of the unknown
values of the functions δu(3)(x) and a(3)(j2; j1; x) in the expression of the bilinear
concomitant

{
P(3)

[
δu(3)(x); a(3)(j2; j1; x); u(3)(j1; x); α; δα

]}
(α0)

. This bilinear con-

comitant may vanish after implementing the boundary conditions represented by
Equation (148), but if it does not, it will be reduced to a residual quantity which
will be denoted as P̂(3)

[
a(3)(j2; j1; x); u(3)(j1; x); α; δα

]
and which will comprise only

known values of a(3)(j2; j1; x), u(3)(j1; x), α and δα.

The system of equations represented by Equation (138) together with the boundary
conditions represented by Equation (148) constitute the 3rd-Level Adjoint Sensitivity System

(3rd-LASS). The solution a(3)(j2; j1; x) ,
[
a(3)

1 (j2; j1; x), . . . , a(3)
8 (j2; j1; x)

]†
∈ H3, j1, j2 =

1, . . . , Nα, of the 3rd-LASS will be called the 3rd-level adjoint function.
The 3rd-LASS together with the results provided in Equations (135) and (136) are

employed in Equation (109) to obtain the following expression for the indirect-effect term{
δR(2)

[
j2; j1; u(3)(j1; x); α; δu(2); δa(2)(j1)

]}
ind

in terms of the 3rd-level adjoint functions

a(3)(j2; j1; x), for j1, j2 = 1, . . . , Nα:{
δR(2)

[
j2; j1; u(3)(j1; x); α; δu(3)(j1; x)

]}
ind

=
{
〈a(3)(j2; j1; x), q(3)

[
u(3)(j1; x); α; δα

]
〈3
}

α0

−
{

P̂(3)
[
u(3)(j1; x); a(3)(j2; j1; x); α; δα

]}
α0

≡
{

δR(2)
[

j2; j1; u(3)(j1; x); a(3)(j2; j1; x); α; δα
]}

ind
.

(149)
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As the identity in the last line of Equation (149) indicates, the dependence of the
indirect-effect term on the variations δu(2) and δa(2)(j1) in the state functions has been
eliminated, by having replaced this dependence by the dependence on the 3rd-level adjoint
function a(3)(j2; j1; x).

Inserting the expressions of the components of the vector q(3)
[
u(3)(j1; x)α; δα

]
, cf.

Equation (122), into Equation (149) and adding the resulting expression for the indirect-
effect term

{
δR(2)

[
j2; j1; u(3)(j1; x); α; δu(2); δa(2)(j1)

]}
ind

to the expression of the direct-
effect term given in Equation (108) yields the following expression for the total third-order
G-differential of the response R[ϕ(x), ψ(x); α]:{

δR(2)
[

j2; j1; u(3)(j1; x); a(3)(j2; j1; x); α; δα
]}

α0

=

{
∂

∂α

Nx
∏

k=1

∫ ωk(α)
λk(α)

dxkS(2)
[

j2; j1; u(3)(j1; x); α
]}

α0
δα

+
{〈

a(3)
1 (j2; j1; x), q(1)1 (ϕ; α; δα)

〉
0

}
α0
+
{〈

a(3)
2 (j2; j1; x), q(1)2 (ψ; α; δα)

〉
0

}
α0

+
{〈

a(3)
3 (j2; j1; x), q(2)3

(
u(2); α; δα

)〉
0

}
α0

+
{〈

a(3)
4 (j2; j1; x), q(2)4

(
u(2); α; δα

)〉
0

}
α0

+
{〈

a(3)
5 (j2; j1; x), q(3)5

[
u(3)(j1; x); α; δα

]〉
0

}
α0

+
{〈

a(3)
6 (j2; j1; x), q(3)6

[
u(3)(j1; x); α; δα

]〉
0

}
α0

+
{〈

a(3)
7 (j2; j1; x), q(3)7

[
u(3)(j1; x); α; δα

]〉
0

}
α0

+
{〈

a(3)
8 (j2; j1; x), q(3)8

[
u(3)(j1; x); α; δα

]〉
0

}
α0

−
{

P̂(3)
[
u(3)(j1; x); a(3)(j2; j1; x); α; δα

]}
α0

, f orj1, j2 = 1, . . . , Nα.

(150)

Inserting the explicit expressions for the components of q(3)
[
u(3)(j1; x); α; δα

]
into

Equation (150) leads to the following expression of the total third-order G-differential{
δR(2)

[
j2; j1; u(3)(j1; x); a(3)(j2; j1; x); α; δα

]}
α0

in terms of the third-order partial sensitivi-
ties (G-derivatives) of the response with respect to the model parameters:{

δR(2)
[
u(3)(j1; x); a(3)(j2; j1; x); α; δα

]}
α0

= ∑Nα
j3=1

{
R(3)

[
j3; j2; j1; u(3)(j1; x); a(3)(j2; j1; x); α

]}
α0

δαj3,
(151)

where R(3)
[

j3; j2; j1; u(3)(j1; x); a(3)(j2; j1; x); α
]

denotes the 3rd-order partial sensitivity of
the response with respect to the model parameters, evaluated at the nominal parameter
values α0. The explicit expression of R(3)

[
j3; j2; j1; u(3)(j1; x); a(3)(j2; j1; x); α

]
is obtained

by using Equation (150) in Equation (151) and subsequently identifying the expression that
multiplies the parameter δαj3. This process indicates that the 3rd-order partial sensitivity
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R(3)
[

j3; j2; j1; u(3)(j1; x); a(3)(j2; j1; x); α
]

has the following explicit expression, for each
j1, j2, j3 = 1, . . . , Nα:

R(3)
[

j3; j2; j1; u(3)(j1; x); a(3)(j2; j1; x); α
]
≡ ∂3R(ϕ;ψ;α)

∂αj3∂αj2∂αj1

= −
{

∂
∂αj3

P̂(3)
[
u(3)(j1; x); a(3)(j2; j1; x); α; δα

]}
α0

+ ∂
∂αj3

{
Nx
∏

k=1

∫ ωk(α)
λk(α)

dxkS(2)
[

j2; j1; u(3)(j1; x); α
]}

α0

+

{〈
a(3)

1 (j2; j1; x),
∂
[
qϕ(α)−L(α)ϕ(x)

]
∂αj3

〉
0

+

〈
a(3)

2 (j2; j1; x),
∂
[
qψ(α)−L∗(α)ψ(x)

]
∂αj3

〉
0

}
α0

+

{〈
a(3)

3 (j2; j1; x),
∂2S(u(1);α)

∂αj3∂ϕ α−
∂
[
L∗(α)a(1)1

]
∂αj3

〉
0

+

〈
a(3)

4 (j2; j1; x),
∂2S(u(1);α)

∂αj3∂ψ −
∂
[
L(α)a(1)2

]
∂αj3

〉
0

}
α0

+

{〈
a(3)

5 (j2; j1; x),−
∂
[
L∗(α)a(2)1 (j1;x)

]
∂αj3

+
∂3S(u(1);α)

∂αj3∂ϕ∂ϕ a(2)
3 (j1; x)

+
∂3S(u(1);α)
∂αj3∂ψ∂ϕ a(2)

4 (j1; x) +
∂2S(1)(j1;u(2);α)

∂αj3∂ϕ

〉
0

}
α0

+

{〈
a(3)

6 (j2; j1; x),−
∂
[
L(α)a(2)2 (j1;x)

]
∂αj3

+
∂3S(u(1);α)
∂αj3∂ϕ∂ψ a(2)

3 (j1; x)

+
∂3S(u(1);α)
∂αj3∂ψ∂ψ a(2)

4 (j1; x) +
∂2S(1)(j1;u(2);a(1);α)

∂αj3∂ψ

〉
0

}
α0

+

{〈
a(3)

7 (j2; j1; x),−
∂
[
L(α)a(2)3 (j1;x)

]
∂αj3

+
∂2S(1)(j1;u(2);α)

∂αj3∂a(1)1

〉
0

}
α0

+

{〈
a(3)

8 (j2; j1; x),−
∂
[
L∗(α)a(2)4 (j1;x)

]
∂αj3

+
∂2S(1)(j1;u(2);α)

∂αj3∂a(1)2

〉
0

}
α0

,
{

Nx
∏

k=1

∫ ωk(α)
λk(α)

dxkS(3)
[

j3; j2; j1; u(3)(j1; x); a(3)(j2; j1; x); α
]}

α0
.

(152)

The expression in Equation (152) can be computed after having obtained the 3rd-

level adjoint function a(3)(j2; j1; x) ,
[
a(3)

1 (j2; j1; x), . . . , a(3)
8 (j2; j1; x)

]†
. Since the 3rd-

LASS is independent of parameter variations δα, the exact computation of all of the
partial third-order sensitivities R(3)

[
j3; j2; j1; u(3)(j1; x); a(3)(j2; j1; x); α

]
requires at most

O
(

N2
α

)
large-scale (adjoint) computations using the 3rd-LASS, rather than O

(
N3

α

)
large-

scale computations as would be required by forward methods. In component form, the
equations comprising the 3rd-LASS are as solved (for each j1 = 1, . . . , Nα; j2 = 1, . . . , j1) at
the nominal values for the model parameters and state functions in the following order:

L(α)a(3)
5 (j2; j1; x) = s(3)5

[
j2; j1; u(3)(j1; x); α

]
, (153)

L∗(α)a(3)
6 (j2; j1; x) = s(3)6

[
j2; j1; u(3)(j1; x); α

]
, (154)

L∗(α)a(3)
7 (j2; j1; x) = s(3)7

[
j2; j1; u(3)(j1; x); α

]
+

∂2S(u(1);α)
∂ϕ∂ϕ a(3)

5 (j2; j1; x)

+
∂2S(u(1);α)

∂ϕ∂ψ a(3)
6 (j2; j1; x),

(155)
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L(α)a(3)
8 (j2; j1; x) = s(3)8

[
j2; j1; u(3)(j1; x); α

]
+

∂2S(u(1);α)
∂ψ∂ϕ a(3)

5 (j2; j1; x)

+
∂2S(u(1);α)

∂ψ∂ψ a(3)
6 (j2; j1; x),

(156)

L(α)a(3)
3 (j2; j1; x) = s(3)3

[
j2; j1; u(3)(j1; x); α

]
+

4

∑
k=1

v(3)
21 (k, 3)a(3)

k+4(j2; j1; x), (157)

L∗(α)a(3)
4 (j2; j1; x) = s(3)4

[
j2; j1; u(3)(j1; x); α

]
+

4

∑
k=1

v(3)
21 (k, 4)a(3)

k+4(j2; j1; x), (158)

L∗(α)a(3)
1 (j2; j1; x) = s(3)1

[
j2; j1; u(3)(j1; x); α

]
+

∂2S(u(1);α)
∂ϕ∂ϕ a(3)

3 (j2; j1; x)

+
∂2S(u(1);α)

∂ψ∂ϕ a(3)
4 (j2; j1; x) +

4
∑

k=1
v(3)

21 (k, 1)a(3)
k+4(j2; j1; x),

(159)

L(α)a(3)
2 (j2; j1; x) = s(3)2

[
j2; j1; u(3)(j1; x); α

]
+

∂2S(u(1);α)
∂ϕ∂ψ a(3)

3 (j2; j1; x)

+
∂2S(u(1);α)

∂ψ∂ψ a(3)
4 (j2; j1; x) +

4
∑

k=1
v(3)

21 (k, 2)a(3)
k+4(j2; j1; x),

(160)

The equations underlying the 3rd-LASS are solved successively, starting with
Equations (153) and (154) to compute the 3rd-level adjoint functions a(3)

5 (j2; j1; x) and

a(3)
6 (j2; j1; x). Note that solving using Equations (153) and (154) would be performed

by using the same forward and adjoint solvers (i.e., computer codes) as used for solv-
ing the original forward and adjoint systems, namely Equations (3) and (11), respec-
tively. Only the corresponding source terms and boundary conditions would differ. After
having obtained the 3rd-level adjoint functions a(3)

5 (j2; j1; x) and a(3)
6 (j2; j1; x), the next

round of computations would be to solve Equations (155) and (156) in order to deter-
mine the 3rd-level adjoint functions a(3)

7 (j2; j1; x) and a(3)
8 (j2; j1; x), respectively. Solving

Equations (155) and (156) would also be performed by using the same forward and ad-
joint solvers (i.e., computer codes) as used for solving the original forward and adjoint
systems. The next round of computations would employ the forward and adjoint solvers
for solving Equations (157) and (158) in order to determine the 3rd-level adjoint functions
a(3)

3 (j2; j1; x) and a(3)
4 (j2; j1; x), respectively. The final set of computations would require

the use of the forward and adjoint solvers to solve Equations (159) and (160) in order
to determine the 3rd-level adjoint functions a(3)

1 (j2; j1; x) and a(3)
2 (j2; j1; x), respectively.

Thus, solving the 3rd-LASS in order to determine the 3rd-level adjoint functions does not
require any significant “code development,” since the original forward and adjoint solvers
(codes) do not need to be modified; only the right-sides (i.e., “sources”) and boundary
conditions would need to be programmed accordingly. Using the 3rd-LASS enables the
specific computation of the 3rd-order sensitivities in the priority order set by the user, so
that only the important 3rd-order partial sensitivities R[ϕ(x), ψ(x); α] would be computed.
Information provided by the first- and second-order sensitivities is very likely to indicate
which 3rd-order sensitivities could be neglected.

3.3.4. Comparison of Computational Requirements for Computing the Third-Order
Response Sensitivities with Respect to Model Parameters

The largest third-order sensitivities of the leakage response of the OECD/NEA reactor
physics benchmark measured in [16] have been computed in [19–21], where it was shown
that these large sensitivities (which reached relative values of 104) involved the benchmark’s
180 imprecisely known microscopic total cross sections. Using a DELL computer (AMD
FX-8350) with an 8-core processor, the CPU-time for a typical adjoint computation (which
represents a large-scale computation) of one (of the 8) of the adjoint functions needed
for computing the 3rd-order response sensitivities to the benchmark’s total microscopic
cross sections is ca. 20 s, while the CPU-time computing an integral (which represents
a small-scale computation) over the adjoint function(s) which appear(s) in the formula
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for computing a 3rd-order sensitivity is ca. 0.003 s. By applying the 3rd-CASAM, the
computation of the 3rd-order sensitivities of the benchmark’s leakage response to the
180 total microscopic cross sections required 33,301 large-scale adjoint computations, which
required 175 CPU-hours. By comparison, computing these 3rd-order sensitivities using the
FSAM would have required 1,004,730 large-scale forward computations (which would have
required 12,559 CPU-hours). Using finite-differences would have required 7,905,360 large-
scale forward computations (which would have required 98,817 CPU-hours) to obtain, at
best, approximate values for these 3rd-order sensitivities. Evidently, the 3rd-CASAM is the
only practical methodology capable of computing, without introducing methodological
errors, 3rd-order sensitivities for large-scale systems involving many parameters.

3.4. Computation of the Fourth-Order Sensitivities of R[ϕ(x), ψ(x); α]

There are Nα(Nα + 1)(Nα + 2)(Nα + 3)/4! distinct 4th-order sensitivities of the re-
sponse with respect to the model and response parameters. It is not practicable to com-
pute these sensitivities using finite-difference formulas or the forward sensitivity analysis
methodology. The finite-difference formulas for computing these sensitivities are presented
in Section 3.4.1. The Forward Sensitivity Analysis Methodology (FSAM) for computing
the 3rd-order response sensitivities are presented in Section 3.4.2, while the 4th-Order
Comprehensive Adjoint Sensitivity Analysis Methodology (4th-CASAM) is presented in
Section 3.4.3.

3.4.1. Finite-Difference Approximation Using Re-Computations with
User-Modified Parameters

The 4th-order unmixed sensitivities, ∂4R(α)/∂α4
j1, of the leakage response, R(α), with

respect to all the model parameters, can be approximately computed by re-computations
using the well-known finite-difference formula presented below:

∂4R(α)

(∂αj1)
4 ≈ 1

hj1
4

(
Rj1+2 − 4Rj1+1 + 6Rj1 − 4Rj1−1 + Rj1−2

)
+ O

(
hj1

2),
j1 = 1, . . . , Nα,

(161)

where Rj1+2 , R
(
αj1 + 2hj1

)
, Rj1+1 , R

(
αj1 + hj1

)
, Rj1−1 , R

(
αj1 − hj1

)
, Rj1−2 ,

R
(
αj1 − 2hj1

)
and hj1 denotes a “judiciously-chosen” variation in the parameter αj1 around

its nominal value α0
j1. The 4th-order mixed sensitivities, ∂4R(α)/∂αj1∂αj2∂αj3∂αj4, can be

calculated by using the following finite-difference formula:

∂4R(α)
∂αj1∂αj2∂αj3∂αj4

≈ 1
16hj1hj2hj3hj4

(
Rj1+1,j2+1,j3+1,j4+1 − Rj1+1,j2+1,j3+1,j4−1

−Rj1+1,j2+1,j3−1,j4+1 + Rj1+1,j2+1,j3−1,j4−1 − Rj1+1,j2−1,j3+1,j4+1
+Rj1+1,j2−1,j3+1,j4−1 + Rj1+1,j2−1,j3−1,j4+1 − Rj1+1,j2−1,j3−1,j4−1
−Rj1−1,j2+1,j3+1,j4+1 + Rj1−1,j2+1,j3+1,j4−1 + Rj1−1,j2+1,j3−1,j4+1
−Rj1−1,j2+1,j3−1,j4−1 + Rj1−1,j2−1,j3+1,j4+1 − Rj1−1,j2−1,j3+1,j4−1

−Rj1−1,j2−1,j3−1,j4+1 + Rj1−1,j2−1,j3−1,j4−1
)
+ O

(
hj1

2, hj2
2, hj3

2, hj4
2),

(162)

where Rj1+1,j2+1,j3+1,j4+1 , R
(
αj1 + hj1, αj2 + hj2, αj3 + hj3, αj4 + hj4

)
, etc. The finite differ-

ence formulas introduce their intrinsic “methodological errors” of order O
(
hj1

2, hj2
2, hj3

2, hj4
2)

which are in addition to, and independent of, the errors that might be incurred in the compu-
tation of ∂4R(α)/∂αj1∂αj2∂αj3∂αj4.

3.4.2. Forward Sensitivity Analysis Methodology

Within the framework of the FSAM, the fourth-order sensitivities
∂4R(ϕ; ψ; α)/∂αj1∂αj2∂αj3∂αj4; j1, j2, j3; j4 = 1, . . . , Nα, of the response to the model param-
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eters are obtained by computing the partial G-derivatives of the third-order sensitivities
represented by Equation (98), which yields the following result:

∂4R(ϕ;ψ;α)
∂αj1∂αj2∂αj3∂αj4

, 1
δαj4

{
d
dε R(3)

[
j3; j2; j1;ϕ

(
α0

j4 + εδαj4

)
; ψ
(

α0
j4 + εδαj4

)
;

α0
j4 + εδαj4;

∂ϕ
(

α0
j4+εδαj4

)
∂αj1

;
∂ψ
(

α0
j4+εδαj4

)
∂αj1

;
∂2ϕ

(
α0

j4+εδαj4

)
∂αj1∂αj2

;

∂2ψ
(

α0
j4+εδαj4

)
∂αj1∂αj2

;
∂3ϕ

(
α0

j4+εδαj4

)
∂αj1∂αj2∂αj3

;
∂3ψ

(
α0

j4+εδαj4

)
∂αj1∂αj2∂αj3

]}
ε=0

= R(4)
[

j4; j3j2; j1;ϕ; ψ; α; ∂ϕ
∂αj2

; ∂ψ
∂αj2

; ∂2ϕ
∂αj1∂αj2

; ∂2ψ
∂αj1∂αj2

;
∂3ϕ

∂αj1∂αj2∂αj3
; ∂3ψ

∂αj1∂αj2∂αj3
; ∂4ϕ

∂αj1∂αj2∂αj3∂αj4
; ∂4ψ

∂αj1∂αj2∂αj3∂αj4

]
.

(163)

As indicated by the functional dependence of the last term in Equation (163), the
evaluation of the 4th-order sensitivities requires prior knowledge of the 1st-, 2nd-, and
3rd-order partial derivatives of the state functions with respect to the model parameters.
The functions ∂ϕ(x)/∂αj1 and ∂ψ(x)/∂αj1 are obtained by solving the 1st-OFSS. The func-
tions ∂2ϕ/∂αj1∂αj2 and ∂2ψ/∂αj1∂αj2 are the solutions of the 2nd-OFSS. The functions
∂3ϕ/∂αj1∂αj2∂αj3 and ∂3ψ/∂αj1∂αj2∂αj3 are the solutions of the 3rd-OFSS. The functions
∂4ϕ/∂αj1∂αj2∂αj3∂αj4 and ∂4ψ/∂αj1∂αj2∂αj3∂αj4 are the solutions of the following Fourth-
Order Forward Sensitivity System (4th-OFSS), which is obtained by taking the partial
G-derivative of the 3rd-OFSS with respect to a generic model parameter αj4:

L
(
x; α0) ∂4ϕ

∂αj4∂αj3∂αj2∂αj1
=
{

f (4)(j4; j3; j2; j1;ϕ; α)
}

α0
;

j1, . . . , j4 = 1, . . . , Nα; x ∈ Ωx;
(164)

{
Bϕ(x; α)

}
α0

∂4ϕ
∂αj4∂αj3∂αj2∂αj1

=
{

c(4)ϕ (j4; j3; j2; j1;ϕ; α)
}

α0
;

j1, . . . , j4 = 1, . . . , Nα; x ∈ ∂Ωx
(
α0); (165)

L∗
(
x; α0) ∂4ψ

∂αj4∂αj3∂αj2∂αj1
=
{

g(4)(j4; j3; j2; j1; ψ; α)
}

α0
;

j1, . . . , j4 = 1, . . . , Nα; x ∈ Ωx;
(166)

{
Bψ(x; α)

}
α0

∂4ψ
∂αj4∂αj3∂αj2∂αj1

=
{

c(4)ψ (j4; j3; j2; j1; ψ; α)
}

α0
;

j1, . . . , j4 = 1, . . . , Nα; x ∈ ∂Ωx
(
α0); (167)

where

f (4)(j4; j3; j2; j1;ϕ; α) ,
∂ f (3)(j3; j2; j1;ϕ; α)

∂αj4
− ∂L(x; α)

∂αj4

∂3ϕ

∂αj3∂αj2∂αj1
; (168)

g(4)(j4; j3; j2; j1; ψ; α) ,
∂g(3)(j3; j2; j1; ψ; α)

∂αj4
− ∂L∗(x; α)

∂αj4

∂3ψ

∂αj3∂αj2∂αj1
; (169)

c(4)ϕ (j4; j3; j2; j1;ϕ; α) ,
∂c(3)ϕ (j3;j2;j1;ϕ;α)

∂α4
− ∂Bϕ(x;α)

∂α4

∂3ϕ
∂αj3∂αj2∂αj1

;

x ∈ ∂Ωx
(
α0); (170)

c(4)ψ (j4; j3; j2; j1; ψ; α) ,
∂c(3)ψ (j3;j2;j1;ψ;α)

∂αj4
− ∂Bψ(x;α)

∂αj4

∂3ψ
∂αj3∂αj2∂αj1

;

x ∈ ∂Ωx
(
α0). (171)

Evidently, the computations of the fourth-order sensitivities
∂4R(ϕ; ψ; α)/∂αj4∂αj3∂αj2∂αj1 require 2Nα(Nα + 1)(Nα + 2)(Nα + 3)/4! large-scale com-
putations to solve Equations (164)–(167), followed by just as many small-scale computations
for performing the integrations that define the various sensitivities. These computations
would be in addition to the 2Nα large-scale computations needed to determine the functions
∂ϕ(x)/∂αj1 and ∂ψ(x)/∂αj1 by solving the 1st-OFSS, the Nα(Nα + 1) large-scale compu-
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tations needed to determine the functions ∂2ϕ/∂αj1∂αj2 and ∂2ψ/∂αj1∂αj2 by solving the
2nd-OFSS, and the Nα(Nα + 1)(Nα + 2)/3 large-scale computations needed to determine
the functions ∂3ϕ/∂αj1∂αj2∂αj3 and ∂3ψ/∂αj1∂αj2∂αj3 by solving the 3rd-OFSS.

3.4.3. The Fourth-Order Adjoint Sensitivity Analysis Methodology (4th-CASAM)

The fourth-order sensitivities of the response R[ϕ(x), ψ(x); α] with respect to the
model parameters are obtained by determining the first-order G-differential of the 3rd-
order sensitivities R(3)

[
j3; j2; j1; u(3)(j1; x); a(3)(j2; j1; x); α

]
≡ ∂3R(ϕ; ψ; α)/∂αj3∂αj2∂αj1,

which were computed in Section 3.3 and defined in Equation (152). By definition, the total
G-differential of R(3)

[
j3; j2; j1; u(3)(j1; x); a(3)(j2; j1; x); α

]
is obtained as follows:{

δR(3)
[

j3; j2; j1; u(3)(j1; x); a(3)(j2; j1; x); α; δu(3); δa(3); δα
]}

α0

,
{

d
dε

Nx
∏

k=1

∫ ωk(α)
λk(α)

dxk S(3)[j3; j2; j1;u(3),0(j1; x) + εδu(3)(j1; x);

a(3),0(j2; j1; x) + εδa(3)(j2; j1); α0 + εδα
]}

ε=0
=
{

δR(3)
(

j3; j2; j1; u(3); a(3); δα
)}

dir
+
{

δR(3)
(

j3; j2; j1; u(3); a(3); δu(3); δa(3)
)}

ind
, j1, j2; j3 = 1, . . . , Nα,

(172)

where the direct-effect term
{

δR(3)
(

j3; j2; j1; u(3); a(3); δα
)}

dir
depends directly on the

parameter variations and is defined as follows:{
δR(3)

(
j3; j2; j1; u(3); a(3); δα

)}
dir

,
{

∂
∂α

Nx
∏

k=1

∫ ωk(α)
λk(α)

dxkS(3)
[

j3; j2; j1; u(3)(j1; x); a(3)(j2; j1; x); α
]}

α0
δα,

(173)

while the indirect-effect term
{

δR(3)
(

j3; j2; j1; u(3); a(3); δu(3); δa(3)
)}

ind
depends indirectly

on the parameter variations through the variations in the forward and adjoint state func-
tions and is defined as follows:{

δR(3)
[

j3; j2; j1; u(3)(j1; x); a(3)(j2; j1; x); δu(3)(j1; x); δa(3)(j2; j1; x)
]}

ind

,
{

Nx
∏

k=1

∫ ωk(α)
λk(α)

dxk
∂S(3)[j3;j2;j1;u(3)(j1;x);a(3)(j2;j1;x);α]

∂u(3)(j1;x)

}
α0

δu(3)(j1; x)

+

{
Nx
∏

k=1

∫ ωk(α)
λk(α)

dxk
∂S(3)[j3;j2;j1;u(3)(j1;x);a(3)(j2;j1;x);α]

∂a(3)(j2;j1;x)

}
α0

δa(3)(j2; j1; x),

(174)

where
∂[ ]

∂u(3)(j1;x)
δu(3)(j1; x) ≡ ∂[ ]

∂ϕ δϕ(x) + ∂[ ]
∂ψ δψ(x)

+
2
∑

m=1

∂S(3) [ ]

∂a(1)m
δa(1)

m (x) +
4
∑

m=1

∂[ ]

∂a(2)m (j1)
δa(2)

m (j1; x),
(175)

∂[ ]

∂a(3)(j2; j1; x)
δa(3)(j2; j1; x) ≡

8

∑
m=1

∂[ ]

∂a(3)
m (j2; j1; x)

δa(3)
m (j2; j1; x). (176)

The indirect-effect term
{

δR(3)
(

j3; j2; j1; u(3)(j1; x); a(3)(j2; j1; x); δu(3); δa(3)
)}

ind
de-

fined in Equation (174) can be computed only after having computed the variations
δu(3)(j1; x) and δa(3)(j2; j1; x). Recall that the 3rd-level variational sensitivity function
δu(3)(j1; x) is the solution of the 3rd-LVSS. On the other hand, the vector δa(3)(j2; j1; x)
is the solution of the system of equations obtained by G-differentiating the 3rd-LASS.
Applying the definition of the total G-differential, cf. Equation (23), to the 3rd-LASS, cf.
Equations (138) and (148), yields the following set of equations for the vector of varia-
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tions δa(3)(j2; j1; x), all to be evaluated at the nominal values for the parameters and state
functions, for j1, j2 = 1, . . . , Nα:

∂{A(3)[j1;u(2)(j1;x)]a(3)(j2;j1;x)−s(3)[j2;j1;u(3);α]}
∂u(3)

δu(3)

+
{

A(3)
(

j1; u(2)
)}

α0
δa(3) = p(3)

[
j2; j1; u(3)(j1; x); a(3)(j2; j1; x); α; δα

]
,

(177)

{
δb(3)A

[
a(3)(j2; j1; x); u(3)(j1; x); α; δa(3); δu(3); δα

]}
α0

= 0,

x ∈ ∂Ωx
(
α0), j1, j2 = 1, . . . , Nα,

(178)

where
p(3)

[
j2; j1; u(3)(j1; x); a(3)(j2; j1; x); α; δα

]
,

∂{s(3)[j2;j1;u(3)(j1;x);α]−A(3)(u(2))a(3)(j2;j1;x)}
∂α δα.

(179)

As Equations (177) and (178) indicate, the vectors of variations
δu(3)(j1; x) and δa(3)(j2; j1; x) are related to each other, and must be determined by solving
simultaneously the coupled system of equations obtained by concatenating the 3rd-LVSS to
Equation (177) while being subject to the boundary conditions obtained by concatenating
the boundary conditions which belong to the 3rd-LVSS with the boundary conditions rep-
resented by Equation (178). Concatenating Equations (119) and (177) yields the following
16 × 16 block-matrix equation:

V(4)
(

u(3)
)

δu(4)(j2; j1; x) = q(4)
[

j2; j1; u(4)(j2; j1; x); α; δα
]
, (180)

where:

u(4)(j2; j1; x) ,

(
u(3)(j1; x)

a(3)(j2; j1; x)

)
; δu(4)(j2; j1; x) ,

(
δu(3)(j1; x)

δa(3)(j2; j1; x)

)
; (181)

V(4)
(

u(4)
)
=

(
V(3)

(
j1; u(2)

)
[0](8×8)

V(4)
21 (j2; j1) V(4)

22 (j1)

)
; V(4)

22 (j1) , A(3)
(

j1; u(2)
)

;

V(4)
21 ,

∂{A(3)[j1;u(2)(j1;x)]a(3)(j2;j1;x)−s(3)[j2;j1;u(3)(j1;x);α]}
∂u(3)

;

(182)

q(4)
[

j2; j1; u(4)(j2; j1; x); α; δα
]
,

 q(3)
[

j1; u(3)(j1; x); α; δα
]

p(3)
[

j2; j1; u(4)(j2; j1; x); α; δα
] 

≡


q(4)1

[
j2; j1; u(4)(j2; j1; x); α; δα

]
q(4)16

[
j2; j1; u(4)(j2; j1; x); α; δα

]
.

(183)

Concatenating the boundary conditions which belong to the 3rd-LVSS, cf. Equation (120),
with the boundary conditions represented by Equation (178) yields the following boundary
conditions for the function δu(4)(j2; j1; x):

b(4)v

[
u; a(1); a(2)(j1); α; δϕ(x); δψ(x); δa(2)(j1; x); δα

]
,

 b(3)v

[
j1; u(3)(j1; x); α; δu(3)(j1; x); δα

]
δb(3)A

[
u(2)(j1; x); α; δa(3)(j2; j1; x); δα

]  =

(
0
0

)
, x ∈ ∂Ωx

(
α0). (184)

The matrix-operator equations represented by Equation (180) together with the bound-
ary conditions represented by Equation (184) will be called the 4th-Level Variational Sen-
sitivity System (4th-LVSS). The solution, δu(4)(j2; j1; x), of the 4th-LVSS will be called the
“4th-level variational sensitivity function”.
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Since the 4th-LVSS equations depend on the parameter variations δαi, solving them is
prohibitively expensive computationally for large-scale systems involving many parame-
ters. The need for solving the 4th-LVSS can be avoided by expressing the indirect-effect
term

{
δR(3)

(
j3; j2; j1; u(3)(j1; x); a(3)(j2; j1; x); δu(3); δa(3)

)}
ind

defined in Equation (174)

in an alternative way, which does not involve the function δu(4)(j2; j1; x). This alterna-
tive expression will be derived by using the solution of a 4th-Level Adjoint Sensitivity
Systems (4th-LASS), which will be constructed by implementing the same sequence of
logical steps as were followed for constructing the 1st, 2nd, and 3rd-LASS. The first step
is to define a Hilbert space, denoted as H4, comprising block-vector elements of the form

η(4)(x) ,
[
η
(4)
1 (x), . . . , η

(4)
16 (x)

]†
∈ H4, with η

(4)
i (x) ,

[
η
(4)
i,1 (x), . . . , η

(4)
i,Nϕ

(x)
]†

, i = 1, .., 16.

The inner product between two elements, η(4)(x) ∈ H4 and ξ(4)(x) ∈ H4, of this Hilbert
space, will be denoted as 〈η(4)(x), ξ(4)(x)〉4 and is defined as follows:

〈η(4)(x), ξ(4)(x)〉4 ,
16

∑
i=1
〈η(4)i (x), ξ

(4)
i (x)〉0. (185)

Using the definition provided in Equation (185), form the inner product in H4 of
Equation (180) with a set of yet undefined vector-valued functions

a(4)(j2; j1; x) ,
[
a(4)

1 (j2; j1; x), . . . , a(4)
16 (j2; j1; x)

]†
∈ h4,j1, j2 = 1, . . . , Nα, to obtain the

following relation: {
〈a(4)(j3; j2; j1; x), V(4)

(
u(3)

)
δu(4)(j2; j1; x)〉4

}
α0

=
{
〈a(4)(j3; j2; j1; x), q(4)

[
j2; j1; u(4)(j2; j1; x); α; δα

]
〉

4

}
α0

.
(186)

Using the definition of the adjoint operator in the Hilbert space H4, recast the left-side
of Equation (186) as follows:{

〈a(4)(j3; j2; j1; x), V(4)
(

u(3)
)

δu(4)(j2; j1; x)〉4
}

α0

=
{
〈δu(4)(j2; j1; x), A(4)

(
u(3)

)
a(4)(j3; j2; j1; x)〉4

}
α0

+
{

P(4)
[
δu(4)(j2; j1; x); a(4)(j3; j2; j1; x); α; δα

]}
α0

,

(187)

where
{

P(4)
[
δu(4)(j2; j1; x); a(4)(j3; j2; j1; x); α; δα

]}
α0

denotes the bilinear concomitant de-

fined on the phase-space boundary x ∈ ∂Ωx
(
α0) and where

A(4)
(

j2; j1; u(3)
)
=
{

V(4)
[

j2; j1; u(2)(x)
]}∗

is the operator formally adjoint to V(3)
[

j1; u(2)(x)
]

and has therefore the following form:

A(4)
(

j2; j1; u(3)
)
=

 V(3)
(

u(1)
)

[0](4×4)

V(4)
21

(
j1; u(2)

)
V(4)

22

(
u(1)

) ∗ =
 A(3)

[
V(4)

21

]∗
[0](4×4)

[
V(4)

22

]∗
. (188)

The first term on right-side of Equation (187) is now required to represent the indirect-
effect term

{
δR(3)

(
j3; j2; j1; u(3); a(3); δu(3); δa(3)

)}
ind

defined in Equation (184). This re-

quirement is satisfied by imposing the following relation on each element a(4)(j3; j2; j1; x) ,[
a(4)

1 (j3; j2; j1; x), . . . , a(4)
16 (j3; j2; j1; x)

]†
, j3, j2, j1 = 1, . . . , Nα:

A(4)
(

u(3)
)

a(4)(j3; j2; j1; x) = s(4)
[

j3; j2; j1; u(4)(j2; j1; x); α
]
,

j1, j2, j3 = 1, . . . , Nα,
(189)
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where the block-vector

s(4)
[

j3; j2; j1; u(4)(j2; j1; x); α
]
,
[
s(4)1 (j3; j2; j1; x), . . . , s(4)16 (j3; j2; j1; x)

]†
, (190)

comprises, for each j3, j2, j1 = 1, . . . , Nα, sixteen components defined as follows:

s(4)1

[
j3; j2; j1; u(4)(j2; j1; x); α

]
,

∂S(3)[j3;j2;j1;u(4)(j2;j1;x);α]
∂ϕ ,

s(4)2

[
j3; j2; j1; u(4)(j2; j1; x); α

]
=

∂S(3)[j3;j2;j1;u(4)(j2;j1;x);α]
∂ψ ,

s(4)2+m

[
j3; j2; j1; u(4)(j2; j1; x); α

]
=

∂S(3)[j3;j2;j1;u(4)(j2;j1;x);α]
∂a(1)m

; m = 1, 2;

s(4)4+m

[
j3; j2; j1; u(4)(j2; j1; x); α

]
=

∂S(3)[j3;j2;j1;u(4)(j2;j1;x);α]
∂a(2)m (j1)

;

m = 1, .., 4;

s(4)8+m

[
j3; j2; j1; u(4)(j2; j1; x); α

]
=

∂S(3)[j3;j2;j1;u(4)(j2;j1;x);α]
∂a(3)m (j2;j1)

;

m = 1, .., 8.

(191)

The definition of the set of vectors a(4)(j3; j2; j1; x)

,
[
a(4)

1 (j3; j2; j1; x), . . . , a(4)
16 (j3; j2; j1; x)

]†
will now be completed by selecting boundary

conditions for this set of vectors, which will be represented in operator form as follows:{
b(4)A

[
a(4)(j3; j2; j1; x); u(4)(j2; j1; x); α

]}
α0

= 0,

x ∈ ∂Ωx
(
α0), j1, j2, j3 = 1, . . . , Nα.

(192)

The boundary conditions represented by Equation (148) are selected so as to satisfy
the following requirements:

(i) The boundary conditions Equation (192) together with the operator Equation (189)
constitute a well posed problem for the functions a(3)(j2; j1; x).

(ii) Implementation in Equation (187) of the boundary conditions (for the 3rd-LVSSS)
provided in Equation (148) together with those provided in Equation (192) eliminates
all of the unknown values of the functions δu(4)(j2; j1; x) and a(4)(j3; j2; j1; x) in the ex-
pression of the bilinear concomitant

{
P(4)

[
δu(4)(j2; j1; x); a(4)(j3; j2; j1; x); α; δα

]}
α0

.
This bilinear concomitant may vanish after implementing the boundary conditions
represented by Equation (148), but if it does not, it will be reduced to a residual
quantity which will be denoted as

{
P̂(4)

[
a(4)(j3; j2; j1; x); u(4)(j2; j1; x); α; δα

]}
α0

and

which will comprise only known values of a(4)(j3; j2; j1; x), u(4)(j2; j1; x), α and δα.

The system of equations represented by Equation (189) together with the boundary
conditions represented by Equation (192) constitute the 4th-Level Adjoint Sensitivity Sys-

tem (4th-LASS). The solution a(4)(j3; j2; j1; x) ,
[
a(4)

1 (j3; j2; j1; x), . . . , a(4)
16 (j3; j2; j1; x)

]†
,

j1, j2, j3 = 1, . . . , Nα, of the 4th-LASS will be called the 4th-level adjoint function.
The 4th-LASS together with the results provided in Equations (186) and (187) are

employed in Equation (174) to obtain the following expression for the indirect-effect term{
δR(3)

[
j3; j2; j1; u(3)(j1; x); a(3)(j2; j1; x); δu(3)(j1; x); δa(3)(j2; j1; x)

]}
ind

in terms of the 4th-

level adjoint functions a(4)(j3; j2; j1; x), for j1, j2, j3 = 1, . . . , Nα:{
δR(3)

[
j3; j2; j1; u(3)(j1; x); a(3)(j2; j1; x); δu(3)(j1; x); δa(3)(j2; j1; x)

]}
ind

=
{

a(4)(j3; j2; j1; x), q(4)
[

j2; j1; u(4)(j2; j1; x); α; δα
]

4

}
α0

−
{

P̂(4)
[
a(4)(j3; j2; j1; x); u(4)(j2; j1; x); α; δα

]}
α0

≡
{

δR(3)
[

j3; j2; j1; u(4)(j2; j1; x); α; δα
]}

ind
.

(193)
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As the identity in the last line of Equation (193) indicates, the dependence of the
indirect-effect term on the variations δu(3)(j1; x) and δa(3)(j2; j1; x) has been eliminated by
having replaced these functional-dependences by the dependence on the 4th-level adjoint
function a(4)(j3; j2; j1; x).

Representing the components of q(4)
[

j2; j1; u(4)(j2; j1; x); α; δα
]

in the following form:

q(4)m

(
j2; j1; u(4); α; δα

)
≡

Nα

∑
j4=1

{
∂q(4)m [j4;j3;j2;j1;u(4)(j2;j1;x);α]

∂αj4

}
(α0)

δαj4, m = 1, . . . , 16.
(194)

and adding the expression obtained in Equation (193) for the indirect-effect term with the ex-
pression of the direct-effect term given in Equation (173) yields the following expression for the
4th-order total G-differential

{
δR(3)

[
j3; j2; j1; u(3)(j1; x); a(3)(j2; j1; x); α; δu(3); δa(3); δα

]}
α0

of the response with respect to the model parameters, for j1, j2, j3 = 1, . . . , Nα:

δR(3)
[

j3; j2; j1; u(4)(j2; j1; x); α; δα;
]

=
Nα

∑
j4=1

{
R(4)

[
j4; j3; j2; j1; u(4)(j2; j1; x); α

]}
(α0)

δαj4,
(195)

where R(4)
[

j4; j3; j2; j1; u(3)(j1; x); a(3)(j2; j1; x); α
]

denotes the 4th-order partial sensitivity of

the response R
[
u(1)(x); α

]
with respect to the model parameters, evaluated at the nominal

parameter values α0, and can be represented as follows:

R(4)
[

j4; j3; j2; j1; u(3)(j1; x); a(3)(j2; j1; x); α
]
= ∂4R(ϕ;ψ;α)

∂αj4∂αj3∂αj2∂αj1

= −
{

∂
∂αj4

P̂(4)
[

j3; j2; j1; u(3)(j1; x); a(3)(j2; j1; x); α
]}

(α0)

+ ∂
∂αj4

{
Nx
∏

k=1

∫ ωk(α)
λk(α)

dxkS(3)
[

j3; j2; j1; u(3)(j1; x); a(3)(j2; j1; x); α
]}

(α0)

+ ∂
∂αj4

{
16
∑

m=1
〈a(4)

m (j3; j2; j1; x), Q(4)
m

[
j4; j3; j2; j1; u(3)(j1; x); a(3)(j2; j1; x); α

]
〉

0

}
(α0)

.

(196)

After obtaining the 4th-level adjoint function a(4)(j3; j2; j1; x) by performing at most
O
(

N3
α

)
large-scale computations, the 4th-order response sensitivities to model parameters

are obtained using the expression provided in Equation (196).

4. Discussion and Conclusions

This work has presented the 4th-Order Comprehensive Adjoint Sensitivity Analysis
Methodology (4th-CASAM), which enables the efficient computation of the exact expres-
sions of the 4th-order functional derivatives (“sensitivities”) of a general system response,
which depends on both the forward and adjoint state functions, with respect to all of
the parameters underlying the respective forward and adjoint systems. Since nonlinear
operators do not admit adjoint operators (only linearized versions of nonlinear operators
can admit a bona-fide adjoint operator), responses that simultaneously depend on forward
and adjoint functions can arise only in conjunction with linear systems, thus providing the
fundamental motivation for treating linear systems in their own right rather than just as par-
ticular cases of nonlinear systems. Very importantly, the computation of the 2nd-, 3rd-, and
4th-level adjoint functions uses the same forward and adjoint solvers (i.e., computer codes)
as used for solving the original forward and adjoint systems, thus requiring relatively
minor additional software development for computing the various-order sensitivities.

The 4th-CASAM presented in this work is the only practically implementable method-
ology for obtaining and subsequently computing the exact expressions (i.e., free of
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methodologically-introduced approximations) of the 1st-, 2nd-, 3rd-, and 4th-order sen-
sitivities (i.e., functional derivatives) of responses to system parameters, for coupled for-
ward/adjoint linear systems. By enabling the practical computation of any and all of the
1st-, 2nd-, 3rd-, and 4th-order response sensitivities to model parameters, the 4th-CASAM
makes it possible to compare the relative values of the sensitivities of various order, in order
to assess which sensitivities are important and which may actually be neglected, thus en-
abling future investigations of the convergence of the (multivariate) Taylor series expansion
of the response in terms of parameter variations, as well as investigating the actual valid-
ity of expressions that are derived from Taylor-expansion of the response (e.g., response
variances/covariance, skewness, kurtosis, etc.) as a function of the model’s parameters.

The 4th-CASAM presented in this work provides a fundamentally important step in
the quest to overcome the “curse of dimensionality” in sensitivity analysis, uncertainty
quantification, and predictive modeling. Ongoing work aims at generalizing the 4th-
CASAM, attempting to provide a general methodology for the practical, efficient, and exact
computation of arbitrarily-high order sensitivities of responses to model parameters, both
for linear and nonlinear systems.
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