Use of Acidithiobacillus thiooxidans and Acidithiobacillus ferrooxidans in the Recovery of Heavy Metals from Landfill Leachates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Substrate
2.2. Inoculum Preparation
2.3. Bioleaching Experiments
2.4. Physical and Chemical Analyses
2.5. Statistical Analysis
3. Results and Discussion
3.1. Changes in pH and Oxidation-Reduction Potential during Study
3.2. The Removal of Heavy Metals during Bioleaching
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Keyikoglu, R.; Karatas, O.; Rezania, H.; Kobya, M.; Vatanpour, V.; Khataee, A. A review on treatment of membrane concentrates generated from landfill leachate treatment processes. Sep. Purif. Technol. 2021, 259, 118182. [Google Scholar] [CrossRef]
- Xaypanya, P.; Takemura, J.; Chiemchaisri, C.; Seingheng, H.; Tanchuling, M.A.N. Characterization of Landfill Leachates and Sediments in Major Cities of Indochina Peninsular Countries—Heavy Metal Partitioning in Municipal Solid Waste Leachate. Environments 2018, 5, 65. [Google Scholar] [CrossRef] [Green Version]
- Luo, H.; Zeng, Y.; Cheng, Y.; He, D.; Pan, X. Recent advances in municipal landfill leachate: A review focusing on its characteristics, treatment, and toxicity assessment. Sci. Total Environ. 2020, 703, 135468. [Google Scholar] [CrossRef] [PubMed]
- Zhao, R.; Liu, J.; Feng, J.; Li, X.; Li, B. Microbial community composition and metabolic functions in landfill leachate from different landfills of China. Sci. Total Environ. 2021, 767, 144861. [Google Scholar] [CrossRef]
- Silva, A.L.P.; Prata, J.C.; Duarte, A.C.; Soares, A.M.V.M.; Barcelo, D.; Rocha-Santos, T. Microplastics in landfill leachates: The need for reconnaissance studies and remediation technologies. Case Stud. Chem. Environ. Eng. 2021, 3, 100072. [Google Scholar] [CrossRef]
- Sun, J.; Zhu, Z.-R.; Li, W.-H.; Yan, X.; Wang, L.-K.; Zhang, L.; Jin, J.; Dai, X.; Ni, B.-J. Revisiting Microplastics in Landfill Leachate: Unnoticed Tiny Microplastics and Their Fate in Treatment Works. Water Res. 2021, 190, 116784. [Google Scholar] [CrossRef]
- Wdowczyk, A.; Szymańska-Pulikowska, A. Differences in the Composition of Leachate from Active and Non-Operational Municipal Waste Landfills in Poland. Water 2020, 12, 3129. [Google Scholar] [CrossRef]
- Oman, C.B.; Junestedt, C. Chemical characterization of landffill leachates-400 parameters and compounds. Waste Manag. 2008, 28, 1876–1891. [Google Scholar] [CrossRef]
- Smol, M.; Włodarczyk-Makuła, M.; Skowron-Grabowska, B. PAHs removal from municipal landfill leachate using an integrated membrane system in aspect of legal regulations. Desalination Water Treat. 2017, 69, 335–343. [Google Scholar] [CrossRef]
- Renou, S.; Givaudan, J.G.; Poulain, S.; Dirassouyan, F.; Moulin, P. Landfill leachate treatment: Review and opportunity. J. Hazard. Mater. 2008, 150, 468–493. [Google Scholar] [CrossRef]
- Umar, M.; Aziz, H.A.; Yusoff, M.S. Trends in the use of Fenton, electro-Fenton and photo-Fenton for the treatment of landfill leachate. Waste Manag. 2010, 30, 2113–2121. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, F.N.; Lan, C.Q. Treatment of landfill leachate using membrane bioreactors: A review. Desalination 2012, 287, 41–54. [Google Scholar] [CrossRef]
- Jagaba, A.H.; Kutty, S.R.M.; Lawal, I.M.; Abubakar, S.; Hassan, I.; Zubairu, I.; Umaru, I.; Abdurrasheed, A.S.; Adam, A.A.; Ghaleb, A.A.S.; et al. Sequencing batch reactor technology for landfill leachate treatment: A state-of-the-art review. J. Environ. Manag. 2021, 282, 111946. [Google Scholar] [CrossRef] [PubMed]
- Torretta, V.; Ferronato, N.; Katsoyiannis, I.A.; Tolkou, A.K.; Airoldi, M. Novel and Conventional Technologies for Landfill Leachates Treatment: A Review. Sustainability 2017, 9, 9. [Google Scholar] [CrossRef] [Green Version]
- Abbas, A.A.; Jingsong, G.; Ping, L.Z.; Ya, P.Y.; Al-Rekabi, W.S. Review on Landffill leachate treatments. J. Appl. Sci. Res. 2009, 5, 534–545. [Google Scholar] [CrossRef]
- Amr, S.S.A.; Aziz, H.A.; Adlan, M.N. Optimization of stabilized leachate treatment using ozone/persulfate in the advanced oxidation process. Waste Manag. 2013, 33, 1434–1441. [Google Scholar] [CrossRef]
- Mojiri, A. Review on Membrane Bioreactor, Ion Exchange and adsorption Methods for Landfill Leachate Treatment. Aust. J. Basic Appl. Sci. 2011, 5, 1365–1370. [Google Scholar]
- Carvajal-Flórez, E.; Cardona-Gallo, S.-A. Technologies applicable to the removal of heavy metals from landfill leachate. Environ. Sci Pollut Res. 2019, 26, 15725–15753. [Google Scholar] [CrossRef]
- Kurniawan, T.A.; Lo, W.H.; Chan, G.Y. Physico-chemical treatments for removal of recalcitrant contaminants from landfill leachate. J. Hazard. Mater. 2006, 129, 80–100. [Google Scholar] [CrossRef]
- Rohwerder, T.; Gehrke, T.; Kinzler, K.; Sand, W. Bioleaching review part A: Progress in bioleaching: Fundamentals and mechanisms of bacterial metal sulfide oxidation. Appl. Microbiol. Biotechnol. 2003, 63, 239–248. [Google Scholar] [CrossRef] [PubMed]
- Watling, H.R. Review of Biohydrometallurgical Metals Extraction from Polymetallic Mineral Resources. Minerals 2015, 5, 1–60. [Google Scholar] [CrossRef]
- Pathak, A.; Dastidar, M.G.; Sreekrishnan, T.R. Bioleaching of heavy metals from sewage sludge by indigenous iron-oxidizing microorganisms using ammonium ferrous sulfate and ferrous sulfate as energy sources: A comparative study. J. Hazard. Mater. 2009, 171, 273–278. [Google Scholar] [CrossRef]
- Pathak, A.; Dastidar, M.G.; Sreekrishnan, T.R. Bioleaching of heavy metals from sewage sludge: A review. J. Environ. Manag. 2009, 90, 2343–2353. [Google Scholar] [CrossRef]
- Li, Q.; Wang, C.; Li, B.; Sun, C.; Deng, F.; Song, C.; Wang, S. Isolation of Thiobacillus spp. and its application in the removal of heavy metals from activated sludge. Afr. J. Biotechnol. 2012, 11, 16336–16341. [Google Scholar] [CrossRef]
- Johnson, D.B. Biomining-biotechnologies for extracting and recovering metals from ores and waste materials. Curr. Opin. Biotechnol. 2014, 30C, 24–31. [Google Scholar] [CrossRef]
- Nareshkumar, R.; Nagendran, R.; Parvathi, K. Bioleaching of heavy metals from contaminated soil using Acidithiobacillus thiooxidans: Effect of sulfur/soil ratio. World J. Microbiol. Biotechnol. 2008, 24, 1539–1546. [Google Scholar] [CrossRef]
- Ishigaki, T.; Nakanishi, A.; Tateda, M.; Ike, M.; Fujita, M. Bioleaching of metal from municipal waste incineration fly ash using a mixed culture of sulfur-oxidizing and iron-oxidizing bacteria. Chemosphere 2005, 60, 1087–1094. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Liu, T.; Xiao, X.; Shenglian, L. Advances in microbial remediation for heavy metal treatment: A mini review. J. Leather Sci Eng. 2021, 3, 1. [Google Scholar] [CrossRef]
- Zheng, S.; Zheng, X.; Chen, C. Leaching Behavior of Heavy Metals and Transformation of Their Speciation in Polluted Soil Receiving Simulated Acid Rain. PLoS ONE 2012, 7, e49664. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Zhu, Y.; Zhang, G.; Zou, S.; Zeng, G.; Wu, Z. Sewage sludge bioleaching by indigenous sulfur-oxidizing bacteria: Effects of ratio of substrate dosage to solid content. Bioresour. Technol. 2009, 100, 1394–1398. [Google Scholar] [CrossRef] [PubMed]
- Asghari, I.; Mousavi, S.M. Effects of key parameters in recycling of metals from petroleum refinery waste catalysts in bioleaching process. Rev. Environ. Sci. Biotechnol. 2014, 13, 139–161. [Google Scholar] [CrossRef]
- Yu, R.; Shi, L.; Gu, G.; Zhou, D.; You, L.; Chen, M.; Qiu, G.; Zeng, W. The shift of microbial community under the adjustment of initial and processing pH during bioleaching of chalcopyrite concentrate by moderate thermophiles. Bioresour. Technol. 2014, 162, 300–307. [Google Scholar] [CrossRef] [PubMed]
- Fonti, V.; Dell’Anno, A.; Beolchini, F. Does bioleaching represent a biotechnological strategy for remediation of contaminated sediments? Sci. Total Environ. 2016, 563–564, 302–319. [Google Scholar] [CrossRef]
- Liu, F.; Zhou, L.; Zhou, J.; Song, X.; Wang, D. Improvement of sludge dewaterability and removal of sludge-borne metals by bioleaching at optimum pH. J. Hazard. Mater. 2012, 221–222, 170–177. [Google Scholar] [CrossRef]
- Chartier, M.; Couilard, D. Biological processes: The effect of initial pH, percentage inoculum and nutrient enrichment on the solubilization of sediment based metals. Water Air Soil Pollut. 1997, 96, 249–267. [Google Scholar] [CrossRef]
- Ma, L.; Wang, X.; Feng, X.; Liang, Y.; Xiao, Y.; Hao, X.; Yin, H.; Liu, H.; Liu, X. Coculture, microorganisms with different initial proportions reveal the mechanism of chalcopyrite bioleaching coupling with microbial community succession. Bioresour. Technol. 2017, 223, 121–130. [Google Scholar] [CrossRef]
- Christensen, T.H.; Kjeldsen, P.; Bjerg, P.L.; Jensen, D.L.; Christensen, J.B.; Baun, A.; Albrechtsen, H.-J.; Heron, G. Biogeochemistry of landfill leachate plumes. Appl. Geochem. 2001, 16, 659–718. [Google Scholar] [CrossRef]
- Kjeldsen, P.; Barlaz, M.A.; Rooker, A.P.; Baun, A.; Ledin, A.; Christensen, T. Present and Long-Term Composition of MSW Landfill Leachate: A Re-View. Crit. Rev. Env. Sci. Technol. 2002, 32, 297–336. [Google Scholar] [CrossRef]
- Liu, H.H.; Sang, S.X. Study on the law of heavy metal leaching in municpal solid waste landfill. Environ. Monit. Assess. 2010, 165, 349–363. [Google Scholar] [CrossRef]
- Bosecker, K. Bioleaching: Metal solubilization by microorganisms. FEMS Microbiol. Rev. 1997, 20, 591–604. [Google Scholar] [CrossRef]
- Pacholewska, M. Microbial leaching of blende flotation concentrate using Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans. Physicochem. Probl. Miner. Process. 2003, 37, 57–68. [Google Scholar]
- Ojumu, T.V.; Petersen, J.; Hansford, G.S. The effect of dissolved cation on microbial ferrous-iron oxidation by Leptospirillum ferriphilium in continuous culture. Hydrometallurgy 2008, 94, 69–76. [Google Scholar] [CrossRef]
- Konishi, Y.; Asai, S.; Yoshida, N. Growth Kinetics of Thiobacillus thiooxidans on the Surface of Elemental Sulfur. Appl. Environ. Microbiol. 1995, 61, 3617–3622. [Google Scholar] [CrossRef] [Green Version]
- Xiang, L.; Chan, L.C.; Wong, J.W.C. Removal of heavy metals from anaerobically digested sewage sludge by isolated indigenous iron-oxidizing bacteria. Chemosphere 2000, 41, 283–287. [Google Scholar] [CrossRef]
- Mikkelsen, D.; Kappler, U.; McEwan, A.G.; Lindsay, I.S. Probing the archaeal diversity of a mixed thermophilic bioleaching culture by TGGE and FISH. Syst. Appl. Microbiol. 2009, 32, 501–513. [Google Scholar] [CrossRef]
- Rastegar, S.O.; Mousavi, S.M.; Shojaosadati, S.A.; Sarraf Mamoory, R. Bioleaching of V, Ni, and Cu from residual produced in oil fired furnaces using Acidithiobacillus ferrooxidans. Hydrometallurgy 2015, 157, 50–59. [Google Scholar] [CrossRef]
- Fontmorin, J.-M.; Sillanpää, M. Bioleaching and combined bioleaching/Fenton-like processes for the treatment of urban anaerobically digested sludge: Removal of heavy metals and improvement of the sludge dewaterability. Sep. Purif. Technol. 2015, 156, 655–664. [Google Scholar] [CrossRef]
Index | Units | Stage I | Stage II |
---|---|---|---|
pH | - | 7.87 | 8.2 |
Dry solids (DS) | (g/L) | 6.2 | 5.7 |
Volatile solids (VS) | (g/L) | 1.3 | 1.1 |
% vs. in DS | (% DS) | 20.9 | 20.0 |
Alkalinity | (mg CaCO3/L) | - | 3325.0 |
Dissolved organic carbon | (mg C/L) | 530.7 | 505.6 |
Dissolved inorganic carbon | (mg C/L) | 3.63 | 4.8 |
Total Kjeldahl nitrogen | (mg N/L) | 1411.3 | 481.6 |
Ammonium nitrogen | (mg N–NH4+/L) | 627.2 | 425.6 |
Carbon content | (% DS) | 9.24 | 8.25 |
Hydrogen content | (% DS) | 1.1 | 1.28 |
Nitrogen content | (% DS) | 0.46 | 0.50 |
Sulfur content | (% DS) | 0.56 | 2.32 |
Phosphorus content | (% DS) | 0.1433 | 0.1828 |
Element (ppb) | Stage I | Stage II |
---|---|---|
Al | 136.7 ± 11.3 | 630.5 ± 31.2 |
Ca | 216,005 ± 1480 | 230,620 ± 2520 |
Cd | under detection limit (6.26) | under detection limit (6.26) |
Cr | 302.6 ± 12.6 | 169.5 ± 7.3 |
Cu | 208 ± 7.4 | 94.6 ± 8.1 |
Fe | 2709 ± 69.3 | 3008.8 ± 84.3 |
Mg | 240,609 ± 2842.3 | 176,958 ± 1966.1 |
Mn | 933.0 ± 36.3 | 716.6 ± 26.4 |
Ni | 43.4 ± 7.2 | under detection limit (8.67) |
Pb | under detection limit (34.88) | under detection limit (34.88) |
Zn | 449 ± 16.3 | 408 ± 10.4 |
Inoculum | pH | ORP, mV | DS, g/L | VS, g/L |
---|---|---|---|---|
A. thiooxidans | 1.81 ± 0.1 | 536 ± 0.1 | 38.8 ± 0.1 | 34.9 ± 0.1 |
A. ferrooxidans + A. thiooxidans | 1.90 ± 0.1 | 506 ± 0.1 | 36.6 ± 0.1 | 32.3 ± 0.1 |
A. ferrooxidans | 1.91 ± 0.1 | 498 ± 0.1 | 35.8 ± 0.1 | 31.7± 0.1 |
Treatment | Substrates |
---|---|
A | 270 mL leachate + 30 mL deionized water |
B | 270 mL leachate + 30 mL deionized water with acid * |
C | 270 mL leachate + 30 mL A. ferrooxidans |
D | 270 mL leachate + 30 mL A. ferrooxidans/A. thiooxidans |
E | 270 mL leachate + 30 mL A. ferrooxidans/A. thiooxidans + acid * |
F | 270 mL leachate + 30 mL A. thiooxidans |
G | 270 mL leachate + 30 mL A. thiooxidans + acid * |
H | 270 mL leachate + 30 mL A. thiooxidans + 3 g S |
I | 270 mL leachate + 30 mL A. thiooxidans + acid * + 3 g S |
Element | Stage I | Stage II | ||
---|---|---|---|---|
Treatment (Efficiency, %) | Process Day, d | Treatment (Efficiency, %) | Process Day, d | |
Al | I (>90) | 9 | G, H, I (>90) | 12 |
Ca | B, F, G, H, I (>80) | 9 | B, E, F, H, I (>80) | 12 |
Cr | H, I (>80) | 12 | G, I (>70) | 12 |
Cu | I (>90) | 12 | E, G, I (>80) | 12 |
Fe | H, I (>80) | 12 | E, G, H, I (>80) | 12 |
Mg | E, G, I (>90) | 12 | B, G, H, I (>90) | 12 |
Mn | F, G, H, I (>80) | 12 | B, D–I (>80) | 12 |
Zn | H, I (>90) | 12 | E, G, H, I (>90) | 12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamizela, T.; Grobelak, A.; Worwag, M. Use of Acidithiobacillus thiooxidans and Acidithiobacillus ferrooxidans in the Recovery of Heavy Metals from Landfill Leachates. Energies 2021, 14, 3336. https://doi.org/10.3390/en14113336
Kamizela T, Grobelak A, Worwag M. Use of Acidithiobacillus thiooxidans and Acidithiobacillus ferrooxidans in the Recovery of Heavy Metals from Landfill Leachates. Energies. 2021; 14(11):3336. https://doi.org/10.3390/en14113336
Chicago/Turabian StyleKamizela, Tomasz, Anna Grobelak, and Malgorzata Worwag. 2021. "Use of Acidithiobacillus thiooxidans and Acidithiobacillus ferrooxidans in the Recovery of Heavy Metals from Landfill Leachates" Energies 14, no. 11: 3336. https://doi.org/10.3390/en14113336
APA StyleKamizela, T., Grobelak, A., & Worwag, M. (2021). Use of Acidithiobacillus thiooxidans and Acidithiobacillus ferrooxidans in the Recovery of Heavy Metals from Landfill Leachates. Energies, 14(11), 3336. https://doi.org/10.3390/en14113336