Comparative Study on the Calendar Aging Behavior of Six Different Lithium-Ion Cell Chemistries in Terms of Parameter Variation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selected Cells
2.2. Measurement Setup
2.2.1. AC Impedance Measurement
2.2.2. Initial Cycles
2.2.3. Recording of the Open Cell Voltage
2.2.4. Capacity Determination
2.2.5. Determination of the DC (Direct Current) Resistance
2.2.6. Computer Tomography (CT)
2.3. Aging Procedure
2.3.1. Aging Setup
2.3.2. Storage Conditions
2.3.3. Checkup Procedure during Storage
- Removal out of the climate chamber.
- Cooling period of two hours at room temperature.
- Capacity verification.
- DC-resistance pulse at UM (similar to the initial checkup).
- Charging/discharging to the designated storage voltage.
3. Results
3.1. Average Capacity Decrease
3.1.1. Cells Aged at (18.5 ± 2.5) °C
3.1.2. Cells Aged at 50 °C
3.1.3. Cells Aged at 60 °C
3.2. DC Resistance Evaluation
3.2.1. Cells Aged at 50 °C
3.2.2. Cells Aged at 60 °C
4. Discussion—Distribution Changes Due to Aging
Development of the Standard Deviation of the Capacity of the Cells at 50 and 60 °C
5. Conclusions
- Increased (NCA and LTO, up to 5% gain)
- Decreased (LFP, up to 2% loss) and
- Varied (NMC, LCO, LMO) in terms of statistical deviation from the mean, which results in no significant change due to aging.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dubarry, M.; Qin, N.; Brooker, P. Calendar aging of commercial Li-ion cells of different chemistries–A review. Curr. Opin. Electrochem. 2018, 9, 106–113. [Google Scholar] [CrossRef]
- Redondo-Iglesias, E.; Venet, P.; Pelissier, S. Calendar and cycling ageing combination of batteries in electric vehicles. Microelectron. Reliab. 2018, 88–90, 1212–1215. [Google Scholar] [CrossRef] [Green Version]
- Ecker, M.; Nieto, N.; Käbitz, S.; Schmalstieg, J.; Blanke, H.; Warnecke, A.; Sauer, D.U. Calendar and cycle life study of Li(NiMnCo)O2-based 18650 lithium-ion batteries. J. Power Sources 2014, 248, 839–851. [Google Scholar] [CrossRef]
- De Hoog, J.; Timmermans, J.-M.; Ioan-Stroe, D.; Swierczynski, M.; Jaguemont, J.; Goutam, S.; Omar, N.; van Mierlo, J.; van den Bossche, P. Combined cycling and calendar capacity fade modeling of a Nickel-Manganese-Cobalt Oxide Cell with real-life profile validation. Appl. Energy 2017, 200, 47–61. [Google Scholar] [CrossRef]
- Keil, P.; Schuster, S.; Wilhelm, J.; Travi, J.; Hauser, A.; Karl, R.; Jossen, A. Calendar Aging of Lithium-Ion Batteries. J. Electrochem. Soc. 2016, 163, A1872–A1880. [Google Scholar] [CrossRef]
- Liu, Y.; Xie, K.; Pan, Y.; Wang, H.; Li, Y.; Zheng, C. Simplified modeling and parameter estimation to predict calendar life of Li-ion batteries. Solid State Ion. 2018, 320, 126–131. [Google Scholar] [CrossRef]
- Sarasketa-Zabala, E.; Gandiaga, I.; Rodriguez-Martinez, L.M.; Villarreal, I. Calendar ageing analysis of a LiFePO4/graphite cell with dynamic model validations: Towards realistic lifetime predictions. J. Power Sources 2014, 272, 45–57. [Google Scholar] [CrossRef]
- Schmitt, J.; Maheshwari, A.; Heck, M.; Lux, S.; Vetter, M. Impedance change and capacity fade of lithium nickel manganese cobalt oxide-based batteries during calendar aging. J. Power Sources 2017, 353, 183–194. [Google Scholar] [CrossRef]
- Stroe, D.-I.; Swierczynski, M.; Kar, S.K.; Teodorescu, R. Degradation Behavior of Lithium-Ion Batteries During Calendar Ageing—The Case of the Internal Resistance Increase. IEEE Trans. Ind. Appl. 2018, 54, 517–525. [Google Scholar] [CrossRef] [Green Version]
- Waag, W.; Käbitz, S.; Sauer, D.U. Experimental investigation of the lithium-ion battery impedance characteristic at various conditions and aging states and its influence on the application. Appl. Energy 2013, 102, 885–897. [Google Scholar] [CrossRef]
- Broussely, M.; Biensan, P.; Bonhomme, F.; Blanchard, P.; Herreyre, S.; Nechev, K.; Staniewicz, R.J. Main aging mechanisms in Li ion batteries. J. Power Sources 2005, 146, 90–96. [Google Scholar] [CrossRef]
- Harlow, J.E.; Ma, X.; Li, J.; Logan, E.; Liu, Y.; Zhang, N.; Ma, L.; Glazier, S.L.; Cormier, M.M.E.; Genovese, M.; et al. A Wide Range of Testing Results on an Excellent Lithium-Ion Cell Chemistry to be used as Benchmarks for New Battery Technologies. J. Electrochem. Soc. 2019, 166, A3031–A3044. [Google Scholar] [CrossRef]
- HIOKI. Datasheet BT3554 HIOKI: Battery Tester. Available online: https://www.hioki.com/en/products/detail/?product_key=6382 (accessed on 2 June 2021).
- Neware, Datasheet Neware Battery Tester: CT-4008-5V6A-S1. Available online: https://www.newarelab.com/neware-product-sheet/item/147-bts-4008-5v6a-8-channels-battery-tester-cycler-dual-range (accessed on 2 June 2021).
- Weiss Technik AG. Datasheet Vötsch Temperaturprüfschrank VT4011: Technische Beschreibung VT4011. Available online: https://www.weiss-technik.com/de/marken/voetschtechnik/ (accessed on 2 June 2021).
- Weiss Technik AG. Datasheet Vötsch Temperaturprüfschrank VT4021: Technische Beschreibung VT4021. Available online: https://www.weiss-technik.com/de/marken/voetschtechnik/ (accessed on 2 June 2021).
- Birkl, C.R.; Roberts, M.R.; McTurk, E.; Bruce, P.G.; Howey, D.A. Degradation diagnostics for lithium ion cells. J. Power Sources 2017, 341, 373–386. [Google Scholar] [CrossRef]
- Jossen, A.; Weydanz, W. Moderne Akkumulatoren Richtig Einsetzen, 2nd ed.; Matrixmedia GmbH: Göttingen, Germany, 2019. [Google Scholar]
Manufacturer | Negative Electrode Material | Positive Electrode Material | Nominal Capacity [mAh] | UMax [V] | UMin [V] | Total Amount of Cells in Experiment |
---|---|---|---|---|---|---|
Samsung | C | NCA: LiNiCoAlO2 | 2500 | 4.20 V ± 0.05 | 2.50 | 87 |
Samsung | C | NMC: LiNiMnCoO2 | 2600 | 4.20 V ± 0.05 | 2.75 | 87 |
Heter | C | LFP: LiFePO4 | 1600 | 3.65 ± 0.05 | 2.50 | 87 |
Panasonic | C | LCO: LiCoO2 | 2600 | 4.20 | 2.75 | 87 |
Nitecore | C | LMO: Li(Mn)O2 | 2000 | 4.20 | 2.80 | 34 |
LTOBATTERY Co. | Titanate-Oxide | LCO: LiCoO2 | 1300 | 2.80 V ± 0.05 | 1.60 ± 0.05 | 47 |
Temperature | (18.5 ± 2.5) °C | (50 ± 2) °C | (60 ± 2) °C | ||||
---|---|---|---|---|---|---|---|
Voltage | UM | UL | UM | UH | UL | UM | UH |
LFP | 21 | 11 | 11 | 11 | 11 | 11 | 11 |
NMC | 21 | 11 | 11 | 11 | 11 | 11 | 11 |
NCA | 21 | 11 | 11 | 11 | 11 | 11 | 11 |
LCO | 21 | 11 | 11 | 11 | 11 | 11 | 11 |
LMO | 4 | 5 | 5 | 5 | 5 | 5 | 5 |
LTO | 11 | 6 | 6 | 6 | 6 | 6 | 6 |
Storage at | UL | UM | UH | T | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Capacity | µInit [Ah] | µEnd [Ah] | SInit [%] | SEnd [%] | µInit [Ah] | µEnd [Ah] | SIni [%] | SEnd [%] | µInit [Ah] | µEnd [Ah] | SInit [%] | SEnd [%] | [°C] |
LFP | 1.53 | 1.55 | 3.07 | 0.61 | 1.53 | 1.53 | 3.27 | 0.88 | 1.53 | 1.40 | 3.40 | 1.60 | 50 |
NCA | 2.52 | 2.46 | 0.69 | 1.58 | 2.53 | 2.44 | 0.30 | 0.46 | 2.53 | 2.31 | 0.26 | 1.01 | |
NMC | 2.48 | 2.47 | 0.86 | 0.97 | 2.48 | 2.42 | 1.03 | 0.86 | 2.47 | 2.07 | 1.13 | n.a. | |
LCO | 2.48 | 2.48 | 0.32 | 0.97 | 2.46 | 2.44 | 0.34 | 0.68 | 2.46 | 2.22 | 0.23 | 1.20 | |
LTO | 1.30 | 1.30 | 0.85 | 1.18 | 1.28 | 1.05 | 0.99 | 6.16 | 1.29 | 1.12 | 0.56 | 3.58 | |
LMO | 1.94 | 1.98 | 2.67 | 2.63 | 1.93 | 1.95 | 1.66 | 0.76 | 1.92 | 1.91 | 1.08 | 1.89 | |
LFP | 1.52 | 1.50 | 3.31 | 1.64 | 1.52 | 1.45 | 3.66 | 1.60 | 1.52 | 1.28 | 2.55 | 1.66 | 60 |
NCA | 2.53 | 2.45 | 0.09 | 0.84 | 2.53 | 2.39 | 0.23 | 0.99 | 2.52 | 2.22 | 0.61 | 2.11 | |
NMC | 2.48 | 2.45 | 0.93 | 0.43 | 2.47 | 2.41 | 0.94 | 0.54 | 2.46 | n.a. | 1.16 | n.a. | |
LCO | 2.45 | 2.43 | 0.97 | 2.08 | 2.43 | 2.37 | 0.89 | 0.57 | 2.43 | 1.99 | 0.79 | 2.53 | |
LTO | 1.28 | 1.27 | 1.35 | 2.58 | 1.28 | 0.94 | 0.99 | 1.79 | 1.29 | 0.97 | 0.40 | 5.80 | |
LMO | 1.92 | 1.98 | 2.36 | 0.92 | 1.92 | 1.98 | 2.04 | 0.70 | 1.93 | 1.77 | 2.21 | 1.45 | |
Resistance | µInit [mΩ] | µEnd [mΩ] | SInit [%] | SEnd [%] | µInit [mΩ] | µEnd [mΩ] | SInit [%] | SEnd [%] | µInit [mΩ] | µEnd [mΩ] | SInit [%] | SEnd [%] | |
LFP | 43.4 | 47.0 | 5.91 | 7.47 | 44.7 | 47.2 | 6.91 | 3.03 | 44.0 | 46.4 | 4.11 | 2.18 | 50 |
NCA | 20.5 | 22.3 | 7.22 | 8.65 | 19.7 | 20.8 | 4.79 | 2.62 | 19.4 | 33.6 | 4.11 | 3.97 | |
NMC | 67.5 | 70.5 | 3.07 | 4.25 | 66.9 | 74.0 | 2.61 | 3.02 | 67.0 | 85.3 | 2.47 | n.a. | |
LCO | 61.4 | 65.8 | 8.44 | 4.23 | 61.3 | 69.8 | 4.63 | 9.11 | 60.9 | 67.5 | 5.53 | 8.45 | |
LTO | 29.9 | 47.3 | 13.2 | 40.9 | 28.9 | 39.5 | 27.9 | 11.6 | 28.4 | 26.9 | 5.36 | 10.4 | |
LMO | 41.9 | 40.4 | 15.8 | 13.2 | 48.3 | 45.2 | 17.3 | 11.7 | 48.9 | 43.3 | 27.8 | 19.5 | |
LFP | 44.0 | 53.1 | 5.77 | 2.51 | 50.7 | 52.5 | 4.54 | 2.87 | 50.7 | 56.3 | 4.69 | 2.71 | 60 |
NCA | 20.0 | 21.1 | 5.11 | 3.68 | 19.6 | 21.1 | 3.21 | 4.63 | 20.0 | 33.1 | 8.16 | 5.02 | |
NMC | 66.8 | 72.2 | 2.58 | 2.74 | 66.5 | 77.7 | 2.10 | 4.83 | 68.1 | n.a. | 5.91 | n.a. | |
LCO | 62.3 | 66.7 | 3.50 | 6.37 | 60.8 | 75.5 | 5.93 | 9.77 | 63.0 | 65.8 | 4.96 | 6.09 | |
LTO | 26.6 | 39.2 | 16.3 | 17.5 | 33.6 | 40.4 | 21.8 | 21.7 | 33.3 | 24.6 | 7.27 | 12.3 | |
LMO | 47.2 | 36.4 | 36.0 | 17.5 | 44.3 | 33.7 | 17.8 | 4.66 | 36.6 | 35.0 | 17.1 | 1.79 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Geisbauer, C.; Wöhrl, K.; Koch, D.; Wilhelm, G.; Schneider, G.; Schweiger, H.-G. Comparative Study on the Calendar Aging Behavior of Six Different Lithium-Ion Cell Chemistries in Terms of Parameter Variation. Energies 2021, 14, 3358. https://doi.org/10.3390/en14113358
Geisbauer C, Wöhrl K, Koch D, Wilhelm G, Schneider G, Schweiger H-G. Comparative Study on the Calendar Aging Behavior of Six Different Lithium-Ion Cell Chemistries in Terms of Parameter Variation. Energies. 2021; 14(11):3358. https://doi.org/10.3390/en14113358
Chicago/Turabian StyleGeisbauer, Christian, Katharina Wöhrl, Daniel Koch, Gudrun Wilhelm, Gerhard Schneider, and Hans-Georg Schweiger. 2021. "Comparative Study on the Calendar Aging Behavior of Six Different Lithium-Ion Cell Chemistries in Terms of Parameter Variation" Energies 14, no. 11: 3358. https://doi.org/10.3390/en14113358
APA StyleGeisbauer, C., Wöhrl, K., Koch, D., Wilhelm, G., Schneider, G., & Schweiger, H. -G. (2021). Comparative Study on the Calendar Aging Behavior of Six Different Lithium-Ion Cell Chemistries in Terms of Parameter Variation. Energies, 14(11), 3358. https://doi.org/10.3390/en14113358