Novel Heat-Integrated Hybrid Distillation and Adsorption Process for Coproduction of Cellulosic Ethanol, Heat, and Electricity from Actual Lignocellulosic Fermentation Broth
Abstract
:1. Introduction
2. Methods
2.1. Design and Simulation
2.2. Economic Evaluation
2.3. Environmental Assessment
3. Results and Discussion
3.1. Conventional Coproduction Process of CE, Heat, and Electricity
3.2. Improvement of the Coproduction Process of CE, Heat, and Electricity
3.2.1. HP-Integrated HDA of the CE Process
3.2.2. MED-Integrated HDA of the CE Process
3.2.3. HI-HAD of the CE Process
3.2.4. Proposed HI-HDA Process for Coproduction of CE, Heat, Electricity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
AD | azeotropic distillation |
CE | cellulosic ethanol |
CHP | combined heat and power |
COD | chemical oxygen demand |
CO2 | carbon dioxide |
ED | extractive distillation |
EG | ethylene glycol |
HDA | hybrid distillation adsorption |
HI | heat integrated |
HP | heat pump |
LP | low pressure |
MED | multiple-effect distillation |
MMgy | million gallons per year |
MVR | mechanical vapor recompression |
NHV | net heating value |
NREL | National Renewable Energy Laboratory |
TAC | total annual cost |
TIC | total investment cost |
TOC | total operating cost |
UNIFAC | UNIQUAC functional-group activity coefficients |
VLE | vapor-liquid equilibrium |
Appendix A. Chemical Oxygen Demand (COD)
Compound | CODm |
---|---|
Lactic acid | 1.065 |
Levulinic acid | 1.516 |
Furfural | 1.665 |
Acetic acid | 1.067 |
Formic acid | 0.348 |
Extractives | 1.065 |
Glucose | 1.065 |
Xylose | 1.067 |
References
- Nitsos, C.K.; Matis, K.A.; Triantafyllidis, K.S. Optimization of Hydrothermal Pretreatment of Lignocellulosic Biomass in the Bioethanol Production Process. ChemSusChem 2013, 6, 110–122. [Google Scholar] [CrossRef] [PubMed]
- Claassen, P.A.M.; van Lier, J.B.; Lopez Contreras, A.M.; van Niel, E.W.J.; Sijtsma, L.; Stams, A.J.M.; de Vries, S.S.; Weusthuis, R.A. Utilisation of biomass for the supply of energy carriers. Appl. Microbiol. Biotechnol. 1999, 52, 741–755. [Google Scholar] [CrossRef]
- Christian, S. Is Cellulosic Ethanol the Next Big Thing in Renewable Fuels? Earth Island Journal. 5 January 2015. Available online: https://www.earthisland.org/journal/index.php/articles/entry/is_cellulosic_ethanol_the_next_big_thing_in_renewable_fuels/ (accessed on 28 April 2021).
- Halder, P.; Azad, K.; Shah, S.; Sarker, E. Prospects and technological advancement of cellulosic bioethanol ecofuel production. In Advances in Eco-Fuels for a Sustainable Environment; Elsevier: Amsterdam, The Netherlands, 2019; pp. 211–236. [Google Scholar]
- Dale, B.E.; Anderson, J.E.; Brown, R.C.; Csonka, S.; Dale, V.H.; Herwick, G.; Jackson, R.D.; Jordan, N.; Kaffka, S.; Kline, K.L.; et al. Take a Closer Look: Biofuels Can Support Environmental, Economic and Social Goals. Environ. Sci. Technol. 2014, 48, 7200–7203. [Google Scholar] [CrossRef]
- Balan, V.; Chiaramonti, D.; Kumar, S. Review of US and EU initiatives toward development, demonstration, and commercialization of lignocellulosic biofuels. Biofuels Bioprod. Biorefin. 2013, 7, 732–759. [Google Scholar] [CrossRef]
- Rosales-Calderon, O.; Arantes, V. A review on commercial-scale high-value products that can be produced alongside cellulosic ethanol. Biotechnol. Biofuels 2019, 12, 240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scott, A. Clariant bets big on cellulosic ethanol. Chem. Eng. News 2018, 96, 7. [Google Scholar]
- Huang, H.-J.; Ramaswamy, S.; Tschirner, U.W.; Ramarao, B. V A review of separation technologies in current and future biorefineries. Sep. Purif. Technol. 2008, 62, 1–21. [Google Scholar] [CrossRef]
- Humbird, D.; Davis, R.; Tao, L.; Kinchin, C.; Hsu, D.; Aden, A.; Schoen, P.; Lukas, J.; Olthof, B.; Worley, M.; et al. Process Design and Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol: Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover; National Renewable Energy Laboratory: Golden, CO, USA, 2011. [Google Scholar]
- Kiss, A.A.; Suszwalak, D.J.P.C. Enhanced bioethanol dehydration by extractive and azeotropic distillation in dividing-wall columns. Sep. Purif. Technol. 2012, 86, 70–78. [Google Scholar] [CrossRef]
- Loy, Y.Y.; Lee, X.L.; Rangaiah, G.P. Bioethanol recovery and purification using extractive dividing-wall column and pressure swing adsorption: An economic comparison after heat integration and optimization. Sep. Purif. Technol. 2015, 149, 413–427. [Google Scholar] [CrossRef]
- Frolkova, A.K.; Raeva, V.M. Bioethanol dehydration: State of the art. Theor. Found. Chem. Eng. 2010, 44, 545–556. [Google Scholar] [CrossRef]
- Kiss, A.A.; Ignat, R.M. Innovative single step bioethanol dehydration in an extractive dividing-wall column. Sep. Purif. Technol. 2012, 98, 290–297. [Google Scholar] [CrossRef]
- Schladt, L.; Ivens, I.; Karbe, E.; Ruhl-Fehlert, C.; Bomhard, E. Subacute oral toxicity of tetraethylene-glycol and ethylene-glycol administered to Wistar rats. Exp. Toxicol. Pathol. 1998, 50, 257–265. [Google Scholar] [CrossRef]
- Strømsnes, L.M. Process Modeling of a Biorefinery for Integrated Production of Ethanol and Furfural in HYSYS. Master’s Thesis, Norwegian University of Science and Technology, Trondheim, Norway, 2016. [Google Scholar]
- Torres-Ortega, C.E.; Rong, B.-G. Synthesis and Simulation of Efficient Divided Wall Column Sequences for Bioethanol Recovery and Purification from an Actual Lignocellulosic Fermentation Broth. Ind. Eng. Chem. Res. 2016, 55, 7411–7430. [Google Scholar] [CrossRef]
- Grisales Díaz, V.H.; Willis, M.J.; von Stosch, M.; Olivar Tost, G.; Prado-Rubio, O. Assessing the energy requirements for butanol production using fermentation tanks-in-series operated under vacuum. Renew. Energy 2020, 160, 1253–1264. [Google Scholar] [CrossRef]
- Pröll, T.; Zerobin, F. Biomass-based negative emission technology options with combined heat and power generation. Mitig. Adapt. Strateg. Glob. Chang. 2019, 24, 1307–1324. [Google Scholar] [CrossRef] [Green Version]
- Rashid, T.; Ali Ammar Taqvi, S.; Sher, F.; Rubab, S.; Thanabalan, M.; Bilal, M.; ul Islam, B. Enhanced lignin extraction and optimisation from oil palm biomass using neural network modelling. Fuel 2021, 293, 120485. [Google Scholar] [CrossRef]
- Rasheed, T.; Anwar, M.T.; Ahmad, N.; Sher, F.; Khan, S.U.-D.; Ahmad, A.; Khan, R.; Wazeer, I. Valorisation and emerging perspective of biomass based waste-to-energy technologies and their socio-environmental impact: A review. J. Environ. Manag. 2021, 287, 112257. [Google Scholar] [CrossRef]
- Nhien, L.C.; Long, N.V.D.; Lee, M. Novel Hybrid Reactive Distillation with Extraction and Distillation Processes for Furfural Production from an Actual Xylose Solution. Energies 2021, 14, 1152. [Google Scholar] [CrossRef]
- Nhien, L.C.; Long, N.V.D.; Kim, S.; Lee, M. Design and optimization of intensified biorefinery process for furfural production through a systematic procedure. Biochem. Eng. J. 2016, 116, 166–175. [Google Scholar] [CrossRef]
- Biegler, L.T.; Grossmann, I.E.; Westerberg, A.W. Systematic Methods of Chemical Process Design; Prentice Hall: Hoboken, NJ, USA, 1997. [Google Scholar]
- Turton, R.; Bailie, R.C.; Whiting, W.B.; Shaeiwitz, J.A.; Bhattacharyya, D. Analysis, Synthesis, and Design of Chemical Processes, 4th ed.; Prentice Hall: Hoboken, NJ, USA, 2016. [Google Scholar]
- Gadalla, M.A.; Olujic, Z.; Jansens, P.J.; Jobson, M.; Smith, R. Reducing CO2 emissions and energy consumption of heat-integrated distillation systems. Environ. Sci. Technol. 2005, 39, 6860–6870. [Google Scholar] [CrossRef]
- Kiss, A.A.; Flores Landaeta, S.J.; Infante Ferreira, C.A. Towards energy efficient distillation technologies—Making the right choice. Energy 2012, 47, 531–542. [Google Scholar] [CrossRef]
- Nhien, L.C.; Long, N.V.D.; Lee, M. Novel heat–integrated and intensified biorefinery process for cellulosic ethanol production from lignocellulosic biomass. Energy Convers. Manag. 2017, 141, 367–377. [Google Scholar] [CrossRef]
- Tomczyk, J. The Professor: Compressor Overheating. The ACHR NEWS. 5 April 2010. Available online: https://www.achrnews.com/articles/114251-the-professor-compressor-overheating (accessed on 28 April 2021).
Component | Mass Fraction (wt%) |
---|---|
H2O | 90.46% |
Extractives * | 0.21% |
Dextrose | 0.17% |
Xylose * | 0.04% |
Ash * | 0.90% |
Lactic acid | 0.05% |
Furfural | 0.01% |
Vanillin | 2.88% |
Ethanol | 3.16% |
CO2 | 0.11% |
Cellulose * | 0.61% |
Xylan * | 0.36% |
Ammonium sulphate * | 0.06% |
Diammonium phosphate * | 0.03% |
Protein * | 0.75% |
Cell mass * | 0.14% |
Ammonium acetate * | 0.03% |
Temperature (°C) | 32 |
Pressure (atm) | 1 |
Mass flowrate (kg/h) | 455,247 |
CE purity (wt%) | 99.5 |
Stream | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Vapor fraction | 0.0 | 0.0 | 0.0 | 1.0 | 1.0 | 0.0 | 0.3 | 1.0 | 0.0 | 1.0 | 1.0 | 0.8 | 1.0 |
Temperature (°C) | 32 | 32 | 108 | 55 | 115 | 126 | 106 | 89 | 119 | 116 | 116 | 89 | 116 |
Pressure (atm) | 1.0 | 6.0 | 6.0 | 2.0 | 2.0 | 2.3 | 2.5 | 1.5 | 1.9 | 1.5 | 1.5 | 1.5 | 1.5 |
Mass flowrate (kg/h) | 455,247 | 455,247 | 455,247 | 609 | 36,384 | 418,254 | 4894 | 19,214 | 22,063 | 19,214 | 14,317 | 14,317 | 4897 |
Mass fraction | |||||||||||||
Water | 0.905 | 0.905 | 0.905 | 0.025 | 0.608 | 0.932 | 0.278 | 0.074 | 0.999 | 0.074 | 0.005 | 0.005 | 0.278 |
Extractives * | 0.002 | 0.002 | 0.002 | 0.000 | 0.000 | 0.002 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Dextrose | 0.002 | 0.002 | 0.002 | 0.000 | 0.000 | 0.002 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Ash * | 0.009 | 0.009 | 0.009 | 0.000 | 0.000 | 0.010 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Lactic acid | 0.001 | 0.001 | 0.001 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Vanillin | 0.029 | 0.029 | 0.029 | 0.000 | 0.000 | 0.031 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Ethanol | 0.032 | 0.032 | 0.032 | 0.130 | 0.392 | 0.000 | 0.720 | 0.925 | 0.001 | 0.925 | 0.995 | 0.995 | 0.720 |
CO2 | 0.001 | 0.001 | 0.001 | 0.845 | 0.000 | 0.000 | 0.002 | 0.001 | 0.000 | 0.001 | 0.000 | 0.000 | 0.002 |
Cellulose | 0.006 | 0.006 | 0.006 | 0.000 | 0.000 | 0.007 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Xylan * | 0.004 | 0.004 | 0.004 | 0.000 | 0.000 | 0.004 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Ammonium sulphate * | 0.001 | 0.001 | 0.001 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Protein * | 0.008 | 0.008 | 0.008 | 0.000 | 0.000 | 0.008 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Cell Mass * | 0.001 | 0.001 | 0.001 | 0.000 | 0.000 | 0.002 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Oxygen | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Nitrogen | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Methane | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Stream | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 |
Vapor fraction | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.9 | 1.0 | 0.0 |
Temperature (°C) | 35 | 35 | 43 | 43 | 43 | 43 | 435 | 236 | 236 | 236 | 46 | 236 | 46 |
Pressure (atm) | 1.5 | 2.5 | 1.3 | 6.3 | 6.3 | 6.3 | 50.0 | 9.5 | 9.5 | 9.5 | 0.1 | 9.5 | 9.5 |
Mass flowrate (kg/h) | 4894 | 4894 | 418,254 | 418,254 | 44,870 | 373,385 | 206,034 | 206,034 | 18,556 | 115,558 | 115,558 | 71,920 | 115,558 |
Mass fraction | |||||||||||||
Water | 0.278 | 0.278 | 0.932 | 0.932 | 0.434 | 0.991 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Extractives * | 0.000 | 0.000 | 0.002 | 0.002 | 0.001 | 0.002 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Dextrose | 0.000 | 0.000 | 0.002 | 0.002 | 0.001 | 0.002 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Ash * | 0.000 | 0.000 | 0.010 | 0.010 | 0.090 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Lactic acid | 0.000 | 0.000 | 0.001 | 0.001 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Vanillin | 0.000 | 0.000 | 0.031 | 0.031 | 0.287 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Ethanol | 0.720 | 0.720 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
CO2 | 0.002 | 0.002 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Cellulose | 0.000 | 0.000 | 0.007 | 0.007 | 0.061 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Xylan * | 0.000 | 0.000 | 0.004 | 0.004 | 0.036 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Ammonium sulphate * | 0.000 | 0.000 | 0.001 | 0.001 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Protein * | 0.000 | 0.000 | 0.008 | 0.008 | 0.075 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Cell Mass * | 0.000 | 0.000 | 0.002 | 0.002 | 0.014 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Oxygen | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Nitrogen | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Methane | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Stream | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | |||
Vapor fraction | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 1.0 | 1.0 | 0.0 | |||
Temperature (°C) | 82 | 138 | 125 | 128 | 132 | 289 | 175 | 35 | 25 | 89 | |||
Pressure (atm) | 9.5 | 9.5 | 9.5 | 9.5 | 50.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.5 | |||
Mass flowrate (kg/h) | 206,034 | 18,556 | 71,920 | 90,476 | 206,034 | 340,687 | 340,687 | 15,649 | 280,170 | 14,317 | |||
Mass fraction | |||||||||||||
Water | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.000 | 0.000 | 0.005 | |||
Extractives * | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |||
Dextrose | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |||
Ash* | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |||
Lactic acid | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |||
Vanillin | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |||
Ethanol | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.995 | |||
Ammonia | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |||
CO2 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.741 | 0.000 | 0.000 | |||
Cellulose | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |||
Xylan * | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |||
Ammonium sulphate * | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |||
Protein * | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |||
Cell mass * | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |||
Oxygen | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.233 | 0.000 | |||
Nitrogen | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.767 | 0.000 | |||
Methane | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.259 | 0.000 | 0.000 |
C1 | C2 | |
---|---|---|
Tray type | Valve (Ballast-V1) | Valve (Ballast-V1) |
Column diameter (m) | 3.4 | 2.8 |
Number of trays | 32 | 45 |
Number of flow paths | 1 | 1 |
Max flooding (%) | 85.5 | 85.0 |
Tray spacing (m) | 0.61 | 0.61 |
Structural Alternative | Conventional Process | HP Process | MED Process | HI Process |
---|---|---|---|---|
Reboiler duties (kW) | 46,118 | 29,268 | 28,175 | 26,045 |
Reboiler duty savings (%) | 36.5% | 38.9% | 43.5% | |
Condenser duties (kW) | 18,401 | 5072 | 3614 | 3614 |
Condenser duty savings (%) | 72.4% | 80.4% | 80.4% | |
Total investment costs (US k$) | 10,121 | 17271 | 16889 | 15246 |
Total investment cost savings (%) | −70.7% | −66.9% | −50.6% | |
Total operating costs (US k$/year) | 18,743 | 11,823 | 11,367 | 10,511 |
Total operating cost savings (%) | 36.9% | 39.4% | 43.9% | |
Total annual costs (US k$/year) | 20,252 | 14,397 | 13,884 | 12,783 |
Total annual cost savings (%) | 28.9% | 31.4% | 36.9% | |
Total carbon emissions (ton/year) | 94,071 | 74,306 | 70,348 | 62,472 |
Total carbon emission reduction (%) | 21.0% | 25.2% | 33.6% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nhien, L.C.; Van Duc Long, N.; Lee, M. Novel Heat-Integrated Hybrid Distillation and Adsorption Process for Coproduction of Cellulosic Ethanol, Heat, and Electricity from Actual Lignocellulosic Fermentation Broth. Energies 2021, 14, 3377. https://doi.org/10.3390/en14123377
Nhien LC, Van Duc Long N, Lee M. Novel Heat-Integrated Hybrid Distillation and Adsorption Process for Coproduction of Cellulosic Ethanol, Heat, and Electricity from Actual Lignocellulosic Fermentation Broth. Energies. 2021; 14(12):3377. https://doi.org/10.3390/en14123377
Chicago/Turabian StyleNhien, Le Cao, Nguyen Van Duc Long, and Moonyong Lee. 2021. "Novel Heat-Integrated Hybrid Distillation and Adsorption Process for Coproduction of Cellulosic Ethanol, Heat, and Electricity from Actual Lignocellulosic Fermentation Broth" Energies 14, no. 12: 3377. https://doi.org/10.3390/en14123377
APA StyleNhien, L. C., Van Duc Long, N., & Lee, M. (2021). Novel Heat-Integrated Hybrid Distillation and Adsorption Process for Coproduction of Cellulosic Ethanol, Heat, and Electricity from Actual Lignocellulosic Fermentation Broth. Energies, 14(12), 3377. https://doi.org/10.3390/en14123377