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Abstract: This paper develops simplifying entropic models of irreversible closed cycles. The en-
tropic models involve the irreversible connections between external and internal main operational
parameters with finite physical dimensions. The external parameters are the mean temperatures
of external heat reservoirs, the heat transfers thermal conductance, and the heat transfer mean log
temperatures differences. The internal involved parameters are the reference entropy of the cycle and
the internal irreversibility number. The cycle’s design might use four possible operational constraints
in order to find out the reference entropy. The internal irreversibility number allows the evaluation
of the reversible heat output function of the reversible heat input. Thus the cycle entropy balance
equation to design the trigeneration cycles only through external operational parameters might be
involved. In designing trigeneration systems, they must know the requirements of all consumers of
the useful energies delivered by the trigeneration system. The conclusions emphasize the complexity
in designing and/or optimizing the irreversible trigeneration systems.

Keywords: closed irreversible cycles; number of internal irreversibility; reference entropy;
operational constraints; irreversible energy efficiency; trigeneration

1. Introduction

Since energy needs are rising continuously, energy systems remain as decisive research
items. The design of these systems is focused on the energy client’s requirements and it is
following the optimized efficiency. This specific design ignores the energy systems con-
nections, and requirements of different clients, and the global impact on the environment.
The planning and management of complex energy systems might generate extra restrictive
constraints, e.g., variable energy requirements. The national or international interconnected
electricity grids safely ensure the variable energy needs of any customer. The variable
heating and refrigeration—e.g., heating and conditioning systems—are designed using
scenarios with variable operation shapes. The best energy solutions are obtained for the
steady state operation. The non-steady state energy processes generates energy/exergy
losses generated by irreversibility. Actually, specific studies are related to design, opti-
mization, management, and planning of new applications. Reference [1] developed a
very specific model with two complementary constraints, minimization of operating costs
and reducing the carbon footprint for a local grid of customers with different needs of
power, cooling and heating; [2] simulated the non-steady state operation of a trigeneration
system uniting a gas turbine engine with a helium based reverse cycle, working both in
the refrigeration mode and heat pump mode, coupled to a heat storage systems and to a
cooling storage system delivering the needed heating and cooling; [3] assessed, on the basis
of the levelized cost of electricity, the energy and exergy efficiency and the environmental
effects of a biomass gasification based trigeneration system comprising a solid oxide fuel
cell, a closed Brayton engine, an absorption refrigeration machine and a hot water boiler;

Energies 2021, 14, 3416. https://doi.org/10.3390/en14123416 https://www.mdpi.com/journal/energies

https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0002-3308-5528
https://doi.org/10.3390/en14123416
https://doi.org/10.3390/en14123416
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/en14123416
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en14123416?type=check_update&version=2


Energies 2021, 14, 3416 2 of 19

reference [4] compared the performances of two solar based organic Rankine cycles and us-
ing two kinds of solar concentrators, one parabolic through and the other one linear Fresnel
reflectors, and emphasized the operational differences; reference [5] made an optimization
of a combined storage of thermal energy and of electrical one for a net-zero-energy district,
and considering optimal strategy of energy generators location and of energy distribution
network; reference [6] performed a modeling of a biofueled small local trigeneration sys-
tem delivering useful energies, cooling, heating, and power by means of specific storage
system for cooling and heating and electrical power, and compared the convenient ratio
heat/electricity for two engines, reciprocating and Stirling; reference [7] made an actual
review regarding the solar based polygeneration systems—furnishing cooling, heating,
power, fresh water, and hydrogen—and was comparing three types of solar concentrators,
parabolic through, solar photovoltaic thermal, and solar tower; reference [8] analyzed a
hybrid system including photovoltaic thermal operating as heat source or heat sink for a
reversible heat pump, and having different sizes and storage tank volumes, and working
in different climate conditions; reference [9] analyzed the integration of a high temperature
heat pump inside a trigeneration system including an absorption chiller which provided
the heat pump input heat from the chiller condenser; reference [10] presents a life cycle
assessment for a natural gas based local small trigeneration system, and used environ-
mental data to perform exergoenvironmental assessments; reference [11] performed a
simulation regarding the integration of an adsorption unit inside a combined cycle and
evaluated the operational impacts; reference [12] judges the performances of a small-scale
CCHP—(combined cooling heat and power) system comprising a biogas externally fired
microturbine, an absorption refrigeration unit and multiple heat exchangers for supplying
energies demanded by a Bolivian small dairy farms. All these very specific studies are
developing methods and models for planning and management of CCHP systems, see
for instance [13], where Mixed Integer Linear Program solvers were developed in order
to minimize the operating costs of a very complex energy grid including different CCHP
systems, and auxiliary peak boilers and heat storage units.

Improvement of general design models for trigeneration systems is completed by the
following logical levels, presented below, see also [14].

1. Stating the complete reversible trigeneration cycles for the fundamental energy
schemes of providing imposed useful cooling, heating and power. This design level
is very easily well done by considering ideal Carnot engine and refrigeration cycles.
The ideal trigeneration built with completely ideal Carnot cycles gives the specific
maximum maximorum energy efficiency, not depending on the working fluids’ na-
ture, depending only on the external heat reservoirs temperatures related to the ideal
Carnot engine cycle and to the ideal Carnot refrigeration cycle. These maximum
maximorum energy efficiencies could be used for all kinds of assessments regarding
the lost energy/exergy/irreversible entropy minimization.

2. Defining the general endoreversible trigeneration thermodynamic models for all pos-
sible patterns of providing useful energies. This design level might be well completed
through FPDT (finite physical dimensions thermodynamics) mathematical models
based on the endoreversible Carnot cycles, see [14]. The limits of endoreversible
Carnot cycles are surpassed through the mean thermodynamic temperature concept.
However, it is obvious that the actual mean thermodynamic temperature is depending
on the working fluids nature—i.e., on the thermodynamic properties—and on the type
of the specific non adiabatic process. The FPDT (finite physical dimensions thermody-
namics) mathematical models are general ones. The applications have to choose the
working fluids and therefore the optimization might find the best working/convenient
fluid by imposing simple or complex optimization criteria. The best actual FPDT en-
doreversible trigeneration becomes the reference case for all irreversible trigeneration
cycles having the same working pattern.

3. Defining the reference models assessing the irreversibility influence. The classical
irreversibility analysis might be completed through thorough sensitivity analyses and
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specific optimization methods implying mean thermodynamic temperatures, specific
lost exergy and irreversible entropy generation concepts. The FPDT assessments
delineate a single concept evaluating priori the accumulated internal irreversibility,
see for instance the short communications [15,16]. This evaluation of internal ac-
cumulated irreversibility by a single parameter is directly connecting the internal
irreversibility to the external energy interactions through entropy balance equation.
Therefore, through this single irreversibility dimensionless parameter the irreversible
trigeneration assessments might be completed without knowing the working fluid
nature and the type of thermal system. Although before each FPDT work they must
be defined the operational possible domain range of this single parameter depending
on the working fluid nature and on the thermal system type. They must also mention
that the generalizing FPDT models of irreversible trigeneration have to adopt a new
mean temperature of an external heat reservoir [14]. This new mean temperature is
defined on the basis of the mean thermodynamic temperatures of the working fluid
during the heat transfer processes and of the mean log temperature differences related
to the linear heat transfer law. This new mean temperature can unify the first law and
the linear heat transfer law without errors.

4. Defining the design optimization approaches of reference reversible and irreversible
cycles. The optimization procedures consider either pure thermodynamic criteria,
or CAPEX criteria, or operational costs criteria, or environmental criteria. The more
elaborated methods combine different criteria, e.g., multi-objective optimization.

5. Defining the management optimization methods for possible interconnected trigen-
eration grids. They might be involved adaptive/intelligent management systems
or trained predictive ones—e.g., training through fuzzy algorithms, management
optimization methods such as MILP models, see reference [13].

This paper is a work inside stage three and develops FPDT generalizing entropic
approaches of irreversible closed cycles depending on a single dimensionless parameter
characterizing all internal irreversibility without specifying the working fluid nature and
the type of the thermal system. The mathematical models involve the irreversible con-
nections between external and internal main operational parameters with finite physical
dimensions. The external parameters are the mean temperatures of external heat reser-
voirs, the heat transfers thermal conductance and the mean log temperatures differences.
The internal involved parameters are the reference entropy of the cycle and the internal
irreversibility number. The cycle’s design might use four possible operational constraints
in order to find out the reference entropy. The number of internal irreversibility allows
the evaluation of the reversible heat output function of the reversible heat input. Thus
the cycle entropy balance equation to design the trigeneration cycles might be involved
only through external operational parameters. In designing trigeneration systems they
must know the requirements of all consumers of the useful energies delivered by the
trigeneration system. The final conclusions emphasize the complexity in designing and/or
optimizing the irreversible trigeneration systems.

2. The Irreversible Closed Cycles—The Irreversible Energy Efficiency—The Reference
Entropy—The Number of Internal Irreversibility

Let us suppose the general basic irreversible thermal systems interacting with the
‘environment’ by heat transfers, mass transfers and power transfers, see Figure 1. These
thermal systems can be analyzed taking into account either the whole irreversibility, internal
and external, or only the internal irreversibility. Three types of thermal systems would
be analyzed:

• the enlarged open thermal system comprising three interconnected parts and com-
pletely isolated from the universe, i.e., the proper open thermal system deformable
under the external pressure which is joined with the external heat transfer reservoirs
having known mean temperatures and heat capacities and joined with the deforma-
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tion work and mass transfer reservoirs having known parameters, mass composition
and specific energies (enthalpies, kinetic, and potential energies);

• the enlarged non-deformable closed thermal system that has two coupled parts iso-
lated from the universe, the proper closed thermal system joined only with the ex-
ternal heat transfer reservoirs having known mean temperatures and specific heat
capacities, and

• the closed thermal system/cycle considered alone but connected to external heat
reservoirs with unknown parameters.
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2.1. Assumptions for the First Case, the Enlarged Thermal Systems

− They will be analyzed non steady-state enlarged basic open thermodynamic systems,
including both the thermal system, and the external heat reservoirs controlling the
heat transfers, and the environment allowing the mass transfers and the deformation
work transfer under the external pressure, see Figure 1;

− The working fluid is a mixture of different chemical species, the inlet and outlet
compositions might be different because of chemical reactions that can appear during
the flow through the thermal system, e.g., combustion;

− The inner boundary of the flow path through the thermal system is deformable under
the environmental pressure;

Correlating the first law Equation (1) with the second law Equation (2), they can obtain the
most general equation of the irreversible power (3) connected to the complete reversible cycle.
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where:

−
.

Q,
.

Q0,
.

We,
.

W
rev
e ,

.
W

irrev
lost are the heat transfer rates from the heat source and to the heat

sink, the real irreversible power, the complete reversible power and the lost power
through irreversibility;

− pe
∂V
∂t is the deformation work transfer under the external pressure, pe is the external

pressure and V is the deformable volume of the thermal system;
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− .
m, h, s are the mass flow rates, the specific enthalpy inclosing both the chemical and
physical parts and the specific entropy inclosing both the chemical and physical parts,
compulsory to obey to the first law of thermodynamics and considering all possible
internal chemical processes, e.g., combustion;

− c2

2 , gZ are the specific kinetic and potential energies;
− T, T0 are the mean temperatures of the heat source and of the heat sink;

−
.
S

irrev
gen is the entropy rate generated through whole irreversibility.

The Equation (3) allows to define the complete reversible power including three
components

.
W

rev
e =

.
W

rev
e,Q +

.
W

rev
e,flow +

.
W

rev
e,storage (4)

respectively

− the reversible power transfer related to the reversible heat transfers, ideal Carnot cycle

.
W

rev
e,Q =

.
Q
(

1− T0

T

)
(5)

− the reversible power transfer caused by the reversible flow from the inlet states to
outlet ones

.
W

rev
e,flow = ∑

inlet

.
m(h∗ − T0s)− ∑

outlet

.
m(h∗ − T0s) (6)

− the reversible power transfer related to the system reversible ‘energy inertia’ caused
by non-steady state processes of the working fluid surrounded by the inner walls at a
certain operational time

.
W

rev
e,storage −

∂

∂t
(
U + peV− T0S

)
(7)

Therefore, the lost power through whole irreversibility has the general equation

.
W

irrev
lost = −T0

.
S

irrev
gen (8)

The thermal energy consumed to produce power has two components, the heat trans-
fer rate get from the heat source

.
Q, and the generalized enthalpy rate/variation associated

to the flow ∑
inlet

.
mh∗ − ∑

outlet

.
mh∗, where h∗ = h + c2

2 + gZ is the so called methalpy (‘gener-

alized’ enthalpy), see [17,18].

2.2. Assumptions Considering Closed Thermal Systems

Let us suppose the general basic closed irreversible thermal systems, see Figure 2. The
assumptions are
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− no mass transfers

∑inlet
.

mh∗ −∑outlet
.

mh∗ = 0 and−∑inlet
.

ms + ∑outlet
.

ms = 0 (9)

− non deformable boundary walls, and

− pe
∂V
∂t

= 0 (10)

− steady state operation

∂U
∂t

= 0 and
∂S
∂t

= 0 (11)

The associated entropy balance equation for the enlarged thermal system is, see Figure 2

− Irr

.
Q
T
+

∣∣∣ .
Q0

∣∣∣
T0

= 0 (12)

The associated entropy balance equation only for the alone thermal system is, see
Figure 2

−Nirr

.
Q

T− ∆T
+

∣∣∣ .
Q0

∣∣∣
T0 + ∆T0

= 0 (13)

The relation between Irr and Nirr is obtained from entropy balance Equations (12) and (13)

Irr = Nirr
T
T0

T0 + ∆T0

T− ∆T
= NirrθHRθmtt (14)

where:
−

.
Q,

.
Q0 are the heat transfer rates;

− T, T0, ∆T, ∆T0 are the mean temperatures of the heat source, of the heat sink and the
corresponding mean log temperature differences controlling the heat transfers; they
have to state that (T− ∆T) and (T0 + ∆T0) are the mean thermodynamic temperatures
of the working fluid for the reversible non adiabatic processes of the cycle, i.e., the
reversible heating and cooling processes;

− Irr is the comprehensive dimensionless irreversibility function linking the heat trans-
fers through the entropy balance equation for the enlarged thermal system, it includes
both the external irreversibility and the internal one;

− Nirr is the internal dimensionless irreversibility function linking the heat transfers
through entropy balance equation only for the thermal system, it includes only the
internal irreversibility; in this paper Nirr is called as the number of internal irreversibility;

− θHR, θmtt are the ratios of mean temperatures of external heat reservoirs and of mean
thermodynamic temperatures of cycle’s non-adiabatic processes.

2.3. Irreversible Energy Efficiency of Enlarged Closed Thermal System

They will be demonstrated the comprehensive irreversible energy efficiency related to
the complete reversible Carnot cycle, i.e., for the enlarged thermal system, see Figure 2.

• Engine

The delivered power of the enlarged engine cycle

.
We =

.
W

rev
e +

.
W

irrev
lost =

.
Qrev

(
1− T0

T

)
− T0

.
S

irrev
gen (15)
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The irreversible energy efficiency, EEirrev
engines

EEirrev
engines =

.
We.

Qrev
=

.
W

rev
e +

.
W

irrev
lost.

Qrev
=

.
W

rev
e.

Qrev
+

.
W

irrev
lost.

Qrev
= 1− T0

T −
T0

.
S

irrev
gen

.
m(T−∆T)∆sq

= 1− T0
T

(
1 +

θSLT
.
S

irrev
gen

.
m∆sq

)
= 1− T0

T Irr < EECarnot = 1− T0
T

(16)

where:
θSLT = T

T−∆T is a dimensionless temperature ratio related to the second law of thermo-
dynamics

.
m∆sq is the reversible entropy variation rate of the working fluid during the reversible

heat input,
.

Qrev, and

(
1 +

θSLT
.
S

irrev
gen

.
m∆sq

)
= Irr is the primary form of the overall irreversibility

dimensionless function.

• Refrigeration unit

The consumed power of the enlarged refrigeration unit∣∣∣ .
We

∣∣∣ = − .
W

rev
e −

.
W

irrev
lost = −

.
Qrev

(
1− T0

T

)
+ T0

.
S

irrev
gen =

.
Qrev

(
T0

T
− 1
)
+ T0

.
S

irrev
gen (17)

The irreversible energy efficiency, EEirrev
refrigeration

EEirrev
refrigeration =

.
Qrev∣∣∣ .
We

∣∣∣ = −
.

Qrev
.

W
rev
e +

.
W

irrev
lost

= − 1
.

W
rev
e.

Qrev
+

.
W

irrev
lost.

Qrev

= 1
T0
T −1+

T0
.
S

irrev
gen

.
m(T−∆T)∆sq

= 1
T0
T

(
1+

θSLT
.
S

irrev
gen

.
m∆sq

)
−1

= 1
T0
T Irr−1

< COPCarnot =
1

T0
T −1

(18)

where:
θSLT = T

T−∆T is a dimensionless temperature ratio related to the second law of thermo-
dynamics

.
m∆sq is the working fluid entropy variation rate during the reversible heat input

.
Qrev, and(

1+
θSLT

.
S

irrev
gen

.
m∆sq

)
= Irr is the primary form of the overall irreversibility dimensionless function.

2.4. Irreversible Energy Efficiency Only for the Closed Thermal System

They will be demonstrated the comprehensive irreversible energy efficiency related to
the endoreversible Carnot cycle, see Figure 2.

• Engine

The delivered power of the alone closed engine cycle

.
We =

.
W

rev
e +

.
W

irrev
lost,cycle =

.
Qrev

(
1− T0 + ∆T0

T− ∆T

)
− (T0 + ∆T0)

.
S

irrev
gen,cycle (19)

The irreversible energy efficiency, EEirrev
engines

EEirrev
engines =

.
We.

Qrev
=

.
W

rev
e +

.
W

irrev
lost, cycle

.
Qrev

=
.

W
rev
e.

Qrev
+

.
W

irrev
lost,cycle

.
Qrev

= 1− T0+∆T0
T−∆T −

(T0+∆T0)
.
S

irrev
gen,cycle

.
m(T−∆T)∆sq

= 1− T0+∆T0
T−∆T

(
1 +

.
S

irrev
gen,cycle

.
m∆sq

)
= 1− T0+∆T0

T−∆T Nirr < EECarnot = 1− T0+∆T0
T−∆T

(20)
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where:
.

m∆sq is the working fluid entropy variation rate during the reversible heat input
.

Qrev, and(
1 +

.
S

irrev
gen,cycle

.
m∆sq

)
= Nirr is the primary form of the internal irreversibility dimensionless function.

• Refrigeration unit

The consumed power of the alone closed refrigeration unit∣∣∣ .
We

∣∣∣ = − .
W

rev
e −

.
W

irrev
lost,cycle = −

.
Qrev

(
1− T0+∆T0

T−∆T

)
+ (T0 + ∆T0)

.
S

irrev
gen,cycle

=
.

Qrev

(
T0+∆T0
T−∆T − 1

)
+ (T0 + ∆T0)

.
S

irrev
gen,cycle

(21)

The irreversible energy efficiency, EEirrev
refrigeration

EEirrev
refrigeration =

.
Qrev∣∣∣ .
We

∣∣∣ = −
.

Qrev
.

W
rev
e +

.
W

irrev
lost,cycle

= − 1
.

W
rev
e.

Qrev
+

.
W

irrev
lost,cycle

.
Qrev

= 1
T0+∆T0

T−∆T −1+
(T0+∆T0)

.
S

irrev
gen,cycle

.
m(T−∆T)∆sq

= 1
T0+∆T0

T−∆T

(
1+

.
S

irrev
gen,cycle

.
m∆sq

)
−1

= 1
T0+∆T0

T−∆T Nirr−1
< COPCarnot =

1
T0+∆T0

T−∆T −1

(22)

where:
.

m∆sq is the working fluid entropy variation rate during the reversible heat input
.

Qrev, and(
1 +

.
S

irrev
gen,cycle

.
m∆sq

)
= Nirr is the primary form of the internal irreversibility dimensionless function.

Remark 1. Dimensionless functions, Irr and Nirr, depend on the entropy variation rate,

∆
.
S =

.
m∆sq, and on the corresponding

.
S

irrev
gen and

.
S

irrev
gen,cycle. At their turn, both parameters,

∆
.
S =

.
m∆sq and

.
S

irrev
gen and

.
S

irrev
gen,cycle, will be strongly shaped through the working fluids nature

and their thermodynamic properties. On the basis of equations defining Irr an Nirr, the reference
entropy becomes always ∆

.
S =

.
m∆sq > 0, i.e., the working fluid entropy variation rate during the

reversible heat input on the cycle. The references [15,16] includes some demonstrated equations
of both Nirr and irreversible energy efficiency, e.g., for some closed engine cycle, and for closed
refrigeration cycle.

Remark 2. Heat rates exchanged with external heat reservoirs are the reversible heat rates for
constant pressure processes where the irreversibility is defined by pressure drops equivalent to a
constant enthalpy process (equivalent throttling), see Figures 3 and 4.
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When we have different irreversible non adiabatic processes, e.g., constant temper-
ature, polytropic, constant volume we have to define the irreversibility either through
adequate and known pressure drops caused by friction or through irreversible lost work
alike it is defined the isentropic efficiency of an adiabatic process.

Remark 3. Reversible entropy variation during the heat output can be evaluated through the
number of internal irreversibility, Nirr, i.e., ∆

.
S0 =

.
m∆sq0 = −Nirr∆

.
S = −Nirr

.
m∆sq. Knowing

the reversible cyclic heat input and heat output they can be assessed the irreversible power and the
irreversible energy efficiency.

3. Design Imposed Operational Conditions

The first design of irreversible cycles can be performed using four imposed conditions
see for instance [19]. These operational imposed conditions might be also combined, for
instance constant specific power and constant energy efficiency for engines and constant
heat input and constant energy efficiency for refrigeration units.

The analysis and design of irreversible cycles has always two directions. The first
one is to analyze the cycle ignoring the energy interactions with the environment, see
Section 3.1 below. The second one uses the energy interactions as main control functions
and takes into consideration only the number of internal irreversibility as a general internal
function quantifying the all internal irreversibility and linking the external heat transfers
with external heat reservoirs, see the following Section 4.

3.1. FPDT Internal Design through Imposed Operational Conditions

They have to define the internal main finite physical dimension parameters and
after that to establish the dependence functions characterizing the performances of the
irreversible cycle. For instance, [19] applied the four imposed operational conditions to
evaluate the performances of a Joule-Brayton cycle working with two ideal gases, air and
CO2. The main finite physical dimension parameter was the classical compression ratio,
πC, and the dependence functions characterizing the performances of the irreversible cycle
were:

• the maximum temperature on the cycle, T3irr [K], see Figure 5,
• the specific power, w, [J/kg], imposed w = 500 kJ/kg,
• the energy efficiency, EEirr, see Figure 6, and
• the number of internal irreversibility, Nirr, see Figure 7.

The internal irreversible entropy generation was known through isentropic efficien-
cies of compressor, ηsC, and of gas turbine, ηsT, and through the pressure drops inside
exchangers, rp.

The admissible maximum temperature on the cycle, (1100 K to 1400 K), imposes
its own limits for the maximum compression ratio. These limitations establish actual
compulsory limitations for the specific power, for the energy efficiency, and consequently
for the maximum admissible number of internal irreversibility. The all limitations would
be controlled by the working fluids nature and by the magnitude of irreversibility.
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Below are selected numerical results [19], see Figures 5–7, for imposed constant power
w = 500 kJ/kg and imposed irreversibility for graphs 1, 2, 3 and 4:

1: air, ηsC = 0.85, ηsT = 0.9, rp = 0.975; 2: air, ηsC = 0.8 and ηsT = 0.85, rp = 0.95
3: CO2, ηsC = 0.85, ηsT = 0.9, rp = 0.975; 4: CO2, ηsC = 0.8 and ηsT = 0.85, rp = 0.95

4. Irreversible Trigeneration Cycles External Design Based on FPDT

The [14] presented the analysis of endoreversible trigeneration cycles design based
on FPDT. This section is extending the mathematical models to four irreversible closed
trigeneration cycles:

a. engine cycle working in power mode and the reverse cycle working in refrigeration
mode, the summer season;

b. engine cycle working in cogeneration mode and the reverse cycle working in refriger-
ation mode, the winter season;
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c. engine cycle working in power mode and the reverse cycle working both in refrigera-
tion mode and heat pump mode, the winter season; and

d. engine cycle working in cogeneration mode and the reverse cycle working both in
refrigeration mode and heat pump mode, the winter season.

For each cycle, engine or refrigeration unit, they were adopted the related four ex-
ternal and two internal control parameters with finite dimensions. The external control
parameters are pertaining to external heat transfers and the internal control parameters are
the generalizing reference entropy and the number of internal irreversibility.

4.1. Basic Mathematical Model

The mathematical model joins the first law and the linear heat transfer law with the
second law. The useful energies are the power, the refrigeration and the heating rates. The
useful thermal energies must be known through the ratio of refrigeration rate to power (x)
and the ratio of heating rate to power (y).

4.1.1. Engine Irreversible Cycle

The reference entropy variation rate is:

∆
.
SE =

.
m∆sq (23)

The finite physical dimension control parameters are:

• Mean log temperature differences ∆TH [K] at the hot side and ∆TC [K] at the cold side.
• Thermal conductance (UA)H [kW/K] allocated to the hot side, and thermal conduc-

tance (UA)C [kW/K] allocated to the cold side.
• Thermal conductance inventory:

GTE = GH + GC = (UA)H + (UA)C

[
kW·K−1

]
(24)

gH =
GH

GTE
, gC =

GC

GTE
, gH + gC, gC = 1− gH (25)

where U [kW·m−2·K−1] is the overall heat transfer coefficient and A [m2] is the heat
transfer area.

First Law Equations

.
QH = gHGTE∆TH = TH∆

.
SE = (θHSTCS − ∆TH)∆

.
SE at the hot side (26)

(26)︷︸︸︷
==⇒ GTE =

(θHSTCS − ∆TH)∆
.
SE

gH∆TH
(27)

.
QC = −(TCS + ∆TC)∆

.
SENirr,E = −(1− gH)GTE∆TC at the cold side (28)

(27,28)︷︸︸︷
==⇒ ∆TC =

gH∆THNirr,E

θHS

{
1− gH −

∆TH[1+gH(Nirr,E−1)]
θHSTCS

} (29)

.
WE =

.
QH +

.
QC = (θHSTCS − ∆TH)∆

.
SE

−

TCS +
gH∆THNirr,E

θHS

{
1−gH−

∆TH[1+gH(Nirr,E−1)]
θHSTCS

}
∆

.
SENirr,E

(30)
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EEirr,E =

.
WE
.

QH

= 1−

TCS +
gH∆THNirr,E

θHS

{
1−gH−

∆TH[1+gH(Nirr,E−1)]
θHSTCS

}
Nirr,E

(θHSTCS − ∆TH)
(31)

where

− .
m [kg·s−1] is the mass flow rate through engine;

−
.

QH [kW] is the reversible heat input rate;

−
.

QC [kW] is the reversible heat output rate;

−
.

WE [kW] is the power;
− EEirr,E is the irreversible energy efficiency;
− TH [K] is the mean thermodynamic temperature, cycle hot side;
− THS = TH + ∆TH [K] is the heat source proper mean temperature;
− TC [K] is the mean thermodynamic temperature, cycle cold side;
− TCS = TC − ∆TC [K] is the heat sink proper mean temperature;

The performance functions get explicit forms if they are replacing the reference entropy
through one imposed operational condition. Additionally imposing the energy efficiency,
we can simplify the computational procedures. The main difficulty is to correctly evaluate
the possible imposed energy efficiency by a sensitivity analysis and to define the domain
range of Nirr. The proof results are correlating the internal and external FPDT evaluations.

As a very rapid computational example, they were imposed mixed operational condi-
tions, constant power and constant energy efficiency:

.
W = 100 kW, θHS = 4, TCS = 323 K,

and EEirr,E = 0.35, and some numbers of internal irreversibility, see Figures 8–10. The
imposed energy efficiency allowed to find the relationship ∆TH = ϕ(gH, Nirr,E):

∆TH = 795.0769(1− gH) with Nirr,E = 1.00

∆TH =
670.846(1− gH)

1 + 0.25gH
with Nirr,E = 1.25

∆TH =
546.615(1− gH)

1 + 0.5gH
with Nirr,E = 1.50
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The numerical results emphasized that as larger the number of internal irreversibility
as larger the thermal conductance inventory and smaller the mean log temperature differ-
ences. Respectively, as higher the internal irreversibility as lower the external irreversibility
in order to maintain constant energy efficiency.

4.1.2. Refrigeration Irreversible Cycle

• The reference entropy variation rate is:

∆
.
SR =

.
m∆sq (32)

• The finite physical dimension control parameters are: mean log temperature differ-
ences ∆TR [K] and ∆T0 [K], inside of heat exchangers at the heat source and at the
heat sink;

• Thermal conductances (UA)R inside the heat exchanger at the heat source, and (UA)0
inside the heat exchanger at the heat sink:

GTR = GR + G0 = (UA)R + (UA)0

[
kW·K−1

]
(33)

gR =
GR

GTR
, g0 =

0
GTR

, gR + g0 = 1, go = 1− gR (34)

where U [kW·m−2·K−1] is the overall heat transfer coefficient and A [m2] is the heat
transfer area.

• First law balance equations:
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.
QR = gRGTR∆TR = TR∆

.
SR =

(
T0S

θRS
− ∆TR

)
∆

.
SR (35)

(34)︷︸︸︷
==⇒ GTR =

(
T0S
θRS
− ∆TR

)
∆

.
SR

GTR∆TR
(36)

.
Q0 = −(1− gR)GTR∆T0 = −(T0S + ∆T0)∆

.
SRNirr,R (37)

(35,36)︷︸︸︷
==⇒ ∆T0 =

gRθRS∆TRNirr,R

1− gR −
θRS∆TR

T0S
(1 + gR(Nirr,R − 1))

(38)

.
WR =

.
QR +

.
Q0 =

[(
T0S
θRS
− ∆TR

)
−
(

T0S +
gRθRS∆TRNirr,R

1−gR−
θRS∆TR

T0S
(1+gR(Nirr,R−1))

)
Nirr,R

]
∆

.
SR (39)

.
EEirr,R =

.
QR∣∣∣ .
WR

∣∣∣ =
T0S
θRS
− ∆TR(

T0S +
gRθRS∆TRNirr,R

1−gR−
θRS∆TR

T0S
(1+gR(Nirr,R−1))

)
Nirr,R −

(
T0S
θRS
− ∆TR

) (40)

where

− .
m [kg·s−1] is the mass flow rate of the working fluid through the refrigeration machine;

−
.

QR [kW] is the refrigeration heat rate;

−
.

Q0 [kW] is the heat rate at the heat sink;

−
.

WR [kW] is the consumed power
− TR = [K] is the mean thermodynamic temperature at the cycle cold side;
− TRS = T0S

θRS
= TR + ∆TR [K] is the mean temperature of the heat source;

− T0 [K] is mean thermodynamic temperature at the cycle hot part;
− T0S = T0 − ∆T0 is the mean temperature of the heat sink.

As an example, they were imposed mixed operational conditions, constant heat input
and constant energy efficiency:

.
QR = 0.1

.
WE = 10 kW, TRS = 263 K, T0S = 323 K, EEirr,R =

COP = 2, see Figures 11–13. The extra imposed energy efficiency allowed to find the first
explicit operational function ∆TR = f(gR, Nirr,R).

∆TR =
143(1− gH)

3
with Nirr,E = 1.00

∆TR =
78.4(1− gH)

3 + 0.3gH
with Nirr,E = 1.10

∆TR =
13.8(1− gH)

3 + 0.6gH
with Nirr,E = 1.20

The numerical results emphasized the similarity with those obtained for the irre-
versible engine cycle, respectively as larger the number of internal irreversibility as larger
the thermal conductance inventory and smaller the mean log temperature differences. Re-
spectively as higher the internal irreversibility as lower the external irreversibility in order
to maintain constant energy efficiency. The influences of internal irreversibility number are
more sensitive as in the case of engine cycle.

The Equations (23)–(40) allow the external evaluation of closed irreversible engine
cycles. This evaluation has to be correlated with internal evaluation in order to obtain the
best design variant. Probably, a multi-objective evaluation might be a good mathematical
way. The design optimization must correlate and agree the computational results obtained
through both internal cycle design (see Section 3.1) and external design (see Section 4),
especially when we use mixed operational constraints.
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4.2. Irreversible Trigeneration System

The design and/or optimization of trigeneration systems define first the clients/customers/
end users energy needs and after that choose the proper type of trigeneration system, see
the beginning of Section 4. It follows a preliminary selection of closed irreversible cycle
and working fluids, a preliminary evaluation of the domain range of internal number
of irreversibility, and a preliminary design of trigeneration cycles based on (23) to (40)
equations and on the imposed operational conditions. Knowing the mean log temperatures
differences of all heat exchangers and the thermal conductance inventories we verify the
proper mean temperatures of external heat reservoirs involving in parallel the internal
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cycle assessments. In order to simplify, we have to define the energy connections defined
through useful power and the ratios of refrigeration rate to power (x) and of heating rate to
power (y).

The general equation of energy efficiency (EE) is the ratio of useful energy to the con-
sumed one. The energy efficiency has the below equations, specific to type of trigeneration
operational pattern, see the beginning of Section 4, cases a, b, c, and d, see also [14], but for
all cases the consumed energy is the input reversible heat for the engine cycle.

• Case “a”—energy efficiency:

EEa =

.
WE −

∣∣∣ .
WR

∣∣∣+ .
QR

.
QH

= EEE

(
1 + x

COP− 1
COP

)
(41)

• Case “b”—energy efficiency:

EEb =

.
WE −

∣∣∣ .
WR

∣∣∣+ .
QR +

∣∣∣ .
QC

∣∣∣∗
.

QH

= EEcog + EEEx
COP− 1

COP
(42)

• Case “c”—energy efficiency:

EEc =

.
WE −

∣∣∣ .
WR

∣∣∣+ .
QR +

∣∣∣ .
Q0

∣∣∣
.

QH

= EEE(1 + 2x) (43)

• Case “d”—energy efficiency:

EEb =

.
WE −

∣∣∣ .
WR

∣∣∣+ .
QR +

∣∣∣ .
QC

∣∣∣∗ + ∣∣∣ .
Q0

∣∣∣
.

QH

= EEcog + 2EEEx (44)

In above equations, the useful power is
.

Wu =
.

WE −
∣∣∣ .
WR

∣∣∣, where
.

WE is the engine

power and
∣∣∣ .
WR

∣∣∣ is power consumed by the refrigeration unit. The useful thermal energies

are the refrigeration rate
.

QR, the heat rate produced by cogeneration
∣∣∣ .
QC

∣∣∣∗ ≤ ∣∣∣ .
QC

∣∣∣ and

the heat rate delivered by the reverse cycle working also in heat pump mode
∣∣∣ .
Q0

∣∣∣. The

consumed energy is always the engine heat input rate
.

QH. x is the ratio of the refrigeration

rate to engine power x =
.

QR/
.

WE and EEcog =

.
WE+

∣∣∣ .
QC

∣∣∣∗
.

QH
is the energy efficiency of

cogeneration and EEE =
.

WE.
QH

is the energy efficiency of the engine working in power mode.

They must emphasize that Equations (41)–(44) are identical for ideal reversible, en-
doreversible and irreversible trigeneration systems. They have to know the real energy
efficiencies of system components—i.e., EEcog, EEE,real, and COPreal—and ratio x.

At the European level the engine cogeneration energy efficiency must be EEcog ≥ 0.85.
Also, for the specified heating system type they might be accounted the heat losses along
the delivering path of useful thermal energies (heating) for all cases.

For all cases, the minimum useful power compels the maximum x ratio

.
Wu =

.
WE −

∣∣∣ .
WR

∣∣∣ = .
WE

(
1− x

COP

)
≥

.
Wu,min ⇒ x ≤ COP

(
1−

.
Wu,min

.
WE

)
(45)

where
.

Wu,min is the minimum admissible useful power, required by the power end users.
Equations (23)–(44) provide the general mathematical model to design/optimize the

irreversible trigeneration systems.
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The Tables 1 and 2 include main external parameters for engine and refrigeration
units possibly to be coupled in a trigeneration systems, cases a, b, c, and d. They were
adopted the dimensionless thermal conductance corresponding to the minimum thermal
conductance inventory, gH and gR.

Table 1. External parameters for the engine,
.

WE = 100 kW, EEE = 0.35 (imposed), θHS = 4 (imposed).

Trigeneration Nirr gH
TCS
(K)

∆TH
(K)

∆TC
(K)

GTE
(kW·K−1)

(a)
1.00 0.5000 308 379 246 1.507
1.25 0.4721 308 302 176 2.003
1.50 0.4494 308 234 124 2.713

(b)
1.00 0.5000 343 422 274 1.354
1.25 0.4721 343 336 196 1.799
1.50 0.4494 343 261 138 2.436

(c)
1.00 0.5000 273 336 218 1.701
1.25 0.4721 273 268 156 2.261
1.50 0.4494 273 208 110 3.061

(d)
1.00 0.5000 343 422 274 1.354
1.25 0.4721 343 336 196 1.799
1.50 0.4494 343 261 138 2.436

Table 2. External parameters for the refrigeration unit,
.

QR = 10 kW.

Trigeneration Nirr gR
T0S
(K)

TRS
(K)

∆TR
(K)

∆T0
(K)

GTR
(kW·K−1) COP

(a)
1.0 0.500 308 253 23.83 35.75 0.839 2
1.1 0.488 308 253 13.24 18.83 1.547 2
1.2 0.477 308 253 3.15 4.31 6.503 2

(b)
1.0 0.500 273 253 24.13 32.17 0.829 3
1.1 0.488 273 253 13.56 17.13 1.511 3
1.2 0.477 273 253 3.49 4.24 5.88 3

(c)
1.0 0.500 343 253 23.60 39.33 0.875 1.5
1.1 0.488 343 253 13.00 20.53 1.577 1.5
1.2 0.477 343 253 2.88 4.38 7.106 1.5

(d)
1.0 0.500 343 253 23.60 39.33 0.875 1.5
1.1 0.488 343 253 13.00 20.53 1.577 1.5
1.2 0.477 343 253 2.88 4.38 7.106 1.5

The trigeneration system might have different external operational features depending
on the adopted case (a, b, c, d), on the number of internal irreversibility of engine and of
refrigeration unit, on the ratios of refrigeration and delivered ratio to power.

The comparison of different kind of trigeneration systems might be assessed only if
they have similar operational features, see for instance Figure 14a with: EEirr,E = 0.35, and
COP = 2, and EEcog = 0.85 and the minimum useful power 50% from engine power, i.e.,
xmax = 1.

In Figure 14b are compared the ideal reversible energy efficiency for ideal trigeneration
cycle built with ideal Carnot cycles, with EEE = 0.75 for θHS = 4 as in Table 1, and COP =
TRS/(T0S − TRS) with temperatures from Table 2, and EEcog = 1 and the minimum useful
power 50% from engine power, i.e., xmax = 1.



Energies 2021, 14, 3416 18 of 19Energies 2021, 14, x FOR PEER REVIEW 18 of 19 
 

 

 
 

(a) (b) 

Figure 14. (a) The irreversible energy efficiency of trigeneration systems. (b) The ideal reversible 
energy efficiency of trigeneration systems. 

5. Conclusions 
The paper suggests an original and generalizing FPDT mathematical model to design 

irreversible trigeneration cycles. The mathematical model minimizes the finite physical 
dimensions control parameters, and operational corresponding dependence functions of 
engine and refrigeration cycles included in a trigeneration system. 

There are two kind of control parameters, four external and two internal. The four 
external control parameters are pertaining to external heat transfer—i.e., two mean log 
temperature differences and two dimensionless thermal conductance inventories. The in-
ternal ones are the reference entropy and the number of internal irreversibility which de-
lineate a single dimensionless concept a priori evaluating the accumulated internal irre-
versibility. 

The specific dependence of the reference entropy function of the working fluid nature 
and of the thermal system type is replaced through the operational adopted condition—
i.e., the reference entropy particular value is expressed either through the imposed power, 
or through the imposed heat input as in this paper, or through the imposed energy effi-
ciency or through the imposed reference entropy. 

The number of internal irreversibility is a dimensionless parameter generalizing the 
evaluation of accumulated irreversible entropy generated along the cycle. Therefore, the 
irreversible trigeneration assessments might be completed without knowing the working 
fluid nature and the type of thermal systems. 

Although before each FPDT work they must be defined the operational possible do-
main range of the number of internal irreversibility depending on the working fluid na-
ture and on the thermal system type. 

The evaluated specific numerical results for the found specific minimum thermal 
conductance inventory, see Figures 10 and 13, emphasized that as internal irreversibility 
increased, so too did the conductance inventory, while the mean log temperature differ-
ences decreased. Respectively as higher the internal irreversibility as lower the external 
irreversibility in order to maintain constant energy efficiency. 

The Equations (41)–(44) are universal, can be applied for ideal reversible trigenera-
tion cycle, endoreversible, or irreversible ones, see for instance Figure 14a,b. The compar-
ison reversible–endoreversible–irreversible has to use the operational similarity and thus 
they can be completed various analyses and optimizing assessments. 

Author Contributions: Conceptualization: G.D., M.F.; Methodology: G.D.; Software: Ş.G.; Formal 
analysis: G.D.; M.F.; Resources: G.D.; Writing—original draft: G.D. All authors have read and 
agreed to the published version of the manuscript. 

Figure 14. (a) The irreversible energy efficiency of trigeneration systems. (b) The ideal reversible
energy efficiency of trigeneration systems.

5. Conclusions

The paper suggests an original and generalizing FPDT mathematical model to design
irreversible trigeneration cycles. The mathematical model minimizes the finite physical
dimensions control parameters, and operational corresponding dependence functions of
engine and refrigeration cycles included in a trigeneration system.

There are two kind of control parameters, four external and two internal. The four
external control parameters are pertaining to external heat transfer—i.e., two mean log
temperature differences and two dimensionless thermal conductance inventories. The
internal ones are the reference entropy and the number of internal irreversibility which
delineate a single dimensionless concept a priori evaluating the accumulated internal
irreversibility.

The specific dependence of the reference entropy function of the working fluid nature
and of the thermal system type is replaced through the operational adopted condition—i.e.,
the reference entropy particular value is expressed either through the imposed power, or
through the imposed heat input as in this paper, or through the imposed energy efficiency
or through the imposed reference entropy.

The number of internal irreversibility is a dimensionless parameter generalizing the
evaluation of accumulated irreversible entropy generated along the cycle. Therefore, the
irreversible trigeneration assessments might be completed without knowing the working
fluid nature and the type of thermal systems.

Although before each FPDT work they must be defined the operational possible
domain range of the number of internal irreversibility depending on the working fluid
nature and on the thermal system type.

The evaluated specific numerical results for the found specific minimum thermal
conductance inventory, see Figures 10 and 13, emphasized that as internal irreversibility
increased, so too did the conductance inventory, while the mean log temperature differ-
ences decreased. Respectively as higher the internal irreversibility as lower the external
irreversibility in order to maintain constant energy efficiency.

The Equations (41)–(44) are universal, can be applied for ideal reversible trigeneration
cycle, endoreversible, or irreversible ones, see for instance Figure 14a,b. The comparison
reversible–endoreversible–irreversible has to use the operational similarity and thus they
can be completed various analyses and optimizing assessments.
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