Building Energy Performance Certificate—A Relevant Indicator of Actual Energy Consumption and Savings?
Abstract
:1. Introduction
1.1. Related Work and Background
1.2. Problem Characterization, Related to the Relevance of the EPC
1.3. Energy Policy Implications
1.4. Energy Planning Implications
1.5. Investment Strategy Implications
1.6. Other Implications
2. Materials and Methods
- −
- —energy consumption for heating in kWh after correction,
- −
- —correction factor,
- −
- —measured energy consumption for heating in kWh.
- −
- —correction factor
- −
- —actual heat degree days
- −
- —energy consumption for heating after correction in kWh,
- −
- —fuel consumption in m3,
- −
- LCV—lower calorific value of natural gas (33,338.35 kJ/m3) (http://www.novisadgas.rs/korisnici/obracun-isporucene-zapremine-prirodnog-gasa/, accessed on 7 April 2020),
- −
- —correction factor.
3. Case Study—City of Novi Sad
- −
- general data;
- −
- data collected from EPC and construction permits; and
- −
- data on heating energy consumption in 2018–2020.
Comprehensive Analysis of Future Building Heating System Connection
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, Q.; Tian, Z.; Ma, Z.; Li, G.; Lu, Y.; Niu, J. Development of the heating load prediction model for the residential building of district heating based on model calibration. Energy 2020, 205, 117949. [Google Scholar] [CrossRef]
- Hansen, C.; Gudmundsson, O.; Detlefsen, N. Cost efficiency of district heating for low energy buildings of the future. Energy 2019, 177, 77–86. [Google Scholar] [CrossRef]
- Fuerst, F.; McAllister, P.; Nanda, A.; Wyatt, P. Does energy efficiency matter to home-buyers? An investigation of EPC ratings and transaction prices in England. Energy Econ. 2015, 48, 145–156. [Google Scholar] [CrossRef] [Green Version]
- Pascuas, R.P.; Paoletti, G.; Lollini, R. Impact and reliability of EPCs in the real estate market. Energy Procedia 2017, 140, 102–114. [Google Scholar] [CrossRef]
- Olaussen, J.O.; Oust, A.; Solstad, J.T. Energy performance certificates—Informing the informed or the indifferent? Energy Policy 2017, 111, 246–254. [Google Scholar] [CrossRef] [Green Version]
- Fuerst, F.; McAllister, P. The impact of Energy Performance Certificates on the rental and capital values of commercial property assets. Energy Policy 2011, 39, 6608–6614. [Google Scholar] [CrossRef]
- Cozza, S.; Chambers, J.; Deb, C.; Scartezzini, J.-L.; Schlüter, A.; Patel, M.K. Do energy performance certificates allow reliable predictions of actual energy consumption and savings? Learning from the Swiss national database. Energy Build. 2020, 224, 110235. [Google Scholar] [CrossRef]
- Las-Heras-Casas, J.; López-Ochoa, L.M.; López-González, L.M.; Paredes-Sánchez, J.P. A tool for verifying energy performance certificates and improving the knowledge of the residential sector: A case study of the Autonomous Community of Aragón (Spain). Sustain. Cities Soc. 2018, 41, 62–72. [Google Scholar] [CrossRef]
- Droutsa, K.G.; Kontoyiannidis, S.; Dascalaki, E.; Balaras, C.A. Mapping the energy performance of hellenic residential buildings from EPC (energy performance certificate) data. Energy 2016, 98, 284–295. [Google Scholar] [CrossRef]
- Hjortling, C.; Björk, F.; Berg, M.; Klintberg, T.A. Energy mapping of existing building stock in Sweden—Analysis of data from Energy Performance Certificates. Energy Build. 2017, 153, 341–355. [Google Scholar] [CrossRef]
- Hardy, A.; Glew, D. An analysis of errors in the Energy Performance certificate database. Energy Policy 2019, 129, 1168–1178. [Google Scholar] [CrossRef] [Green Version]
- Dall’O’, G.; Sarto, L.; Sanna, N.; Tonetti, V.; Ventura, M. On the use of an energy certification database to create indicators for energy planning purposes: Application in northern Italy. Energy Policy 2015, 85, 207–217. [Google Scholar] [CrossRef]
- Noussan, M. Performance indicators of District Heating Systems in Italy—Insights from a data analysis. Appl. Therm. Eng. 2018, 134, 194–202. [Google Scholar] [CrossRef]
- Schuitema, G.; Aravena, C.; Denny, E. The psychology of energy efficiency labels: Trust, involvement, and attitudes towards energy performance certificates in Ireland. Energy Res. Soc. Sci. 2020, 59, 101301. [Google Scholar] [CrossRef]
- Mangold, M.; Österbring, M.; Wallbaum, H. Handling data uncertainties when using Swedish energy performance certificate data to describe energy usage in the building stock. Energy Build. 2015, 102, 328–336. [Google Scholar] [CrossRef] [Green Version]
- Claesson, J. Utfall och metodutvärdering av energideklaration av byggnader. CERBOF Projekt 72. Available online: https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A497178&dswid=3185 (accessed on 24 June 2018).
- Hårsman, B.; Daghbashyan, Z.; Chaudhary, P. On the quality and impact of residential energy performance certificates. Energy Build. 2016, 133, 711–723. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Kubicki, S.; Guerriero, A.; Rezgui, Y. Review of building energy performance certification schemes towards future improvement. Renew. Sustain. Energy Rev. 2019, 113, 109244. [Google Scholar] [CrossRef]
- Attanasio, A.; Piscitelli, M.S.; Chiusano, S.; Capozzoli, A.; Cerquitelli, T. Towards an Automated, Fast and Interpretable Estimation Model of Heating Energy Demand: A Data-Driven Approach Exploiting Building Energy Certificates. Energies 2019, 12, 1273. [Google Scholar] [CrossRef] [Green Version]
- Gaspari, J.; De Giglio, M.; Antonini, E.; Vodola, V. A GIS-Based Methodology for Speedy Energy Efficiency Mapping: A Case Study in Bologna. Energies 2020, 13, 2230. [Google Scholar] [CrossRef]
- Semple, S.; Jenkins, D. Variation of energy performance certificate assessments in the European Union. Energy Policy 2020, 137, 111127. [Google Scholar] [CrossRef]
- Abela, A.; Hoxley, M.; McGrath, P.; Goodhew, S. An investigation of the appropriateness of current methodologies for energy certification of Mediterranean housing. Energy Build. 2016, 130, 210–218. [Google Scholar] [CrossRef]
- Koo, C.; Hong, T. Development of a dynamic operational rating system in energy performance certificates for existing buildings: Geostatistical approach and data-mining technique. Appl. Energy 2015, 154, 254–270. [Google Scholar] [CrossRef]
- Pasichnyi, O.; Wallin, J.; Levihn, F.; Shahrokni, H.; Kordas, O. Energy performance certificates—New opportunities for data-enabled urban energy policy instruments? Energy Policy 2019, 127, 486–499. [Google Scholar] [CrossRef]
- Dascalaki, E.; Balaras, C.A.; Gaglia, A.; Droutsa, K.; Kontoyiannidis, S. Energy performance of buildings—EPBD in Greece. Energy Policy 2012, 45, 469–477. [Google Scholar] [CrossRef]
- Majcen, D.; Itard, L.; Visscher, H. Theoretical vs. actual energy consumption of labelled dwellings in the Netherlands: Discrepancies and policy implications. Energy Policy 2013, 54, 125–136. [Google Scholar] [CrossRef]
- Botten, C. Are EPCS a true indicator of energy efficiency. CIBSE J. 2013, 2, 20. [Google Scholar]
- López-González, L.M.; López-Ochoa, L.M.; Las-Heras-Casas, J.; García-Lozano, C. Update of energy performance certificates in the residential sector and scenarios that consider the impact of automation, control and management systems: A case study of La Rioja. Appl. Energy 2016, 178, 308–322. [Google Scholar] [CrossRef]
- Fleckinger, P.; Glachant, M.; Kamga, P.-H.T. Energy Performance Certificates and investments in building energy efficiency: A theoretical analysis. Energy Econ. 2019, 84, 104604. [Google Scholar] [CrossRef] [Green Version]
- Jeong, J.; Hong, T.; Ji, C.; Kim, J.; Lee, M.; Jeong, K.; Koo, C. Development of a prediction model for the cost saving potentials in implementing the building energy efficiency rating certification. Appl. Energy 2017, 189, 257–270. [Google Scholar] [CrossRef]
- Streicher, K.N.; Padey, P.; Parra, D.; Bürer, M.C.; Patel, M.K. Assessment of the current thermal performance level of the Swiss residential building stock: Statistical analysis of energy performance certificates. Energy Build. 2018, 178, 360–378. [Google Scholar] [CrossRef]
- Prieler, M.; Leeb, M.; Reiter, T. Characteristics of a database for energy performance certificates. Energy Procedia 2017, 132, 1000–1005. [Google Scholar] [CrossRef]
- Broberg, T.; Egüez, A.; Kažukauskas, A. Effects of energy performance certificates on investment: A quasi-natural experiment approach. Energy Econ. 2019, 84. [Google Scholar] [CrossRef]
- dos Reis, A.S.; Dias, M.F. Cost-optimal levels and energy performance certificates: Filling the gaps. Energy Rep. 2020, 6, 358–363. [Google Scholar] [CrossRef]
- Camboni, R.; Corsini, A.; Miniaci, R.; Valbonesi, P. Mapping fuel poverty risk at the municipal level. A small-scale analysis of Italian Energy Performance Certificate, census and survey data. Energy Policy 2021, 155, 112324. [Google Scholar] [CrossRef]
- Ahern, C.; Norton, B. Energy Performance Certification: Misassessment due to assuming default heat losses. Energy Build. 2020, 224, 110229. [Google Scholar] [CrossRef]
- Statistical Office of the Republic of Serbia. Available online: https://www.stat.gov.rs/ (accessed on 24 November 2020).
- Database of DHS Utility Company Novosadska Toplana. Available online: http://nstoplana.rs/tehnicki-sistem/ (accessed on 27 September 2020).
- Database of Natural Gas Distribution Utility Company DP Novi Sad-Gas. Available online: http://www.novisadgas.rs/ (accessed on 5 November 2020).
- Planning And Construction Law, (Zakon o planiranju i izgradnji - " “Sl. glasnik RS”, br. 72/2009, 81/2009 - ispr., 64/2010 - odluka US, 24/2011, 121/2012, 42/2013 - odluka US, 50/2013 - odluka US, 98/2013 - odluka US, 132/2014, 145/2014, 83/2018, 31/2019. Available online: https://www.paragraf.rs/propisi_download/zakon_o_planiranju_i_izgradnji.pdf (accessed on 18 May 2018).
- Rule book for Energy Efficiency, (“Sl. glasnik RS”, br. 61/2011). Available online: https://www.paragraf.rs/propisi_download/pravilnik_o_energetskoj_efikasnosti_zgrada.pdf (accessed on 24 May 2020).
- Economidou, M. Energy performance requirements for buildings in Europe. REHVA J. 2012, 12, 16–21. [Google Scholar]
- European Commission. Directive 2002/91/EC of the European Parliament and of the Council of 16 December 2002 on the Energy Performance of Buildings; EPBD: Brussels, Belgium, 2002; Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2003:001:0065:0071:EN:PDF (accessed on 25 May 2020).
- European Commission. Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the Energy Performance of Buildings; EPBD Recast: Brussels, Belgium, 2010; Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2010:153:0013:0035:EN:PDF (accessed on 17 September 2020).
- Concerted Action-EPBD, Implementing the Energy Performance of Buildings Directive—Featuring Country Reports. Available online: https://www.buildup.eu/en/practices/publications/implementing-energy-performance-buildings-directive-epbd-featuring-country (accessed on 5 May 2018).
- Display Energy Certificates. Available online: http://www.crep.gov.rs/EnergetskiPasosi.aspx (accessed on 28 June 2020).
- Law on Housing and Maintenance of Buildings (Zakon o stanovanju i održavanju zgrada—“Sl. glasnik RS”, br. 104/2016 i 9/2020 - dr. zakon). Available online: https://www.paragraf.rs/propisi_download/zakon_o_stanovanju_i_odrzavanju_zgrada.pdf (accessed on 8 May 2020).
- Law of Energy Efficiency. (Zakon o energetskoj efikasnosti—“Sl. glasnik RS”, br. 25/2013). Available online: http://www.parlament.gov.rs/upload/archive/files/lat/pdf/zakoni/2013/424-13Lat.pdf (accessed on 28 June 2020).
- Zgrada, O.E.E. Pravilnik o energetskoj efikasnosti zgrada, Službeni Glas. RS 61/. 2011. Available online: https://www.mgsi.gov.rs/sites/default/files/Pravilnik%20o%20energetskoj%20efikasnosti%20zgrada.pdf (accessed on 28 May 2020).
- KfW 4 Program: Rehabilitation of District Heating Systems, 2012, Novi Sad, 2012. Available online: https://www.kfw-entwicklungsbank.de/migration/Entwicklungsbank-Startseite/Development-Finance/Evaluation/Results-and-Publications/PDF-Dokumente-R-Z/Serbia_Fernw%C3%A4rmesysteme_2010.pdf (accessed on 12 April 2020).
- Decision on the Adoption of the Price List of Fees for Connection to the District Heating System: 01-9824/1, 2012. Available online: http://nstoplana.rs/ (accessed on 20 September 2020).
Year | Commercial (MW) | % | Residential (MW) | % | Total | % |
---|---|---|---|---|---|---|
2012 | 256.3 | - | 638.3 | - | 894.6 | - |
2013 | 255.5 | −0.3% | 645.6 | 1.15% | 901.1 | 0.73% |
2014 | 247.3 | −3.2% | 652.2 | 1.02% | 899.5 | −0.18% |
2015 | 243.1 | −1.7% | 656.1 | 0.59% | 899.1 | −0.04% |
2016 | 238.9 | −1.7% | 660.4 | 0.66% | 899.3 | 0.02% |
2017 | 232.3 | −2.8% | 663.9 | 0.54% | 896.2 | −0.35% |
2018 | 234.2 | 0.8% | 667.6 | 0.55% | 901.8 | 0.63% |
2019 | 240.0 | 2.5% | 673.6 | 0.90% | 913.6 | 1.31% |
2020 | 237.1 | −1.2% | 680.0 | 0.95% | 917.0 | 0.38% |
Description/Year | Unit | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 |
---|---|---|---|---|---|---|---|---|---|---|
Number of consumers—residential | 1000 | 90.7 | 92.2 | 93.9 | 94.8 | 95.7 | 96.6 | 97.5 | 99.2 | 99.8 |
Number of consumers—commercial | 1000 | 7.7 | 7.9 | 7.9 | 7.9 | 7.8 | 7.7 | 7.8 | 7.8 | 7.8 |
Installed capacity—residential consumers | MW | 638 | 645 | 652 | 656 | 660 | 663 | 667 | 674 | 680 |
Installed capacity—commercial consumers | MW | 256 | 255 | 247 | 243 | 238 | 232 | 234 | 240 | 237 |
Installed capacity—total | MW | 894 | 901 | 899 | 899 | 899 | 896 | 901 | 914 | 917 |
Heated surface area—residential consumers | 1 mil. m2 | 4.5 | 4.6 | 4.7 | 4.7 | 4.8 | 4.8 | 4.9 | 4.9 | 5.0 |
Delivered energy—residential consumers | GWh | 611 | 573 | 485 | 605 | 622 | 648 | 606 | 606 | 671 |
Residential—commercial consumers | GWh | 208 | 191 | 160 | 186 | 190 | 199 | 185 | 181 | 198 |
Delivered energy for heating—total | GWh | 820 | 764 | 646 | 791 | 813 | 848 | 792 | 787 | 869 |
Specific annual energy consumption—residential consumers | kWh/m2 | 133 | 123 | 103 | 127 | 129 | 133 | 124 | 122 | 133 |
Fuel consumption | 1 mil. Sm3 | 74 | 73 | 81 | 97 | 94 | 87 | 79 | 73 | 91.5 |
Distribution system efficiency | % | 87.0 | 88.2 | 86.2 | 89.9 | 90.5 | 90.0 | 89.1 | 91.4 | 91.3 |
DHS total efficiency | % | 86.0 | 86.5 | 83.9 | 88.4 | 88.3 | 87.1 | 85.7 | 88.6 | 88.9 |
Average outside temperature | °C | 4.62 | 6.07 | 7.48 | 5.99 | 6.70 | 6.00 | 6.53 | 7.82 | 7.92 |
HDD—heating degree days | Day | 190 | 194 | 190 | 194 | 213 | 202 | 193 | 202 | 216 |
HDH—heating degree hours | 1000 °H | 70 | 64 | 57 | 65 | 67 | 67 | 62 | 61 | 58 |
Description | Unit | Building | |||||||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | ||
Construction year | year | 2018 | 2018 | 2015 | 2016 | 2018 | 2016 | 2016 | 2017 |
Heated surface area | m2 | 2953 | 4130 | 1254 | 3021 | 19,138 | 3855 | 2480 | 3643 |
Heated surface area—EPC | m2 | 3888 | 2159 | 1542 | 4851 | 18,771 | 2752 | 2.479 | 3615 |
Non-transparent surface U value | W/m2K | 0.277 | 0.284 | 0.298 | 0.29 | 0.254 | 0.490 | 0.283 | 0.296 |
Transparent surface U value | W/m2K | 1.5 | 1.3 | 1.5 | 1.1 | 1.34 | 1.31 | 1.3 | 1.3 |
Heating energy consumption—EPC | kWh | 197,985 | 112,408 | 58,936 | 143,200 | 413,354 | 123,406 | 65,519 | 139,364 |
Heating energy consumption—2018 | kWh | 129,216 | 194,748 | 63,094 | 103,523 | 778,582 | 171,695 | 103,492 | 143,396 |
Heating energy consumption—2019 | kWh | 115,638 | 177,063 | 59,468 | 97,109 | 710,975 | 158,605 | 100,877 | 143,578 |
Heating energy consumption—2020 | kWh | 119,026 | 198,349 | 64,739 | 108,427 | 768,643 | 183,739 | 112,364 | 157,158 |
Specific heating energy consumption—EPC | kWh/m2 | 50.92 | 52.07 | 38.22 | 29.52 | 23.50 | 44.84 | 26.42 | 38.55 |
Specific heating energy consumption—2018 | kWh/m2 | 44 | 47 | 50 | 34 | 41 | 44 | 42 | 39 |
Specific heating energy consumption—2019 | kWh/m2 | 39 | 43 | 47 | 32 | 38 | 41 | 41 | 39 |
Specific heating energy consumption—2020 | kWh/m2 | 40 | 48 | 52 | 36 | 41 | 48 | 45 | 44 |
Description | Unit | Building | |||||||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | ||
Construction year | year | 2017 | 2016 | 2016 | 2017 | 2016 | 2017 | 2015 | 2017 |
Heated surface area | m2 | 11,625 | 912 | 798 | 830 | 950 | 1050 | 933 | 4222 |
Heated surface area—EPC | m2 | 7860 | 912 | 912 | 1074 | 988 | 925 | 879 | 4720 |
Non-transparent surface U value | W/m2K | 0.235 | 0.295 | 0.295 | 0.255 | 0.250 | 0.258 | 0.272 | 0.242 |
Transparent surface U value | W/m2K | 1.414 | 1.500 | 1.500 | 1.440 | 1.400 | 1.347 | 1.400 | 1.460 |
Heating energy consumption—EPC | kWh | 334,389 | 49,966 | 49,966 | 38,431 | 47,818 | 63,080 | 29,344 | 125,965 |
Heating energy consumption—2018 | kWh | 851,016 | 53,039 | 69,918 | 61,307 | 93,866 | 102,331 | 66,076 | 390,834 |
Heating energy consumption—2019 | kWh | 823,268 | 52,707 | 62,883 | 66,684 | 90,759 | 90,524 | 56,221 | 400,488 |
Heating energy consumption—2020 | kWh | 905,826 | 55,099 | 57,589 | 67,812 | 100,920 | 96,699 | 54,466 | 474,887 |
Specific heating energy consumption—EPC | kWh/m2 | 42.53 | 54.81 | 54.81 | 35.77 | 48.38 | 52.14 | 33.00 | 21.98 |
Specific heating energy consumption—2018 | kWh/m2 | 73 | 58 | 88 | 74 | 99 | 97 | 71 | 93 |
Specific heating energy consumption—2019 | kWh/m2 | 71 | 58 | 79 | 80 | 96 | 86 | 60 | 95 |
Specific heating energy consumption—2020 | kWh/m2 | 78 | 60 | 72 | 82 | 106 | 92 | 58 | 112 |
Description | Unit | Scenario 1 | Scenario 2 | ||
---|---|---|---|---|---|
IGB System | DHS System | IGB System | DHS System | ||
Heated surface area | m2 | 3051 | 2953 | 11,625 | after 2014 * |
Installed capacity | kW | 220 | 261 | 876 | after 2014 * |
Annual heating energy consumption | kWh/yr | 253,291 | 133,193 | 999,868 | 651,000 |
Annual specific energy consumption | kWh/m2 | 83 | 45.1 | 86 | 56 |
Annual heating energy consumption per square meter of IGB system buildings | kWh/an. | 253,291 | 137,613 | - | 20 |
Fuel cost | €/kWh | 0.031 | 0.040 | 0.031 | 0.032 |
Monthly fixed cost of maintenance | €/mth. | 311 | 413 | 1163 | 1646 |
Annual fuel cost calculated per square meter of buildings with gas boilers | €/yr | 7501 | 5504 | 30,787 | 20,921 |
Investment cost | € | 24,772 | 6104 | 98,638 | 24,305 |
Year of boiler / DHS substation replacement | Yr | 15 | - | 15 | - |
Emission factor | tCO2/MWh | 0.197 | 0.215 | 0.197 | 0.105 |
CO2 emission | tCO2/yr | 51 | 29.4 | 201.4 | 68.2 |
Financial Parameter | Unit | Value |
---|---|---|
Fuel inflation rate | % | 2.00 |
Inflation rate | % | 2.00 |
Discount rate | % | 4.39 |
Project lifetime | Year | 25 |
CO2 allocation (https://markets.businessinsider.com/commodities/co2-european-emission-allowances accessed on 6 September 2018) | €/tCO2 | 25.05 |
Financial Viability | Unit | Value |
Net present Value (NPV) for Scenario 1 | € | 59,118 |
Net present Value (NPV) for Scenario 2 | € | 220,310 |
Change in the Price for Thermal Energy €/an | ||||||
---|---|---|---|---|---|---|
Fuel price variation | 18,829 | 19,875 | 20,921 | 21,967 | 23,013 | |
€/an | −10% | −5% | 0% | 5% | 10% | |
27,708 | −10% | 201,802 | 182,179 | 162,556 | 142,933 | 123,310 |
29,248 | −5% | 230,679 | 211,056 | 191,433 | 171,810 | 152,187 |
30,787 | 0% | 259,557 | 239,933 | 220,310 | 200,687 | 181,064 |
32,326 | 5% | 288,434 | 268,810 | 249,187 | 229,564 | 209,941 |
33,866 | 10% | 317,311 | 297,688 | 278,064 | 258,441 | 238,818 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anđelković, A.S.; Kljajić, M.; Macura, D.; Munćan, V.; Mujan, I.; Tomić, M.; Vlaović, Ž.; Stepanov, B. Building Energy Performance Certificate—A Relevant Indicator of Actual Energy Consumption and Savings? Energies 2021, 14, 3455. https://doi.org/10.3390/en14123455
Anđelković AS, Kljajić M, Macura D, Munćan V, Mujan I, Tomić M, Vlaović Ž, Stepanov B. Building Energy Performance Certificate—A Relevant Indicator of Actual Energy Consumption and Savings? Energies. 2021; 14(12):3455. https://doi.org/10.3390/en14123455
Chicago/Turabian StyleAnđelković, Aleksandar S., Miroslav Kljajić, Dušan Macura, Vladimir Munćan, Igor Mujan, Mladen Tomić, Željko Vlaović, and Borivoj Stepanov. 2021. "Building Energy Performance Certificate—A Relevant Indicator of Actual Energy Consumption and Savings?" Energies 14, no. 12: 3455. https://doi.org/10.3390/en14123455
APA StyleAnđelković, A. S., Kljajić, M., Macura, D., Munćan, V., Mujan, I., Tomić, M., Vlaović, Ž., & Stepanov, B. (2021). Building Energy Performance Certificate—A Relevant Indicator of Actual Energy Consumption and Savings? Energies, 14(12), 3455. https://doi.org/10.3390/en14123455