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Abstract: In this paper, a voltage-boost-type non-voltage drop single-phase full-bridge inverter
connected to a switched-capacitor structure is proposed. The output voltage of the inverter is
controlled by the pulse width modulation of a DSP to control the lead and break of the active
switches. The full-bridge switches work at low frequency; the other switches work at high frequency.
The inverter uses two capacitor modules to charge and discharge alternately so as to overcome
the problem of voltage drop on the output side of the inverter in the transition stage from series
capacitor discharge to parallel charge. By analyzing the charge–discharge characteristics of the RC
charge–discharge circuit, the capacitor charge–discharge cycle can be adjusted to alter the output
voltage within a certain range. The results from the physical construction verify the Simulation
results achieved well, which demonstrates satisfactory performance that supports the verification of
the above theory.

Keywords: switched capacitor; non-voltage drop; full-bridge inverter; charge and discharge alternately

1. Introduction

Fossil fuels are the world’s main resource for energy production [1,2], with the use
of coal, oil, and natural gas underpinning the progress of human civilization and its
economic and social development since the 19th century. The use of fossil fuel energy
generates huge amounts of gases, such as CO2, which intensify the greenhouse effect,
causing thermal pollution and threatening the global ecology. It has therefore become
even more pressing to seek abundant, clean, and pollution-free renewable energy sources,
with photovoltaic power generation, wind power generation, and tidal power generation
becoming the mainstream in alternative clean energy sources widely adopted and valued
by society [3–5].

In the renewable energy utilization system, the power electronic inverter is the key link
between electric energy conversion and transmission [6]. With the development of power
and electronic technologies, the industry has been putting an increasing demand on the ef-
ficiency of the inverter system and the characteristics of the output voltage waveform [7,8].
However, traditional inverter-based distributed power generation has a flaw in its appli-
cation. Its output side voltage is always lower than the input side voltage value, which
cannot meet the requirements of the voltage level at the DC side of the grid-connected
inverter. As a result, it is impossible to directly use distributed electric energy to supply
power to the load [9–11].

In order to solve this problem, the common practice is to use many traditional boost
converters. However, in practical applications, their boosting capacity is limited. If the
boosting capacity needs to be continuously improved, the duty cycle must be increased,
which brings problems such as increased stress on the diode voltage and current [12–15].
The authors of [16–18] propose a Z-source inverter, which realizes the boost of the inverter
by changing the through duty cycle, resulting in a good waveform of the inverter output
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current. However, the Z-source inverter has disadvantages, such as large starting current
impact, and comes with large volume. In addition, high-gain boost converters can be clas-
sified into two categories: isolated and non-isolated. In comparison to isolated converters,
non-isolated converters demonstrate many advantages, such as simple structure, small size,
and high efficiency [19], but changes in their common-mode voltage will bring conduction
losses [20]. Coupled inductor usage can also increase the boost ratio of the converter, but
the efficiency is low and the circuit is complicated. The active clamp flyback converter can
suppress the voltage spike of the switching tube, but the input current of the converter is
intermittent, and the pulsation is large [21–23]. In the isolation transformer, the transformer
plays a role in voltage matching, and electrical isolation improves the safety of the system.
However, the transformer increases the volume and cost of the entire system and reduces
its efficiency [24]. Relevant scholars proposed multi-phase inverters [25,26], which increase
the output power by paralleling the outputs of multiple inverters. However, the circulating
current caused by the parameter difference between the inverters needs to be eliminated.

In order to overcome the shortcomings of the traditional inverter structure and reduce
the number of components and control complexity of the system, switched-capacitor
technology has been applied to the multi-level inverter structure in recent years [27–30].
This structure can convert non-adjustable voltage direct current into adjustable voltage
direct current [31,32]. The authors of [33] combined multiple switched-capacitor modules
in series and parallel and increased the gain of the converter by increasing the number of
input terminals. The authors of [34] proposed a design method that combines switched
capacitors with coupled inductance technology. This scheme integrates boost circuit and
fly-back circuit, connecting their output sides in series, with the converter obtaining a
higher boost multiple.

However, when domestic and foreign scholars chose a switched-capacitor converter
to boost the voltage, there was an output side voltage drop caused by the parallel charging
of capacitors, and this has not been effectively resolved.

Therefore, this paper proposes that the switched-capacitor structure can bring about
a significant voltage boost effect. Two capacitor modules with the same structure and
different pulse sequences can be used to control their alternating charging and discharging,
which helps overcome the problem of voltage drop on the output side of the converter
during the stage of capacitor series discharge to parallel charging. By adjusting the charge
and discharge cycle of the capacitor, the output side voltage can be independently adjusted
within a certain range. Compared with other inverters, the proposed inverter has the
advantages of simple modulation strategy, strong flexibility, small power switching voltage
stress, and high conversion efficiency. Two symmetrical capacitor charging and discharging
modules solve the problem of inverter output voltage sag during capacitor charging.

2. Circuit Structure and Working Principle
2.1. Circuit Structure

The topology of the new converter is shown in Figure 1. The inverter includes a
full-bridge inverter module, the first capacitor module, the second capacitor module, and
a DC input power supply Vin; the full-bridge inverter module is managed by MOSFET
S1, S2, S3, S4, and load resistor R1; the first capacitor module is composed of resistor R1,
capacitor C1, MOSFET S5, S6, S9, and DC input power Vin; the second capacitor module is
composed of resistor R3, capacitor C2, MOSFET S7, S8, S11, and DC input power Vin.

Turning on S5 and S6, S7 and S8 simultaneously, the resistor and the capacitor are
energized in series, and C1 and C2 are charged in parallel through the DC input power
supply, where the resistance is the current limiting resistor; turning off S5 and S6, S7 and
S8, and meanwhile, turning on S9 and S10, S11 and S12, the capacitors C1 and C2 are,
respectively, discharged in series with the DC input power supply.

When the inverter starts to work, in the first stage, C1 and C2 are charged at the
same time. In the remaining stages, S10 and S9 of the first capacitor module are turned
on and off synchronously, S12 and S11 of the second capacitor module are turned on and
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off synchronously, and S12 and S11 are opposite to S10 and S9. Similarly, S5 and S6 of
the first capacitor module are turned on and off synchronously, S7 and S8 of the second
capacitor module are turned on and off synchronously, and S5 and S6 are opposite to S7
and S8. In a power frequency cycle, the two capacitor modules work alternately under
high frequency conditions.

Figure 1. Circuit structure.

2.2. Working Principle

This article defines the direction of current flowing through the MOS tube as D (drain)
into S (source). From the circuit structure diagram of Figure 1, it can be seen that except
for MOSFET S10, S12, S5, and S7, the other MOS tubes are all anti-parallel diodes. The
reason is that these four MOS tubes must meet the forward conduction and reverse cut-off
conditions. If the diodes are in reverse parallel, current loops will appear, which will
affect the charging and discharging process of the capacitor and change the output voltage.
Figure 2 shows the situation in which four MOS tubes can be replaced during the actual
implementation (a special case).

Figure 2. The specific circumstances under which the MOS tube can be replaced.

If MOSFET S10, S12, S5, and S7 are anti-parallel diodes, this article takes a pair of bridge
arms as an example, and the circuit situation that appears is shown in Figures 3 and 4.
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Figure 3. Disallowed working current path: (a) S7 anti-parallel diode case; (b) S5 anti-parallel
diode case.

Figure 4. Cont.
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Figure 4. Disallowed working current path: (a) S10 anti-parallel diode case; (b) S12 anti-parallel
diode case.

The black current loop is the normal working loop, and the red loop is the unnecessary
loop formed when the MOS tube is inversely parallel with the diode.

The situation of S7 and S5 is similar. For example, the situation of S7 anti-parallel
diode can be explained as follows:

The VGS (gate-source) voltage of S7 is removed. At this time, the capacitor C2, resistor
R3, S11 and the anti-parallel diode of S7 form a new working circuit. In the current state,
the fully charged capacitor C2 is discharged in series with the DC input power supply.
C2 itself is equivalent to a power supply, and the resistor R3 is connected in series, so the
average voltage at the output side of the inverter is lower than normal. The current path of
this working state is shown in Figure 3a,b.

The situation of S10 and S12 is similar. For example, the situation of S10 anti-parallel
diode can be explained as follows:

The VGS (gate-source) voltage of S10 is removed. At this time, the DC input power
supply Vin, capacitor C2, capacitor C1, S11, S12, and S6 form a new working circuit through
the anti-parallel diode of S10. In the current state, the average voltage of capacitor C1 rises
compared to normal, the voltage formed by the series connection of the DC source Vin
and the capacitor C2 is divided, and the average voltage at the output side of the inverter
decreases. The current path of this working state is shown in Figure 4a,b.

Under normal circumstances, the proposed topology has five different operating modes:
First mode: This mode occurs before the full-bridge switching action. In this mode,

S5 and S6 of the first capacitor module and S7 and S8 of the second capacitor module are
turned on at the same time, and the remaining MOS tubes are all turned off. At this time,
capacitors C1 and C2 are charged in series with R2 and R3 through the DC input power
supply. The current path of this specific working state is shown in Figure 5.

Figure 5. First-mode working current path.
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Second mode: Full bridge 1, four bridge arms are active; S1 and S4 work at 50 Hz;
S2 and S3 are turned off. In the first half of the cycle, the first capacitor module and the
second capacitor module alternately charge and discharge at a high frequency.

In this mode, when the first capacitor module is charged and the second capacitor
module is discharged, S9 and S10 are turned off; S5 and S6 are turned on. When S11 and
S12 are turned on, S7 and S8 are turned off. Capacitor C1 remains charged, and the fully
charged capacitor C2 is discharged in series with the DC input power supply. The current
path of this working state is shown in Figure 6a.

Figure 6. Full bridge 1, 4 bridge arms are active; working current path: (a) second-mode working
current path; (b) third-mode working current path.

Third mode: Full bridge 1, four bridge arms are active; S1 and S4 work at 50 Hz; S2
and S3 are turned off. In the first half of the cycle, the first capacitor module and the second
capacitor module are alternately charging and discharging at a high frequency.

In this mode, when the first capacitor module is discharged and the second capacitor
module is charged, S9 and S10 are turned on; S5 and S6 are turned off. When S11 and S12
are turned off, S7 and S8 are turned on, the capacitor C2 enters the charging state, and at
this time, the capacitor C1 is discharged in series with the DC input power supply. The
current path of this working state is shown in Figure 6b.

Fourth mode: S2 and S3 work at a power frequency 50 Hz; S1 and S4 are turned
off. In the second half of the cycle, similar to the second mode, the first capacitor module
is charged, and the second capacitor module is discharged. Pulse width modulation is
performed by the DSP to control the MOS tubes to turn on and off; C1 enters the charging
state; and the fully charged capacitor C2 is discharged in series with the DC input power
supply. The current path of this working state is shown in Figure 7a.
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Figure 7. Full bridge 2, 3 bridge arms are active; working current path: (a) fourth-mode working
current path; (b) fifth-mode working current path.

Fifth mode: S2 and S3 work at a power frequency of 50 Hz; S1 and S4 are turned off. In
the second half of the cycle, similar to the third mode, the first capacitor module discharges,
and the second capacitor module charges. Pulse width modulation is performed by the
DSP to control the MOS tubes to turn on and off; C2 enters the charging state; and the fully
charged capacitor C1 is discharged in series with the DC input power supply. The current
path of this working state is shown in Figure 7b.

The working mode of the new inverter is shown in Table 1.

Table 1. Working Modes of Full-Bridge Inverter.

Working Status Modal S1, S4 S2, S3 S5, S6 S7, S8 S9, S10 S11, S12 C1 C2

Charging I 0 0 1 1 0 0 C C

1. 4-bridge arm work II 1 0 1 0 0 1 C F
III 1 0 0 1 1 0 F C

2. 3-bridge arm work IV 0 1 1 0 0 1 C F
V 0 1 0 1 1 0 F C

Note: 1, 0 represent the on and off state of the switch tubes; C and F represent the charging and discharging state of the capacitors.

3. Modulation Strategy and Capacitance Analysis
3.1. Modulation Strategy Analysis

For the proposed step-up single-phase full-bridge inverter based on a switched-
capacitor structure without voltage drop, it is necessary to design a reasonable modulation
strategy to generate the switching tube control signal in order to obtain the expected voltage
waveform and higher output side waveform quality. This article uses an enhanced pulse
width modulator (ePWM) to modulate the inverter.

In continuous up-counting mode (that is, counting up the counting time base), when
the count value is equal to the period register value, the counter is reset to 0. Coordinating
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the counting comparison sub-module (CC) with the action limiting sub-module (AQ) can
generate asymmetrical PWM waves.

In continuous down-counting mode (that is, down-counting on the counting time
base), when the count value is equal to 0, the counter starts the next cycle operation from
the cycle register value. Similarly, with CC and AQ modules, it can generate asymmetrical
PWM waves [35].

The period of the two modes to generate the PWM wave is

TPWM = (TBPRD + 1)TTBCLK (1)

In the formula, TTBCLK is the time base period of TB (time base submodule); TPWM is
the PWM wave period; TBPRD is the period register.

Using the continuous up-counting mode to generate a unilateral asymmetric (highly
effective) PWM wave, the value of the compare register is as follows:

TCMPRA = TPWMD (2)

In the formula, D = ton
TPWM

, is the duty cycle of the PWM wave; TCMPRA is the value of
the comparison register expressed in time.{

CMPA = (TBPRD + 1)DA
CMPB = (TBPRD + 1)DB

(3)

In the formula, CMPA and CMPB are the values of the comparison register represented
by the number of time base pulses.

According to the modulation principle of the ePWM and the working mode of the new
inverter in Table 1, the sequence of drawing the inverter mode is as shown in Figure 8. In
inverter mode, the operating frequency of S1, S2, S3, and S4 is 50 Hz, as shown in Figure 8a;
the other switches operate at high frequency, as shown in Figure 8b.

Figure 8. The proposed inverter working waveform: (a) S1–S4 working waveform; (b) working
waveforms of other MOS tubes.
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3.2. Capacitance Parameter Analysis

The purpose of the capacitance parameter analysis is to derive the charging and
discharging time and to change the voltage on the output side by adjusting the period.
It also provides a basis for the selection of capacitance and pulse width modulation,
considering that all switches, diodes, capacitors, and inductors have no internal resistance.

RC circuit charging time: As can be seen from the circuit structure diagram in Figure 9,
supposing V0 is the initial voltage value on capacitor C, Vin is the voltage value at which
capacitor C is fully charged, and Vt is the voltage value on capacitor C at any time t, then

Vt = V0 + (Vin − V0)(1 − e−
t

RC ) (4)

Figure 9. RC charging circuit structure.

If a battery with a voltage of Vin charges a capacitor C with an initial value of 0 through
a resistor R, then at any time t, the voltage on the capacitor is

Vt = Vin(1 − e−
t

RC ) (5)

If it is known that the voltage on the capacitor at a certain moment is Vt, then t can be
derived according to the following formula:

t = RCln(
Vin

Vin−Vt
) (6)

Discharge time of RC circuit: It can be seen from the circuit structure diagram of
Figure 10 that the capacitor C with the initial voltage of Vin is discharged through R. At
any time t, the voltage on the capacitor is

Vt = Vine−
t

RC (7)

Figure 10. RC discharge circuit structure.
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If it is known that the voltage on the capacitor at a certain moment is Vt, then t can be
derived according to the following formula:

t = RC ln(
Vin
Vt

) (8)

The capacitor is connected in series with the DC input power supply Vin to discharge
the resistor R; from the circuit structure diagram in Figure 11, the initial voltage value of
the capacitor is V0 = Vin, and at any time t, the voltage on the capacitor is

Vt = Vin(2e−
t

RC − 1) (9)

Figure 11. The capacitor is connected in series with the DC input power to release the voltage to
the resistance.

If it is known that the voltage on the capacitor at a certain moment is Vt, then t can be
derived according to the following formula:

t = RC ln(
2Vin

Vt + Vin
) (10)

In particular, when the voltage on the capacitor is 0 (that is, the capacitor is completely
discharged), then at this time

t = RC ln 2 (11)

By adjusting the charge and discharge cycle of the capacitor, the output voltage can
be changed within a certain range. Capacitor selection also has a certain relationship with
output frequency, load, and capacitor ripple. A larger capacitor value can prolong the
service life of the capacitor. However, an excessively large capacitor will increase the
system cost and floor space required. Therefore, it is necessary to consider the relationship
between cost and performance, and at the same time, select an appropriate capacitor value
in combination with its own output side voltage requirements.

4. Loss Analysis
4.1. Switch Tube Loss

Switching loss includes conduction loss and turn-off loss. The former generally refers
to the power loss generated when the power tube is turned from off to on, and the latter
generally refers to the power loss generated when the power tube is turned from on to off.

Switch tube conduction loss (this article aims at MOS analysis):

Pton =
1
6

VDSton fM IM (12)

Switch tube turn-off loss (this article aims at MOS analysis):

Pto f f =
1
6

VDSto f f fM IM1 (13)
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Here, fM represents the operating frequency of the switching tube; VDS represents the
voltage across the drain-source of the switching tube; ton and to f f represent the turn-on
and turn-off time of the switch tube, respectively;IM and IM1 represent the current before
the switch tube is turned on and turned off, respectively.

4.2. Capacitance Loss Analysis

During the operation of the inverter, there will be leakage current Icleak flowing
through the capacitor, and its loss can be expressed by Pcleak:

Pcleak = uC Icleak (14)

where uC represents the voltage across the capacitor, and Icleak represents the leakage
current flowing through the capacitor.

During the operation of the capacitor, there is loss between the plates. The loss tangent
of the capacitor plates can be expressed as

tgδe = 2π fMCre (15)

Then, the power loss of the capacitor plate:

P = IC
2re = IC

2 tgδe

2π fMC
(16)

Here, IC represents the current flowing through the capacitor; re represents the equiv-
alent resistance of the plate; tgδe represents the tangent value of the loss angle of the
capacitor plate; C is the capacitive reactance value; and fM represents the switching tube
operating frequency.

5. Simulation and Experiment
5.1. Simulation Result Analysis

In order to verify the correctness of the theoretical analysis of the proposed new
inverter, this paper uses the Simulink simulation platform in MATLAB to simulate and
analyze the inverter, and set the working frequency of the four Mos tubes of the full bridge
to 50 Hz, and the remaining Mos tubes work The frequency is 2 kHz, the capacitance
C1 = C2 = 10 µF, R2 = R3 = 5.80 Ω, and the output load R1 = 86.90 Ω. Figure 12 is a
waveform diagram of the voltage on the output side of the inverter when the DC input
power supply Vin = 4 V. According to the capacitor charging and discharging cycle and
demand-side analysis, the output-side voltage was between 6 and 8 V; within the acceptable
error, it did not fall below the lowest effective value of 6 V; and the voltage remained stable
throughout the inverter working cycle. The average output voltage of the inverter was
6.72 V, and the average current was 80.33 mA. According to our calculations, its efficiency
could reach 80%.

Figure 12. The inverter output voltage waveform with the circuit operating normally.
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Figures 13 and 14 show the simulation comparison between the normal operation of
the circuit and the work of S7 and S10 anti-parallel diodes. According to the analysis and
comparison diagram, it is obvious that the anti-parallel diode has a significant impact on
the inverter output voltage; that is, the average output voltage when compared with the
normal operation of Figure 12 is significantly reduced, and there is a significant voltage
drop within the specified demand range of 6~8 V. Therefore, it can be concluded that S10,
S12, S5, and S7 cannot be connected in reverse parallel with diodes.

Figure 13. S7 anti-parallel diode compared with normal working conditions: (a) the circuit works normally, and the
voltage is across R3; (b) Voltage across R3 when S7 anti-parallel diode; (c) Inverter output voltage waveform when S7
anti-parallel diode.
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Figure 14. S10 anti-parallel diode compared with normal working conditions: (a) voltage at both ends of the circuit’s normal
working capacitor C1; (b) Voltage across capacitor C1 when S10 anti-parallel diode; (c) Inverter output voltage waveform
when S10 anti-parallel diodes.

5.2. Experimental Results

In order to validate the proposed structure of the new inverter and its modulation
strategy, a small test prototype was built. The test configuration is shown in Figure 15, and
Figure 16 shows the physical display diagram of the inverter.
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Figure 15. Test on site.

Figure 16. Inverter physical display.

Figure 17 shows the experimental waveform of the driving voltage of the full bridge
(S1, S2, S3, and S4); Figure 18 is a comparison diagram of the alternative switch drive
voltage waveforms; and Figure 19 is the inverter output voltage waveform.

Figure 17. S1 (S4) and S2 (S3) drive voltage waveform comparison.
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Figure 18. Comparison of alternative switch drive voltage waveforms: (a) S5 (S6) and S9 (S10);
(b) S10 (S9) and S12 (S11); (c) S5 (S6) and S7 (S8).
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Figure 19. Inverter output voltage waveform.

DC input voltage was 4 V; DC output voltage was 6–8 V; and output frequency was
50 Hz. From analysis of the results, it can be concluded that the experimental waveforms
of the driving signals in Figures 17 and 18 are consistent with those in Figure 8 and the
theoretical analysis. The switching frequency of switch tubes S1–S4 is 50 Hz, and the duty
cycle is 47%. The deadband can clearly be seen in the figures. The operating frequency of
the other switches is 2 kHz. Figure 18 shows the waveform comparison, which is in line
with the state of the switch when the system is working normally.

Figure 19 shows the experimental waveform of the output voltage of the inverter
when the output frequency is 50 Hz. It can be seen from the figure that the deadband is
present correctly, indicating that the full-bridge switch S1–S4 is working normally, and the
output voltage waveform of the inverter is ideal and remains stable without falling below
the DC input voltage, which is consistent with the results of the simulation experiment. The
design of the inverter structure and the feasibility of stable operation are therefore verified.

6. Conclusions

The traditional step-up inverter based on switched capacitors uses the mechanism
of capacitors to be charged in parallel and discharged in series in order to achieve the
boost effect. When the capacitors are charged in parallel, the inverter output voltage drops.
In order to solve this problem, a solution such as the use of inductive energy storage
freewheeling has been proposed. However, average voltage and waveform quality on
the output side still have defects. Referencing past challenges that have been faced, this
paper proposes a new inverter based on switched capacitors, which uses two capacitor
modules to charge and discharge alternately. This overcomes the problem of voltage drop
on the inverter output side during the transition period from capacitor series discharge to
parallel charging. Additionally, the inverter has the characteristics of simple modulation
strategy and strong flexibility. Based on the circuit structure and working principle of
the inverter, this paper used the Simulink simulation platform in MATLAB to further
verify the theoretical feasibility. In addition, experimental verification was carried out
on the basis of simulation, which proved the feasibility of the proposed inverter and its
modulation strategy.

7. Patents

This article supports the publication of an invention patent: a step-up type non-voltage
drop switched-capacitor inverter.
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