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Abstract: In this investigation, six groups of cemented coal gangue-fly ash backfill (CGFB) samples
with varying amounts of kaolin (0, 10, 20, 30, 40, and 50%) instead of cement are prepared, and their
mechanical properties are analyzed using uniaxial compression, acoustic emission, scanning electron
microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. The uniaxial compressive
strength, peak strain, and elastic modulus of CGFB samples decreased with the kaolin content. The
average uniaxial compressive strength, elastic modulus, and peak strain of CGFB samples with
10% amount of kaolin are close to that of CGFB samples with no kaolin. The contribution of kaolin
hydration to the strength of CGFB sample is lower than that of cement hydration, and the hydration
products such as ettringite and calcium-silicate-hydrate gel decrease, thereby reducing strength,
which mainly plays a role in filling pores. The contents of kaolin affect the failure characteristics of
CGFB samples, which show tensile failure accompanied by local shear failure, and the failure degree
increases with the kaolin content. The porosity of the fracture surface shows a decreasing trend as
a whole. When the amount of kaolin instead of cement is 10%, the mechanical properties of CGFB
samples are slightly different from those of CGFB samples without kaolin, and CGFB can meet the
demand of filling strength. The research results provide a theoretical basis for the application of
kaolin admixture in fill mining.

Keywords: kaolin; cemented coal gangue-fly ash backfill sample; mechanical properties; macroscopic
failure; microstructure

1. Introduction

Mine-filling technology processes waste such as coal gangue and fly ash into slurry,
which not only reduces the accumulation of solid waste and pollution in coal mines, but
also enables effective control of the deformation of overlying strata and surface subsidence
in mining areas [1]. However, the application of this technology in coal mines is limited
owing to insufficient availability of backfill materials and high costs [2,3]. Therefore, cheap,
efficient, and widely available backfill materials are required for mine-filling in the future.

China is rich in kaolin resources and has suitable conditions for development and
utilization of kaolin. Kaolin (Al2O3·2SiO2·2H2O) is a type of fine and soft clay mineral
having a “single net layer” structure [4–7]. At present, scholars in China and abroad are
studying the influences of kaolin admixtures on mechanical properties and the microstruc-
ture of concrete materials. Due to the low activity of kaolin, Chun et al. [8] stimulated the
pozzolanic activity of kaolin using high-temperature calcination and found that adding an
appropriate amount of kaolin into concrete can greatly improve its compressive strength.
Lingyan et al. [9] found that calcined activated kaolin has the greatest effect on the early
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strength of concrete admixtures, which increases with the addition of kaolin. When the
amount of kaolin is 10%, the strength of the concrete admixture is the highest [10–13].
Meng et al. [14] found that the early strength of cement can be improved by mixing
calcined activated kaolin and slag. However, the kaolin production via calcination is a
high-temperature process that is cumbersome, consumes high energy, and is expensive.
Hao [15] and Yuanyuan et al. [16] found that kaolin can react with Ca(OH)2 slowly at room
temperature to form hydration products of cementitious ability, and the hydration reaction
with cement can create an alkaline environment and enhance this process. Wei et al. [17]
found that kaolin and other mineral admixtures can improve the early strength of cement
mortar in an alkaline environment. Annan et al. [18] confirmed the plate morphology of
kaolin. The particle size of kaolin is mainly in the range of 0–5 µm, which can be filled into
smaller pores of cement paste and be dispersed more evenly, which is conducive to the
complete occurrence of chemical reactions. Mengna et al. [19] found that the reaction of
kaolin and Ca(OH)2 can produce flocculent substances and platelike crystals. The addition
of slag and fly ash is conducive to the diffusion of crystals and destroys the structure of
Ca(OH)2, thus reducing the porosity of the cement mortar and improving the density of
the slurry and filler–matrix interface. Das et al. [20] found that kaolin contains more SiO2
and Al2O3 under alkaline conditions, leading to a higher pozzolanic activity. Its internal
structure contains more chemical bonds, which can weaken the secondary hydration of
Ca(OH)2 in cement mortar.

The abovementioned research results are of great significance for understanding the
effect of kaolin addition on the properties of cement-based materials such as concrete and
mortar. The cost of backfilling can be reduced if cement can be replaced with kaolin in
cemented coal gangue-fly ash backfill (CGFB) samples. Moreover, it can provide a new
path for resource utilization of kaolin. Therefore, based on the test methods of the loading
system, acoustic emission (AE), digital video camera (DVC), scanning electron microscope
(SEM), X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR), we
studied the effects of kaolin partially replacing cement on the mechanical properties of
CGFB samples, and the feasibility of using kaolin as paste admixture was discussed. The
results can provide a theoretical basis for application of kaolin admixture in fill mining.

2. Materials and Methods
2.1. Raw Materials

As shown in Figure 1, the CGFB samples used in this test are composed of cement, fly
ash, gangue, kaolin, and water. Their main components and contents are listed in Table 1.

Table 1. Main components and contents.

Raw Material
Chemical Composition and Content/%

SiO2 Al2O3 CaO Na2O SO3 K2O MgO TiO2 MnO Fe2O3 ZnO BaO

Cement 15.722 12.340 51.643 2.177 3.025 1.203 8.706 1.031 0.190 3.891 0.072 —
Fly ash 37.855 39.724 6.214 1.456 1.221 2.118 3.914 2.479 0.055 4.856 0.107 —
Gangue 39.987 30.177 11.727 1.758 2.886 2.643 3.088 2.531 — 4.928 — 0.276
Kaolin 42.153 47.704 — — — 5.063 1.276 2.079 — 1.725 — —

Here, 32.5 grade ordinary Portland cement (OPC) produced by Shandong Rizhao No.
3 cement plant was used. Grade II fly ash from the Huangdao Power Plant in Qingdao City,
Shandong Province, which has a light grey appearance, was used. The gangue (particle
size < 25 mm) was obtained from the solid waste produced in roadway excavation, coal
mining, and separation in the Shandong Daizhuang coal mine. The kaolin was taken from
the water-washed kaolin produced by a material factory in Guangdong Province. The
80-µm-square pore sieve residue is less than 8%, and the 45-µm-square pore sieve residue
is less than 25%, which meets the technical requirements of general Portland cement (GB/T
175-2007) [21].
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Figure 1. Raw materials. (a) Cement; (b) Fly ash; (c) Gangue; (d) Kaolin.

The microscopic morphology of kaolin was analyzed by a scanning electron mi-
croscopy (SEM) system. The powder sample was dipped on the conductive adhesive
using a wooden stick, and the kaolin surface was plated with gold. The morphology of
the sample was observed at 10,000× magnification, as shown in Figure 2a. The layered
structure of kaolin particles is evident in the figure, and each block of kaolin particles is
composed of many lamellar structures closely superimposed together, with clear edges and
corners. The morphology of kaolin particles is irregular and the particle size is different,
which is conducive to backfill the internal pores of CGFB samples, increasing its internal
occlusal degree and improving its internal structure.
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Figure 2. Microstructure analysis of kaolin. (a) SEM of kaolin; (b) XRD pattern of kaolin.
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The crystal phase of the kaolin admixture was analyzed using XRD, as shown in
Figure 2b [22]. The XRD patterns show multiple dispersion peaks of quartz, feldspar,
muscovite, and kaolinite, among which quartz and feldspar are mainly composed of SiO2
and Al2O3, respectively. The kaolin admixture is rich in active SiO2 and Al2O3, which can
replace a part of the cement for pozzolanic reaction and improve the internal bonding of
CGFB samples.

2.2. Sample Preparation

In this test, CGFB samples were prepared using cement, fly ash, and gangue in the
ratio of 1:4:6; the solid mass fraction was 78%; no additions were added, and the amounts
of kaolin replacing cement were 0, 10, 20, 30, 40, and 50%. During the preparation of CGFB
samples, an NJ-160 agitator was used for stirring for approximately 8 min. After the slurry
was evenly mixed, it was poured into a Φ50 mm × 100 mm mould. The bubbles in the
samples were removed by manual vibration and tamping. CGFB samples were removed
from moulds after 24 h and cured for 28 days in a curing box at a temperature of 25 ◦C
and relative humidity of 80%. Before the test, the two ends of the samples were smoothed
with a grinding machine: the flatness tolerance of the end face was less than 0.05 mm,
and unevenness was less than 0.002 mm [23]. Evident cracks on the surface of the CGFB
samples were removed. A total of 18 samples, as shown in Figure 3, were prepared for
this test. Based on the amounts of cement replaced with kaolin, they were divided into six
groups: A, B, C, D, E, and F, corresponding to cement replacement of 0, 10, 20, 30, 40, and
50% chemically pure (CP), respectively, and each group contained three samples.
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Figure 3. CGFB samples.

2.3. Test Method

The experimental test setup, including the loading, AE, DVC, SEM, XRD, and FTIR
systems, is shown in Figure 4. During each test, loading, AE, and DVC systems were
synchronized to have the same timestamps to facilitate analysis of the experimental results.

2.3.1. Uniaxial Compression Tests

A Shimadzu AG-X250 electronic universal testing machine was used to conduct the
uniaxial compression tests on the CGFB samples. This machine can perform uniaxial com-
pression, tensile, and other mechanical tests using a maximum load of 250 kN [24–27]. When
performing uniaxial compression tests, a preload pressure of 0.1 kN was first applied to the
test sample, so that the indenter was in close contact with the test piece, and displacement
loading control at a loading rate of 0.0005 mm/s was conducted.
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2.3.2. Acoustic Emission Experiment

The failure under uniaxial compression was monitored in real-time using the MIS-
TRAS series PCI-2 AE system. An R3α type of AE sensor, a main amplifier of 40 dB,
threshold of 45 dB, floating threshold of 6 dB, probe harmonic frequency of 100–600 kHz,
and sampling frequency of 106 times/s were used [28]. Petroleum jelly (Vaseline) was
applied between the sensor and samples for coupling them and reducing the acoustic
impedance difference and reflection loss of energy at the interface. This ensured that the
sensor received the AE signal with minimal loss. The sensor was fixed with adhesive tape,
and the pencil lead fracture method proposed by American Society for Testing and Materi-
als (ASTM) was used to calibrate the AE system for ensuring that the signal amplitude of
each sensor was above 90 dB [29]. During the test, a video camera (Sony DVC) was used to
record the failure under uniaxial loading.

2.3.3. Scanning Electron Microscopy Experiment

The internal microstructure of the CGFB samples was examined using the Apreo S
Hivac high-resolution SEM. The samples were soaked in alcohol and dried. After the
surface of the samples was blown clean using an ear-washing ball, they were pasted on
the sample table using a conductive adhesive. The internal structure of the samples was
observed after the surface was sprayed with gold.
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2.3.4. X-ray Diffraction Experiment

The crystal phase of the CGFB samples was analyzed using Rigaku Ultima IV XRD
operating at a voltage of 40 kV and an emission current of 40 mA. The dried samples
were ground using a mortar and screened using a 200-mesh sieve. During this, fragments
with relatively few aggregates (coal gangue) were retained, and large particles such as
aggregates (coal gangue) were removed. After the powder sample was tiled on the groove
of the glass slide, it was placed into the instrument for testing.

2.3.5. Fourier-Transform Infrared Spectroscopy Experiment

The functional groups on the surface of the CGFB samples were measured using
Nicolet iS5 FTIR. When testing samples, the samples were first ground with a mortar and
then dried. During this, fragments with relatively few aggregates (coal gangue) were
retained, and large particles such as aggregates (coal gangue) were removed. After mixing
the samples with pure potassium bromide at a ratio of 1:10, grinding, and pressing, they
were placed in the spectrometer and scanned 50 times to obtain the infrared spectrum.

3. Results
3.1. Uniaxial Compression Test Results

The strength of CGFB is an important index for evaluating coal mine safety conditions
and backfill effects. In this test, the data are collected synchronously through a computer
using a sampling interval of 10 ms. Table 2 shows the uniaxial compressive strength (UCS),
peak strain, and elastic modulus of the samples. Figure 5 shows the uniaxial compressive
stress–strain curves, while Figure 6 shows comparisons of the UCS, peak strain, and elastic
modulus of CGFB samples under different amounts of kaolin.

Table 2. Uniaxial test results of CGFB samples.

Addition Number UCS (MPa) Elastic Modulus (MPa) Peak Strain (mm/mm)

0%

A-1 0.70 205.47 0.0061
A-2 0.70 199.66 0.0068
A-3 0.79 240.75 0.0064

Average 0.73 215.29 0.0064

10%

B-1 0.58 211.20 0.0043
B-2 0.80 183.47 0.0054
B-3 0.67 182.44 0.0060

Average 0.68 192.37 0.0053

20%

C-1 0.52 169.18 0.0048
C-2 0.59 166.39 0.0043
C-3 0.57 141.19 0.0049

Average 0.56 158.92 0.0047

30%

D-1 0.31 156.33 0.0050
D-2 0.39 123.17 0.0035
D-3 0.46 179.88 0.0038

Average 0.39 153.13 0.0041

40%

E-1 0.45 201.66 0.0025
E-2 0.46 135.53 0.0045
E-3 0.43 113.93 0.0037

Average 0.45 150.37 0.0036

50%

F-1 0.35 72.36 0.0031
F-2 0.36 90.85 0.0037
F-3 0.38 61.91 0.0022

Average 0.36 75.04 0.0030
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Energies 2021, 14, x FOR PEER REVIEW 7 of 19 
 

 

C-2 0.59 166.39 0.0043 

C-3 0.57 141.19 0.0049 

Average 0.56 158.92 0.0047 

30% 

D-1 0.31 156.33 0.0050 

D-2 0.39 123.17 0.0035 

D-3 0.46 179.88 0.0038 

Average 0.39 153.13 0.0041 

40% 

E-1 0.45 201.66 0.0025 

E-2 0.46 135.53 0.0045 

E-3 0.43 113.93 0.0037 

Average 0.45 150.37 0.0036 

50% 

F-1 0.35 72.36 0.0031 

F-2 0.36 90.85 0.0037 

F-3 0.38 61.91 0.0022 

Average 0.36 75.04 0.0030 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 5. Stress–strain curves of CGFB samples. (a) A-3; (b) B-3; (c) C-3; (d) D-3; (e) E-2; (f) F-3. 

  
(a) (b) 

0.000 0.005 0.010 0.015 0.020
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

  A-3（0%）

A
x

ia
l 

st
re

ss
/M

P
a

Axial strain/（mm/mm）

0.000 0.005 0.010 0.015 0.020
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

  B-3（10%）

A
x

ia
l 

st
re

ss
/M

P
a

Axial strain/（mm/mm）

0.000 0.005 0.010 0.015 0.020
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

  C-3（20%）

A
x

ia
l 

st
re

ss
/M

P
a

Axial strain/（mm/mm）

0.000 0.005 0.010 0.015 0.020
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

  D-3（30%）

A
x

ia
l 

st
re

ss
/M

P
a

Axial strain/（mm/mm）

0.000 0.005 0.010 0.015 0.020
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

  E-2（40%）

A
x

ia
l 

st
re

ss
/M

P
a

Axial strain/（mm/mm）

0.000 0.005 0.010 0.015 0.020
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

  F-3（50%）

A
x

ia
l 

st
re

ss
/M

P
a

Axial strain/（mm/mm）

0% 10% 20% 30% 40% 50%
0.0

0.2

0.4

0.6

0.8

1.0

UCS of No.1 sample in each group

UCS of No.1 sample in each group

UCS of No.1 sample in each group

 Average UCS of each group

U
C

S
/M

P
a

Amount of kaolin instead of cement

0% 10% 20% 30% 40% 50%
0

50

100

150

200

250

300

350

Elastic modulus of No.1 sample in each group

Elastic modulus of No.1 sample in each group

Elastic modulus of No.1 sample in each group

 Average Elastic modulus of each group

E
la

st
ic

 m
o

d
u

lu
s/

M
P

a

Amount of kaolin instead of cement

Energies 2021, 14, x FOR PEER REVIEW 8 of 19 
 

 

 
(c) 

Figure 6. Comparisons of (a) UCS, (b) elastic modulus, and (c) peak strain of CGFB samples under different amounts of 
kaolin. 

As seen from Figure 5, the stress–strain curves of the CGFB samples have the same 
shape, and they all pass through initial compaction, elastic deformation, plastic yield, and 
post-peak strain softening stages. However, the values of UCS, peak strain, and elastic 
modulus are different, illustrating that the kaolin affects the mechanical properties of 
CGFB samples. As shown in Figure 6, the UCS, peak strain, and elastic modulus of CGFB 
samples are affected by the amounts of kaolin replacing cement. CGFB samples with 0% 
kaolin instead of cement exhibit highest average UCS (0.73 MPa), elastic modulus (215.29 
MPa), and peak strain (0.0064), while those with 50% kaolin exhibit lower UCS (0.36 MPa), 
elastic modulus (75.04 MPa), and peak strain (0.0030). The mechanical properties decrease 
with the increase of amounts of kaolin instead of cement. The higher the content of kaolin, 
the better the elasticity, and easier the deformation of CGFB. In addition, the amounts of 
kaolin instead of cement affect the post-peak strain softening stage of CGFB. The post-
peak stress of CGFB decreases with time. The higher the content of kaolin, the smaller the 
slope of the CGFB curve, and stronger the plastic deformation ability. 

In addition, in the Figure 6, it is found that the average values of UCS for CGFB sam-
ples decrease integrally with the amounts of kaolin instead of cement. Meanwhile, the 
values of UCS for the D-3 sample (30% CP) and group E samples (40% CP) show a slight 
increase. Previous investigations have shown that the strength of the CGFB samples is 
mainly determined by the cement hydration [30–34]. Generally, the stronger the cement 
hydration is, the larger the corresponding strength of the CGFB sample is. Normally, the 
activity of kaolin is lower than that of cement, and the incorporated kaolin only partially 
replaces cement for hydration reaction. The hydration caused by cement is lower than that 
of cement. With the increase of kaolin proportion, the amount of cement involved in the 
hydration reaction decreases. Therefore, the cement hydration effect is weakened, and the 
UCS of CGFB samples decreases. At the same time, the kaolin, which is not involved in 
hydration, mainly plays a role in filling the pores of CGFB samples. The average porosities 
of the failure or fracture surface of CGFB samples decrease with the kaolin content, which 
are analyzed in Section 3.3. Thus, the integrity of the CGFB samples is enhanced. Based 
on the above analyses, the strength of the CGFB samples containing kaolin may increase 
under these two mechanisms of the kaolin on mechanical properties for CGFB samples, 
but which is lower than that of the CGFB samples without the kaolin. 

3.2. Macro Failure Characteristics 
Figure 7 shows the macro-failure patterns of CGFB samples, which can be divided 

into tensile and shear failures, under different amounts of kaolin. The amounts of kaolin 
indeed affect the failure characteristics of CGFB samples as the failure degree increases 
with the increase of kaolin instead of cement. When the amount of kaolin is 50%, the high-
est amount of tensile cracks in CGFB samples is seen. The CGFB samples were gradually 

0% 10% 20% 30% 40% 50%
0.000

0.002

0.004

0.006

0.008

0.010
Peak strain of No.1 sample in each group
Peak strain of No.1 sample in each group
Peak strain of No.1 sample in each group
 Average peak strain of each group

Pe
ak

 st
ra

in
/(m

m
/m

m
)

Amount of kaolin instead of cement

Figure 6. Comparisons of (a) UCS, (b) elastic modulus, and (c) peak strain of CGFB samples under different amounts
of kaolin.

As seen from Figure 5, the stress–strain curves of the CGFB samples have the same
shape, and they all pass through initial compaction, elastic deformation, plastic yield, and
post-peak strain softening stages. However, the values of UCS, peak strain, and elastic
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modulus are different, illustrating that the kaolin affects the mechanical properties of CGFB
samples. As shown in Figure 6, the UCS, peak strain, and elastic modulus of CGFB samples
are affected by the amounts of kaolin replacing cement. CGFB samples with 0% kaolin
instead of cement exhibit highest average UCS (0.73 MPa), elastic modulus (215.29 MPa),
and peak strain (0.0064), while those with 50% kaolin exhibit lower UCS (0.36 MPa), elastic
modulus (75.04 MPa), and peak strain (0.0030). The mechanical properties decrease with
the increase of amounts of kaolin instead of cement. The higher the content of kaolin, the
better the elasticity, and easier the deformation of CGFB. In addition, the amounts of kaolin
instead of cement affect the post-peak strain softening stage of CGFB. The post-peak stress
of CGFB decreases with time. The higher the content of kaolin, the smaller the slope of the
CGFB curve, and stronger the plastic deformation ability.

In addition, in the Figure 6, it is found that the average values of UCS for CGFB
samples decrease integrally with the amounts of kaolin instead of cement. Meanwhile, the
values of UCS for the D-3 sample (30% CP) and group E samples (40% CP) show a slight
increase. Previous investigations have shown that the strength of the CGFB samples is
mainly determined by the cement hydration [30–34]. Generally, the stronger the cement
hydration is, the larger the corresponding strength of the CGFB sample is. Normally, the
activity of kaolin is lower than that of cement, and the incorporated kaolin only partially
replaces cement for hydration reaction. The hydration caused by cement is lower than that
of cement. With the increase of kaolin proportion, the amount of cement involved in the
hydration reaction decreases. Therefore, the cement hydration effect is weakened, and the
UCS of CGFB samples decreases. At the same time, the kaolin, which is not involved in
hydration, mainly plays a role in filling the pores of CGFB samples. The average porosities
of the failure or fracture surface of CGFB samples decrease with the kaolin content, which
are analyzed in Section 3.3. Thus, the integrity of the CGFB samples is enhanced. Based
on the above analyses, the strength of the CGFB samples containing kaolin may increase
under these two mechanisms of the kaolin on mechanical properties for CGFB samples,
but which is lower than that of the CGFB samples without the kaolin.

3.2. Macro Failure Characteristics

Figure 7 shows the macro-failure patterns of CGFB samples, which can be divided into
tensile and shear failures, under different amounts of kaolin. The amounts of kaolin indeed
affect the failure characteristics of CGFB samples as the failure degree increases with the
increase of kaolin instead of cement. When the amount of kaolin is 50%, the highest amount
of tensile cracks in CGFB samples is seen. The CGFB samples were gradually fractured
along the diagonal direction with the increase of kaolin instead of cement. After the CGFB
samples are fractured, the large tensile cracks on their surface increase, and most of them
are distributed near the gangue particles. This shows that the decrease of cement content
leads to the decrease of internal bonding degree. The ultimate failure characteristics of
CGFB samples show tensile failure accompanied by local shear failure.
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A single stress–strain curve cannot reflect the development process, but the failure
degree of CGFB samples with different amounts of kaolin addition can be revealed in detail
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by analyzing the AE Ra and cumulative Ra value. The different characteristics of tensile
failure and shear failure can also be understood in detail. The Ra value of the AE is the
ratio of the rise time to amplitude, which is an important index for determining the fracture
mode. Shiotani et al. [35] calculated the Ra value of rock under bending and shear tests
and concluded that a low Ra value corresponds to a shear crack, while a high Ra value
corresponds to a tensile crack.

In Figure 8, the relationship between axial stress and cumulative RA value over time
during failure of CGFB samples with different kaolin contents is shown to reveal the failure
characteristics. It can be seen that when the CGFB samples without kaolin fail, the initial
Ra value is at a low level, and the cumulative Ra value increases slowly, which indicates
the occurrence of shear failure. Near peak stress, the Ra value suddenly increases, and the
cumulative Ra value increases rapidly. This phenomenon can be understood as the point
when the CGFB samples without kaolin start getting compacted under the action of the
vertical load, resulting in transverse tensile stress. As alluded to earlier, due to existence
of gangue particles and a large number of holes, microcracks, and other defects in CGFB
samples, their internal structure is under uneven stress, and the effective bearing area
reduces, resulting in shear failure of mutual dislocation initially. With the gradual increase
in vertical load, friction between a large number of holes and microcracks also increases,
which inhibits mutual dislocation, and CGFB samples attain a stable state. As the load
continues increasing and becomes higher than the compressive strength of CGFB samples,
a crack begins to develop, and the sample finally fractures.
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Figure 8. Acoustic emission (AE) characteristics of CGFB samples. (a) A-1; (b) B-2; (c) C-2; (d) D-3;
(e) E-3; (f) F-3.



Energies 2021, 14, 3693 10 of 18

With the increase of the amount of kaolin instead of cement, the fluctuation of the Ra
value of CGFB samples increases, and the difference of its cumulative Ra value decreases,
which increases the number of tensile cracks in CGFB samples. This shows that a decrease
in the cement content leads to a decrease in the degree of internal bonding. During the
compression process, a large amount of elastic energy is stored in the gangue particles.
With the increase in sample deformation, energy is released near the gangue particles and
causes chain failure of the surrounding structure, resulting in tensile failure accompanied
by local shear failure of the sample.

3.3. Microstructure Characteristics

The microstructure and morphology of the fracture surface of CGFB samples are
analyzed using SEM and are shown in Figure 9. It can be seen that the microstructure and
morphology of fracture surfaces of different CGFB samples are different. Because of the
disappearance of the coating layer on the surface of CGFB samples, the rate of hydration
reaction increases, and a large amount of flocculated calcium-silicate-hydrate (C-S-H) gel
forms in the main body. Ettringite (AFt) having a needle-like structure is mostly distributed
in pores. These crystals are closely connected, which improves the strength of the sample.
When the amount of kaolin is 10%, more hydration products (AFt and C-S-H gel) are
observed. The internal structure of the samples is compact, and the number of pores is
small. When the amount of kaolin is more than 10%, the number of hydration products
decreases, and that of irregular particles increases. At 50% kaolin content, fewer hydration
products are observed, but the internal structure is relatively dense, which indicates that
kaolin mainly fills the pores in higher quantities.
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PCAS is a professional software tool for the identification and quantitative analysis of
pore systems and fracture systems [36]. It can automatically identify all types of pores and
fractures in images and obtain all geometric and statistical parameters. Concerning pore
recognition, it can import various pore images, remove clutter automatically, segment and
recognize pores automatically through binarization, output the geometric and statistical
parameters, and display the result vector image and rose diagram. It can also display
various geometric parameters of all pores in the data table, including the number of pores,
area, length, width, directivity, and shape coefficient, and obtain statistical parameters such
as region percentage (porosity), average form factor, probability entropy, fractal dimension,
and sorting coefficient [37]. In this study, PCAS is used to quantitatively analyze the
micropore structure of CGFB samples. The pore map after PCAS processing is shown
in Figure 10, where the black zone represents the non-porous area, and the colored zone
represents pores where the software automatically recognizes and artificially corrects some
recognition errors and defects. For different pores (unconnected pores), the PCAS uses a
different color mark, while the same color mark is used for connected pores [38]. All CGFB
samples are observed and analyzed in this manner. The minimum diameter of the closed
pore in PCAS is 2, and the minimum pore area is 50. The region percentages (porosities) of
the samples are listed in Table 3.
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Table 3. Region percentage (porosity) of CGFB samples.

Addition Number Region Percentage (Porosity)

0%

A-1 43.26%
A-2 49.45%
A-3 41.26%

Average 44.66%

10%

B-1 33.52%
B-2 45.21%
B-3 46.56%

Average 41.76%

20%

C-1 41.27%
C-2 39.64%
C-3 39.94%

Average 40.28%

30%

D-1 39.08%
D-2 39.54%
D-3 38.47%

Average 39.03%

40%

E-1 37.08%
E-2 36.04%
E-3 36.05%

Average 36.39%

50%

F-1 35.07%
F-2 34.84%
F-3 32.77%

Average 34.23%

Many studies [39–42] have shown that porosity has a significant relationship with
UCS. Table 3 shows the porosity of CGFB samples with different amounts of kaolin instead
of cement. The average porosity of each group of CGFB is compared with the average UCS,
and their relationship under different amounts of kaolin instead of cement is shown in
Figure 11.

Generally speaking, when the porosity of CGFB samples decreases, the UCS also
decreases. However, in Figure 11, an opposite trend is seen. The reason is that the hydration
is the main factor of kaolin affecting the strength of CGFB samples. The activity of kaolin is
lower than that of cement, but with the increase of kaolin content, the hydration of cement
decreases, so the UCS of CGFB samples decreases. However, kaolin also fills the internal
pores of CGFB samples, which improves their integrity and reduces the corresponding
porosity. In summary, the porosity of CGFB samples decreases with the increase of kaolin
instead of cement, and the UCS gradually decreases.
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Figure 11. Comparison of the relationship between UCS and porosity of CGFB with different amount
of kaolin instead of cement.

4. Discussion

The goal of coal mine filling is to meet the needs of coal mine production safety at
the lowest possible cost. Therefore, the selection of appropriate CGFB samples material is
related not only to the filling cost but also the safety and stability of the goal. After adding
kaolin into CGFB samples, the sample will have effects of morphology, micro-aggregate,
and activity of the kaolin admixture. The morphological effects of kaolin addition are
mainly reflected in the influence of kaolin particle size, shape, and other factors on the
performance of CGFB samples. The micro-aggregate effects are that the particles are
relatively fine and can be evenly dispersed in the gangue aggregate and flocculation
structure, filling the internal pores, which helps improve the internal uniformity of CGFB
samples. Kaolin is rich in active SiO2 and Al2O3. The essence of its pozzolanic activity is
that SiO2 and Al2O3 are excited in alkaline environments. The content of soluble active
components in kaolin is very low; therefore, the degree of pozzolanic reaction of kaolin is
low initially.

To study the influence of different amounts of kaolin content on the hydration products
of CGFB samples, phases of CGFB samples cured for 28 days are analyzed via XRD, and the
diffraction patterns are shown in Figure 12. Similar diffraction patterns of CGFB samples
are seen, but the intensity of the peaks is different from that of the hydrated products, which
form Ca(OH)2, C-S-H gel, AFt, etc. When the amount of kaolin is less than 10%, the peak of
Ca(OH)2 becomes weaker, the SiO2 peak becomes stronger, and the C-S-H gel diffraction
peak becomes stronger with an increase in the amount of kaolin instead of cement. This
indicates that some active substances in kaolin consume Ca(OH)2 to participate in the two
hydration reactions. When the amounts of kaolin instead of cement are greater than 10%,
the peak value of SiO2 continues to increase, and the diffraction peaks of Ca(OH)2, AFt,
and C-S-H become weak with an increase in the amount of kaolin content. This shows that
after a certain point of kaolin addition, reduction in cement content per unit volume will
negatively affect the secondary hydration of kaolin.

To further investigate the effects of kaolin on CGFB samples, the chemical structures
of the prepared samples are characterized via FTIR spectroscopy. Figure 13 shows the
infrared spectrum of CGFB samples, which shows that FTIR spectra of CGFB samples
are similar. The broad absorption band at wavenumbers of 2976.99–3592.77 cm−1 charac-
terizes the stretching vibration of Al-OH in the [AlO4] tetrahedron, and the absorption
peak of 1588.25 to 1784.38 cm−1 represents the bending vibration of H2O in C-S-H [43].
Absorption peaks at 1349.18–1588.25 cm−1 represent the O-C-O asymmetric stretching
vibration of carbonate, indicating that the CGFB samples experienced slight carbonization
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during the characterization process [44]. Absorption peaks of 936.78–1349.18 cm−1 corre-
sponds to the asymmetric stretching vibration of Si-O in tetrahedron [45], while those at
820.31–886.33 cm−1 reflects the existence of [Al(Fe)-O], which means that some Al-OH in
AFt is replaced by Fe-OH [46].
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Figure 14 gives the pozzolanic reaction of kaolin in the CGFB sample. Pore water rich
in Ca2+, AlO2

−, and SiO3
2− first infiltrate CGFB, and the cement particles in CGFB samples

hydrate to form Ca(OH)2 and other products in the liquid phase. The hydration reaction of
cement is as follows:

C3S + nH→ C-S-H + (3-x) CH (1)

C2S + mH→ C-S-H + (2-x) CH (2)
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The hydration product will infiltrate the kaolin particles. During slurry condensation,
the hydration products in the matrix crystallize, and the CGFB samples material have a
certain strength through ionic bonds and intermolecular forces. Now, alkaline inclusions
gradually form on the surface of the kaolin particles. With an increase in the curing time
from 0 to 28 days, kaolin particles are gradually eroded by alkaline inclusions, resulting
in chemical changes and development of the active state. Because of the different ion
concentrations inside and outside the coating, ion penetration expands the coating. When
the pressure of the coating reaches its limit, the active component reacts with the ions
to form C-S-H and other products. The formula for secondary hydration of kaolin is
as follows:

SiO2 + m1Ca(OH)2 + xH2O→m1CaO·SiO2·xH2O (3)

Al2O3 + m2Ca(OH)2 + yH2O→m2CaO·Al2O3·yH2O (4)

The test results show that the strength of CGFB samples decreases with an increase
in kaolin content. When the amount of kaolin instead of cement is 10%, the contribution
of secondary hydration of some active components in kaolin to CGFB strength is lower
than that of normal hydration of cement, but kaolin has a certain filling effect. Therefore,
in the study, the strength of CGFB samples with kaolin sample decreased, but there is
no significant difference compared with those of CGFB samples without kaolin, which is
approximately 0.7 MPa. When the amount of kaolin is greater than 10%, the activity of
kaolin is lower than that of cement, which mainly plays the role of filling. The decrease in
cement content directly leads to a decrease in the hydration products in CGFB samples, a
decrease in the cohesive force, and a consequent decrease in CGFB strength.

Therefore, considering requirements of CGFB strength for coal mine production safety,
this study recommends replacing 10% cement in CGFB samples by kaolin as the most
suitable option among those tested. That is to say, when the kaolin content is 10%, it
can play a similar role as cement in CGFB samples and meet the mine-filling strength
requirements. This paper mainly discusses the influence of kaolin on mechanical properties
and microstructure of CGFB; however, carrying out systematic research on the durability
and engineering applications of CGFB samples with kaolin is also necessary.

5. Conclusions

(1) The stress–strain curves of the CGFB samples are essentially the same, and they all
pass through initial compaction, elastic deformation, plastic yield, and post-peak strain
softening stages. The uniaxial compressive strength, peak strain, and elastic modulus
decrease with the kaolin content. The average uniaxial compressive strength, elastic
modulus, and peak strain of CGFB samples with 10% amount of kaolin are 0.68, 192.37,
and 0.0053 MPa, respectively, which are close to those of CGFB samples with no kaolin.

(2) The kaolin content affects the failure characteristics of CGFB samples, which
show tensile failure accompanied by local shear failure, and the failure degree increases
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with the kaolin content. The fluctuation of Ra value of CGFB samples increases, and the
difference of its cumulative Ra value decreases with the kaolin content, which increases
tensile cracks in CGFB samples. The porosity of the fracture surface shows a decreasing
trend as a whole. The reason is that the hydration is the main factor of kaolin affects the
strength of CGFB samples, and the activity of kaolin is lower than that of cement. With the
increase of kaolin content, the hydration of cement decreases, so the UCS of CGFB samples
decreases. However, kaolin also fills the internal pores of CGFB samples, which improves
their integrity and reduces the corresponding porosity. In summary, the porosity of CGFB
samples decreases with the increase of kaolin, and the UCS gradually decreases.

(3) When the amount of kaolin is 10%, the internal structure of the CGFB sample is
more compact, and the number of pores is less. When it is more than 10%, with an increase
in the kaolin content, the decrease in cement content per unit volume leads to a decrease in
the number of AFt and C-S-H gel, the peak of the SiO2 diffraction peak becomes stronger,
the C-S-H diffraction peak becomes weaker, and the number of irregular particles increases.
As the average uniaxial compressive strength, elastic modulus, and peak strain of CGFB
samples with 10% amount of kaolin are close to those of CGFB samples with no kaolin,
replacing 10% cement in CGFB samples by kaolin is the most suitable option recommended.
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