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Abstract: Twenty percent of global electricity supplied to the buildings is used for preventing air
temperature increase; its consumption for this prevention will triple by 2050 up to China’s present
needs. Heat removed from the thermal power plants may drive cold generation in the absorption
devices where mass and heat transfer are two-phase phenomena; hence liquid film break-up into
the rivulets is extensively investigated, which needs knowledge of the velocity profiles. Laminar
flow in a pipe is used in the preliminary study, velocity profile of developed flow is used as a
benchmark. The study account writes the applied apparatus with their calibration procedure, and
the uncertainty estimation algorithm. The calibration regression line with the slope close to one and
a high Pearson’s coefficient value is the final outcome. Therefore, the apparatus may be applied in
the principal research.

Keywords: liquid film break down; rivulet; velocity profile; laminar flow; surface tension

1. Introduction

Crisis in cold generation approaches the world’s economy, for the air conditioners and
electric fans working against air temperature increase need nearly 20% of the total electrical
energy used in buildings in the world. Electricity demands for these purposes is forecasted
to triple by 2050, which would equal China’s present usage [1]. These demands reach the
winter and summer peaks. Figure 1 shows the former in December and January and the
latter in July and August; these seasonal peaks concern total energy production and its part
generated in thermal power plants, from fossil fuels combustion, or radioactive decay [2].

Thermal power plants, in accordance with the second law of thermodynamics, need
to remove heat to a heat sink which can be either surface water or a district heating system.
However, in summer time, these systems supply heat only for generating domestic hot
water, which may be insufficient; this insufficiency might be overcome with cold produc-
tion, in the absorption refrigeration systems, from the removed heat temperatures of at
least 80 ◦C [3]. In other words, the absorption refrigeration system might utilize heat
that is removed from the thermal power plant during electricity generation. Absorption
refrigeration systems might alternate from the traditional ones if they are equipped with
compact and high-performance heat and mass exchangers [4]. A low usage of the ab-
sorption refrigeration systems stems from high ratio between the volume and the cooling
capacity [5]. For this reason, they are also experimentally studied [6,7]. An absorption
refrigerator uses two fluids, which change phases, and concentration flowing through the
absorber, generator, evaporator, and condenser [8,9].
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Figure 1. A report of International Energy Agency [2] into monthly electricity production. 

The change of phase or concentration occurs due to heat and mass transfer in thin 
liquid layers, which flow down a solid surface (cf. Figure 3 in [4]). Firstly, these layers 
were investigated because of the burnout in the steam boilers or distillatory equipment. 
Hartley and Murgatroyd [10] investigated liquid film break away into the rivulets using 
two approaches: the first one is mechanical equilibrium in the highest point of the dry 
patch, which results in the force balance in this point named stagnation point; the other 
method employs energy minimization, assuming the sum of kinetic energy across a plane 
and the surface energy approaches minimum. Bankoff [11] balanced flow rates and ener-
gies of the film and rivulets at the critical film thickness; it was assumed that a segment of 
circle as a cross-section of the rivulet, and the velocity profiles in film, and in each slice of 
the rivulet, are the same. Mikielewicz and Moszynski [12,13] applied minimization of en-
ergy extended by surface energy of the solid-gas interface. A common feature of the in-
vestigations presented above, in this paragraph, is assumed laminar velocity profile de-
rived by Nusselt (1916) (cf. Madejski [14]); additionally, Hartley and Murgatroyd [10] as-
sumed a linear laminar profile for film, motivated by surface shear only or a von Karman 
universal velocity profile for turbulent flow. 

El-Genk and Saber [15] continued research into film breakdown, applying the ener-
getic approach; their analysis includes a two-dimensional velocity profile solved using 
Ritz method. Perazzo and Gratton [16] derived another two-dimensional velocity profile, 
which is solved in closed form, for both the rivulet and film, flowing along a vertical plate; 
the contact angle was assumed to be either perpendicular to the plate for the rivulet or 
parallel for the film. While Tanasijczuk et al. [17] derived a two-dimensional velocity pro-
file for a rivulet pending from a horizontal plate.  
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Figure 1. A report of International Energy Agency [2] into monthly electricity production.

The change of phase or concentration occurs due to heat and mass transfer in thin
liquid layers, which flow down a solid surface (cf. Figure 3 in [4]). Firstly, these layers
were investigated because of the burnout in the steam boilers or distillatory equipment.
Hartley and Murgatroyd [10] investigated liquid film break away into the rivulets using
two approaches: the first one is mechanical equilibrium in the highest point of the dry
patch, which results in the force balance in this point named stagnation point; the other
method employs energy minimization, assuming the sum of kinetic energy across a plane
and the surface energy approaches minimum. Bankoff [11] balanced flow rates and energies
of the film and rivulets at the critical film thickness; it was assumed that a segment of
circle as a cross-section of the rivulet, and the velocity profiles in film, and in each slice
of the rivulet, are the same. Mikielewicz and Moszynski [12,13] applied minimization of
energy extended by surface energy of the solid-gas interface. A common feature of the
investigations presented above, in this paragraph, is assumed laminar velocity profile
derived by Nusselt (1916) (cf. Madejski [14]); additionally, Hartley and Murgatroyd [10]
assumed a linear laminar profile for film, motivated by surface shear only or a von Karman
universal velocity profile for turbulent flow.

El-Genk and Saber [15] continued research into film breakdown, applying the energetic
approach; their analysis includes a two-dimensional velocity profile solved using Ritz
method. Perazzo and Gratton [16] derived another two-dimensional velocity profile, which
is solved in closed form, for both the rivulet and film, flowing along a vertical plate; the
contact angle was assumed to be either perpendicular to the plate for the rivulet or parallel
for the film. While Tanasijczuk et al. [17] derived a two-dimensional velocity profile for a
rivulet pending from a horizontal plate.

Ataki and Bart [18] applied a velocity profile for a gravity driven rivulet along an
inclined plate in the analysis of their experiments. Another assumption was the static
contact angle value 56◦.
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Charogiannis et al. [19] experimentally determined laminar velocity profile for a
gravity driven rivulet along an inclined plate for a Reynolds number less than 5.9 and
Kapitza number equal to 1.4 following its definition:

Ka =
σ

ρ(g sin αν4)
1/3 (1)

where σ is surface tension, g is gravitational acceleration, α is an inclination of film to the
horizon, and ν is kinematic viscosity; they also obtain a profile for wavy flow forced with
frequencies 2 and 6 Hz, when the Reynolds number was about 5.2.

The very familiar configurations of the absorbers, applied in the absorption cooling
systems, consists of the horizontal tubes, which are covered with falling liquid film; this
film is an absorbent solution that, flowing across the tubes, absorbs the vapor of a re-
frigerant [4]. The flow divides into three regimes: falling-film flowing around the tubes,
droplet-formation flow that occurs on, and in, the vicinity of the lowest tube generatrix, and
the droplet-fall flow that appears between two tubes; these regimes exist for LiBr/water [20]
and aqueous alkaline nitrate solution [4].

When the absorbent solution is overflowing the tubes, two phenomena are occur-
ring simultaneously: heat and mass exchange, which are mathematically modeled using
two different algorithms; modelling heat exchange needs a knowledge of film thickness,
which is computed from a velocity profile. Despite different geometry, both Alvarez
and Bourouis [4] and Jeong and Garimella [20] apply, in their models, a laminar velocity
profile derived by Nusselt, mentioned above, derived for a flow along the vertical plate.
Accordingly, the film thickness δ is obtained from formula

δ(α) =

[
3µΓ

ρ2g sin α

]1/3
. (2)

where µ is dynamic viscosity, Γ is mass flowrate per unit of wetted tube, ρ is solution density.
Reynolds number for flowing film is defined by Equation [21]

Re =
4Γ
µ

(3)

Combining Equations (2) and (3) we obtain a formula for film thickness as a function
of the Reynolds number:

δ(α) =

[
3µ2Re

4ρ2g sin α

]1/3

. (4)

Figure 2 shows a solution of Equation (4) for two Reynolds numbers: 100 and 1600;
the latter is thought as the critical Reynolds number for films [21] which, under laminar
flow, seems to be very thin, e.g., 0.5 mm or less under vertical flow; for the thicker films, a
flow should not be laminar.

Therefore, an in-depth research into the velocity profiles of thin liquid layers would be
helpful in modelling absorbers; it should indicate whether the velocity profile, beyond lam-
inar flow, is two dimensional, turbulent, and whose formula models best model the flows.
The experimental investigations of the velocity profiles in the rivulets and liquid films, for
a Reynolds number in range from 400 to 3000 and Kapitza number 3000–6000, determined
with laser Doppler anemometer (LDA) usage, is the main area of the investigation, which
will be done for water flows along copper, aluminum, brass, and stainless steel plates. The
particular goal of the published preliminary studies is measurement uncertainty estimation
and calibration of an applied LDA system.
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Figure 2. Film thickness δ as a function of surface inclination towards the horizon. 
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plying water, through a discharge pipe (11), an upper tank (12), and an inlet pipe (13), to 
a transparent pipe (15). When the upper tank (12) is full and water is overflowing the brim 
of a pipe (22), and returning to a bottom tank (21), a valve (16) is opening. Then the as-
sumed flow is fixed using the needle valve (19) and the flow meter (20). Afterwards the 
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Spectrum Analyzer (BSA) (5) and the stepper motor controller (6). BSA (5) sends, through 
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sect in the assumed point after crossing the lens system in the front part of the flow ex-
plorer (2). Positioning the intersecting beam in the assumed points is provided by the 
stepper motor controller (6) sending the signals, through the wires (7), to the spindle 
drives; these drivers shift assembled elements of linear stroke (8) along x, y, and z axis. It 
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Figure 2. Film thickness δ as a function of surface inclination towards the horizon.

2. Materials and Methods

The presented experimental investigations are carried out with an existing pipeline [22]
that is shown as an internal loop in Figure 3. A researcher plugs in a pump (10) supply-
ing water, through a discharge pipe (11), an upper tank (12), and an inlet pipe (13), to
a transparent pipe (15). When the upper tank (12) is full and water is overflowing the
brim of a pipe (22), and returning to a bottom tank (21), a valve (16) is opening. Then the
assumed flow is fixed using the needle valve (19) and the flow meter (20). Afterwards
the researcher runs a computer program, which sends out the proper signals to the Burst
Spectrum Analyzer (BSA) (5) and the stepper motor controller (6). BSA (5) sends, through
an optical fiber (3), two coherent laser beams to the flow explorer (2). These beams intersect
in the assumed point after crossing the lens system in the front part of the flow explorer (2).
Positioning the intersecting beam in the assumed points is provided by the stepper motor
controller (6) sending the signals, through the wires (7), to the spindle drives; these drivers
shift assembled elements of linear stroke (8) along x, y, and z axis. It turned out that milk is
the most effective seeding substance.

Forasmuch as the velocity profile of the laminar flow is derived theoretically, and
proved experimentally, it is used as a benchmark for the fluids flow velocity measurements;
a velocity profile is determined with a Hagen-Poiseuille equation

vb =
1

4µ

(
∂p
∂x

)(
r2 − R2

)
, (5)

where
(

∂p
∂x

)
means pressure gradient, r is radial distance, and R is the internal tube radius.
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Figure 3. The applied setup: 1—intercrossing laser beams, 2—flow explorer with optics system, 3—
optical fiber, 4—signal wire to photo-multiplier, 5—The Burst Spectrum Analyzer, 6—the stepper 
motor controller, 7—x,y,z movement signal wires, 8—the elements of linear stroke along x,y,z axis 
with spindle drives, 9—personal computer, 10—pump, 11—discharge pipe, 12—upper tank, 13—
inlet pipe, 14—straight pipe coupler, 15—transparent tube, 16—valve, 17—temperature meter, 18—
outlet pipe, 19—needle valve, 20—float meter, 21—bottom tank, 22—overflow pipe. 
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where ቀడడ௫ቁ means pressure gradient, r is radial distance, and R is the internal tube radius.  
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their intersection in the desired points is obtained as follows. Figure 4 shows the laser 
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and water, so the basic equations system results from the law of refraction:  ݊ sin ఏଶೌ = ݊ sin ఏଶ ,  (6)݊ sin ఏଶ = ݊௪ sin ఏଶೢ ,  (7)

where na, np, nw are the refractive indexes in air, Plexiglas, and water, respectively; θa, θp, 
and θw, are the angles between the laser beams in these media. 

The angle between the laser beams in air θa is obtained from the equation  ݊ܽݐ ఏଶೌ = ଵ ଶൗ ௗ = ௗଶ ,  (8)

where d is a distance between the laser beams in the optics, f is the focal length of the 
optics in air. 

After solving the Equations (6)–(8) we obtain the half angles of inclination in each 
medium: ఏଶೌ = arctan ௗଶ , (9)
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Figure 3. The applied setup: 1—intercrossing laser beams, 2—flow explorer with optics system,
3—optical fiber, 4—signal wire to photo-multiplier, 5—The Burst Spectrum Analyzer, 6—the stepper
motor controller, 7—x,y,z movement signal wires, 8—the elements of linear stroke along x,y,z axis
with spindle drives, 9—personal computer, 10—pump, 11—discharge pipe, 12—upper tank, 13—inlet
pipe, 14—straight pipe coupler, 15—transparent tube, 16—valve, 17—temperature meter, 18—outlet
pipe, 19—needle valve, 20—float meter, 21—bottom tank, 22—overflow pipe.

2.1. The Optics System Adjustment

After a connection of the system of apparatus the laser beams intersect in any point;
their intersection in the desired points is obtained as follows. Figure 4 shows the laser
beams refract four times, from right to left, passing three isotropic media: air, Plexiglas,
and water, so the basic equations system results from the law of refraction:

na sin
θa

2
= np sin

θp

2
, (6)

np sin
θp

2
= nw sin

θw

2
, (7)

where na, np, nw are the refractive indexes in air, Plexiglas, and water, respectively; θa, θp,
and θw, are the angles between the laser beams in these media.
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The angle between the laser beams in air θa is obtained from the equation

tan
θa

2
=

1
2 d
f

=
d

2 f
, (8)

where d is a distance between the laser beams in the optics, f is the focal length of the optics
in air.

After solving the Equations (6)–(8) we obtain the half angles of inclination in each medium:

θa

2
= arctan

d
2 f

, (9)

θw

2
= arcsin

(
na

nw
sin

θa

2

)
, (10)

θp

2
= arcsin

(
na

np
sin

θa

2

)
. (11)

Figure 4 shows every beam to intersect must cover a fixed length d/2 along x axis

d
2
= yatan

θa

2
+ wtan

θp

2
+ dintan

θw

2
+ wtan

θp

2
+ atan

θa

2
, (12)

where di = 30 mm is the internal tube diameter, and w = 5 mm is the tube wall thickness.
Substituting Equations (8)–(12) we obtain

d
2
= ya

d
2 f

+ wtan
θp

2
+ dintan

θw

2
+ wtan

θp

2
+ (a − 2w − din)

d
2 f

, (13)

where a = 116.11 mm is measured with calipers.
Since d, f, w, di are known from the manufacturers’ data, a is measured, and the half

angles are computed earlier Equation (13) is solved for ya.

ya = f − 2 f
d

(
2·w·tan

θp

2
+ dintan

θw

2

)
− (a − 2w − din)

d
2 f

. (14)

Then the ordinate yl0 is read on the linear stroke element (8) shown in Figure 3. The
beams intersect in the point y1 when a distance from the optics (2) is equal to the focal
length f. Thus, a base ordinate yl1 on the linear stroke element (8) is calculated from
the formula

yl1 = yl0 − ( f − ya). (15)

Figure 5 shows the course of the beams that intersect in an assumed measurement
point in water at the distance yw from the internal wall, so every beam has to cover the
fixed length:

d
2
= yatan

θa

2
+ wtan

θp

2
+ ywtan

θw

2
. (16)

Equation (16) is solved for another ya:

ya = f − 2 f
d

(
w·tan

θp

2
+ ywtan

θw

2

)
. (17)

Then the corresponding ordinate yl on the linear stroke element (8) is computed from
the formula

yl = yl1 + ( f − ya). (18)
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w
y

=
δ
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Figure 5. A course of the laser rays from the optics to a measurement point.

2.2. Uncerainty Estimation

Overall uncertainty estimation follows the Moffat [23] approach. A fixed error Binst
is equal to a difference of a benchmark laminar velocity vb (yi) and a mean of 30 velocity
measurements vm(yi) in each point of an ordinate yi along the tube diameter:

Binst(yi) = vb(yi)− vm(yi). (19)

Standard deviation σ for the arithmetic mean vm(yi) is defined by an equation

σ(yi) =
1
30

(
30

∑
j=1

(
vm(yi)− vj(yi)

)2
)1/2

. (20)

An overall uncertainty value δv (yi) is the square root of outsummed squares of the
fixed error and doubled standard deviation because 95% confidence level is assumed.

δv(yi) =
[
(Binst(yi))

2 + (2σ(yi))
2
]1/2

. (21)

The inverse of the squared the overall uncertainty value is a weight wi

wi =
1

(δv(yi))
2 . (22)

Since, in the lack of a flow, both velocities equal zero, a weighted regression line
must cross origin; for that reason, the intercept b = 0 and the slope a is obtained with a
formula [24]:

a =
∑ wivm(yi)vb(yi)

∑ wi[vm(yi)]
2 , (23)

and Pearson’s correlation coefficient r is determined using an equation [24]:

r = ∑ wivm(yi)vb(yi){
∑ wi[vm(yi)]

2∑ wi[vb(yi)]
2
}1/2 . (24)

3. Results and Discussion

The researcher adjusts the linear stroke element (8) at the location computed from
Equation (18) for each of 31 measurement points along the diameter of the tube (15), and
carries out the velocity measurements in these points; then, the researcher repeats the
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measurement procedure 29 times. Figure 6 shows the velocity profile from the averaged
experimental results compared with the benchmark laminar flow for Re = 2137.
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experimental results compared with the benchmark laminar flow for Re = 2137.  
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Figure 6. A comparison between laminar velocity profile Equation (5) and the experimental results with marked
velocity uncertainty.

To assess quality of the experiments the regression line computed from Equation (23)
is plotted in Figure 7 with the Pearson’s coefficient value computed from Equation (24).
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The great discrepancies occur in a close vicinity to one tube wall where the velocities
in laminar flow vb are close to zero, and the measured velocities vm are about 30 times
higher (cf. Figure 7); it may result from the thinner wall in this place, which, unfortunately,
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may not be checked with the simple measurements because of the long distance from the
tube ends.

Figure 8 shows an impact of radial distance determination on the velocity profile
measurements; there are plotted vertical errors bars that are the differences between
radial distance of the measured velocity and the coordinate of laminar velocity profile.
The differences in the first half of the diameter that is closer to the LDA system, which
corresponds to the lower part of Figure 8, are significantly less than in the second half
beyond the tube axis; the one exception is the first point that was discussed above. The
bigger discrepancies arise when the measurement volume approaches the axis, and the
maximum is reached 6 mm beyond the tube axis (r/R = 0.4).
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Figure 8. A comparison between laminar velocity profile Equation (5) and the experimental results with marked differences
between radial distances.

The errors in radial distance determination may be caused by other tube thickness in
the measurement cross section, such as a non-circular cross section caused by several years
of usage in the set-up, inappropriate adjustment of the element of linear stroke, different
value of the refractive index, which might have been changed by the seeding particles.

Summarizing the discrepancies, between the benchmark laminar flow profile and
the measured velocity profile, are an uncertain combination of the velocity and radial
distance determination.

4. Conclusions

For as much as the gradient of the regression line is almost one, and the Pearson’s
correlation coefficient is greater than minimal value, which is equal to 0.3557 for 29 degrees
of freedom at 95% confidence level, it might be said, in conclusion, that the preliminary
experiments are performed in a proper way, and the high quality of the further principal
research may be maintained.
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