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Abstract: This study proposes a calculation methodology that determines the optimal boundary
parameters of the single-diode photovoltaic model. It allows the calculation of the single-diode
photovoltaic model when no reference parameter boundaries are available. The differential evolution
algorithm, integrated with a step-by-step boundary definition module, is used to calculate the
optimal parameters of the single-diode photovoltaic model, improving the performance of the classic
algorithm compared with other studies. The solution is validated by comparing the results with
well-established algorithms described in the state-of-the-art, and by estimating the five important
points (cardinal points) of an IV curve, namely short-circuit, maximum power, and open circuit points,
using a database composed of 100 solar photovoltaic modules. The results show that an optimal set
of parameter boundaries enables the differential evolution algorithm to minimize the error of the
estimated cardinal points. Moreover, the proposed calculus methodology is capable of producing
high-performance response photovoltaic models for different technologies and rated powers.

Keywords: photovoltaic; single-diode model; differential evolution algorithm; adjustable limits;
boundaries calculation

1. Introduction

Different mono-facial solar photovoltaic module SPVM technologies have been devel-
oped e.g., mono-crystalline, poly-crystalline, and thin layer, among others. Their electrical
behavior is usually described by the curve traced in the current and voltage plane (IV
curve). Similarly to the mono-facial technology, SPVMs have recently incorporated bifacial
technology, and unlike their mono-facial counterpart, bifacial SPVMs are capable of har-
nessing incident solar radiation from both faces of the photovoltaic PV module, increasing
its production capacity [1]. Authors such as Singh et al. [2] and Liang et al. [3] claim
that the behavior of bifacial solar technology can be described using the same method as
mono-facial modules. In addition, Mujahed Al-Dhaifallah et al. [4] developed a fractional
control system capable of tracking the maximum power point, which highly depends
on the electrical model of the SPVM. These applications require modeling the electrical
behavior of the SPVM with a high level of accuracy in order to improve their performance.

SPVM have a highly non-linear conduct, ranging from the ideal model behavior be-
ing described by three parameters to more complex models that use five or even seven
parameters. Increasing the number of parameters included in the SPVMs electrical model
increases the difficulty of obtaining these parameters; therefore, the electrical model must
be carefully selected [5–8]. In many studies, the five parameter model displays suffi-
cient accuracy to describe the operation of the SPVM, as it is capable of predicting the
behavior of the module under different operating scenarios with high precision [9,10],
in addition it includes the transition to different operating conditions starting from a partic-
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ular state. The transition between two operating conditions was subsequently refined by
Boyd et al. [11]. Different methodologies are used to determine the input parameters of the
models, and the currently available tools are the explicit methods through Lambert’s W
function [12], the iterative method, the heuristic method, and the metaheuristic approaches.

The calculation strategy is selected according to two main factors: (i) the input data,
and (ii) the SPVM electrical model. On the one hand, the input data may be obtained
from an IV curve, or from the SPVMs datasheet. The SPVMs datasheet is widely used
as input parameter as all PV modules manufacturers provide this information. However,
the datasheet data are limited to three PV operational points, i.e., short circuit, open circuit,
maximum power point of both the standard test condition STC and normalized operating
cell temperature NOCT. On the other hand, the electrical model is selected according to the
required precision. Explicit and iterative methods usually use approximations to obtain
the model parameters, while metaheuristic methods are based on stochastics and do not
require any approximations to determine the output parameters of the selected model.

Heuristics refers to solving a problem subject to a series of restrictions. These restric-
tions allow determining an approximation of the solution with a higher computational
speed when compared to conventional algorithms that calculate the exact solution. An im-
provement to this type of algorithm is the metaheuristic algorithm, based on a focused
search of the solution. An example of this method is indicated by Elazab et al. [13], who
present a Whale Optimization Algorithm WOA based on the whale hunting method, con-
verging inwards as a spiral towards the approximate solution. Another metaheuristic
algorithm is proposed by Ebrahimi et al. [14], which uses a Flexible Particle Swarm Opti-
mization Algorithm FPSOA inspired by the social behavior of birds. The behavior of the
FPSOA is based on the experience of each particle and of its neighbors. Another type of
metaheuristic algorithm is based on the evolution of a given population. The metaheuristic
algorithms are widely used in the industry to solve problems such as wire electric discharge
machining [15], signal and image processing [16], economic dispatch [17], and spatial forest
planning [18]; therefore, due to the versatility of this type of algorithm, the metaheuristic
approach is selected to model the SPVM electrical behavior.

Ishaque et al. [19] developed a method to obtain a five parameter model based
on the metaheuristic differential evolution algorithm DEA using only the information
provided by a SPVMs datasheet. On the other hand, Biswas et al. [20] slightly modifies
the standard DEA, obtaining equivalent five and seven parameter models by varying
the objective function and introducing a dynamic population on a step-by-step basis.
The objective function indicated by Biswas et al., provides a range of potential solutions.
Such diverse solutions can be explained by the fact that the study only considers three
operational points located on curve IV, leaving aside the behavior of the PV curve. As both
studies are supported by the same base algorithm, they require that the bounds upon
which the solution resides are defined. Ishaque et al., relies on the data provided by
Villalva et al. [21], while Biswas et al., does not make any reference to the bounds used
to determine these parameters. The information and methodology provided by these
studies is limited, and the criteria for the selected limits used in the algorithms indicated
by the state-of-the-art is studied by some authors like Toledo et al. [22] using an analytical
approach. However, the boundaries calculus method addressed by Toledo et al., presents
inconsistencies for certain SPVMs since it is not capable of providing a finite value for the
maximum limit of the shunt resistance.

On the other hand, Abido et al. [23] uses the DEA as a base to determine a five
parameter model that incorporates a correction on the thermal conversion of two of the
five parameters, providing more precision to the model when changing from one operating
condition to another. However, there are no specific criteria regarding the selection of
the boundaries of the mentioned parameters. This is relevant as the quality of the so-
lution is associated with the input boundaries provided to the algorithm. In addition,
De Soto et al. [9] indicates that the value of these parameters is modified according to
the operating condition at which they are calculated, and the PV specimen under study.
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This suggests a problem that must be solved. Several authors such as Villalva et al., and
Yan et al. [24] experimentally determined bounds over which it is possible to find a so-
lution for the PV equations; however, as mentioned above, these parameters are subject
to specific operating conditions. Considering this background, as the DEA has shown
adequate results and a high adaptability to solve different problems, this work proposes
and autonomous DEA capable of determining electrical models of future solar photovoltaic
technologies, such as bifacial or perovskite solar cells. Furthermore, this methodology can
be used to estimate the electrical model of a solar power plant.

This study presents a methodology that enables the calculation of the SDM parame-
ter boundaries. The SDM is calculated by means of the differential evolution algorithm.
However, in order to improve the base DEA algorithm, an adaptive step-by-step limit
module is incorporated. The calculation method improves the performance of the solution
achieved by other authors, allowing the calculation of the SDM when no reference parame-
ter boundaries are available. Two different operational conditions (for example, standard
test conditions and normal operating cell temperature) are required as input data in order
to calculate the SDM which minimizes the cardinal points error. These data are usually
provided by the manufacturer on the SPVM datasheet.

The proposed parameter boundaries calculation method is studied in detail using the
KC200GT SPVM. The performance of the proposed methodology is validated estimating the
cardinal points for two and comparing with (i) results of with well-established algorithms
for the Kyocera KC200GT SPVM, and (ii) 100 SPVM datasheets of different technologies
and rated powers. The remaining publication is divided as follows: Section 2 indicates
the SPVM electric model, Section 3 indicates the boundaries calculation method, Section 4
explains the differential evolution algorithm used, Section 5 presents the results of the
simulations and the validation of the model and, finally, Section 6 presents the conclusions.

2. Photovoltaic Model

Given the constructive nature of SPVMs, the electrical model of the SPVM is charac-
terized by having at least one ideal diode; therefore, its behavior is explained based on
semiconductor theory [25–27].

2.1. Ideal Model

The ideal SPVM model relates the behavior of the PV current Ipv and PV voltage Vpv as
a function of three parameters: the photovoltaic current source Iph, the saturation current of
the diode Io, and the diode’s ideality factor A. Equations (1)–(5) indicate the relationships
between the different variables present in the ideal PV model, indicated in Figure 1, where
VD and ID represent the voltage and current of the diode. The thermal voltage of the diode
Vt is a function of Boltzmann’s constant kB, the elemental charge of the electron q and the
PV cell temperature T. However, SPVMs often have Ns PV cells connected in series, so it is
convenient to introduce the equivalent thermal voltage parameter, a, that concentrates the
information of the thermal voltage, the number of cells connected in series, and the diode
ideality factor. Usually, the temperature is measured in K and the Boltzmann constant is
expressed in eV.

VD = Vpv (1)

Vt =
kB · T

q
(2)

a = A · Ns ·Vt (3)

ID = Io · {e
VD

a − 1} (4)

Iph = ID + Ipv (5)

The ideal model parameters can be determined according to the operation points
indicated by the manufacturer of the SPVM, and these are called PV cardinal points: short-
circuit current Isc, open circuit voltage Voc, maximum power current Impp, maximum power
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voltage Vmpp, and maximum power point Pmpp. These values are usually indicated for an
operational condition called standard test condition STC, in which the irradiance level
Sre f and temperature Tre f are 1000 W/m2 and 298.15 K. By replacing these parameters
on Equations (1)–(5), the three parameters can be calculated by solving the system of
non-linear equations indicated in Equations (6)–(8).

Iph = Isc (6)

Iph = Io · {e
Voc

a − 1} (7)

Iph = Io · {e
Vmpp

a − 1}+ Impp (8)

VD
Iph

ID

Ipv

Vpv

Figure 1. Ideal solar PV model.

2.2. Single-Diode Model

The single-diode model described by five parameters (SDM) is commonly used as
it is able to express, with precision, the behavior of the SPVM under different operating
conditions. This model is defined as a function of five parameters: the photovoltaic current
source Iph, the diode saturation current Io, the equivalent thermal voltage a, the series
resistance Rs, and the shunt resistance Rsh. The equations that govern the behavior of the
SPVM are given in Equations (2)–(4) and (9)–(11), where the shunt current Ish is determined
as a function of VD and Rsh, while the diode current ID remains as defined in Equation (4).
The electrical model is presented in Figure 2.

VD = Vpv + Rs · Ipv (9)

Ish =
VD
Rsh

(10)

Iph = ID + Ish + Ipv (11)

Equations (12)–(14) indicate the behavior of the five parameter model at the PV
cardinal points. Unlike the ideal case, it is not possible to solve the equation system,
as the number of variables exceeds the available equations. However, it is possible to
add a condition which indicates the maximum PV power point, mathematically described
in Equation (15), where the PV power function is dependent on the PV voltage. This
additional condition requires knowledge of the derivative of Ipv with respect to Vpv, given
in Equation (16).

Iph = Io · {e
Rs ·Isc

a − 1}+ Rs

Rsh
· Isc + Isc (12)

Iph = Io · {e
Voc

a − 1}+ 1
Rsh
·Voc (13)

Iph = Io · {e
Vmpp+Rs ·Impp

a − 1}+
Vmpp + Rs · Impp

Rsh
+ Impp (14)

∂Ppv

∂Vpv

∣∣∣∣
mpp

= Impp + Vmpp ·
∂Ipv

∂Vpv

∣∣∣∣
mpp

= 0 (15)
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∂Ipv

∂Vpv

∣∣∣∣
mpp

= − Rsh · Io · e
Vmpp+Rs ·Impp

a + a

Rs · {Rsh · Io · e
Vmpp+Rs ·Impp

a + a}+ Rsh · a
(16)

The fifth equation required to solve the system is introduced by several authors as an
approximation for a given operational point, e.g., De Soto et al., indicates that it is possible
to estimate the temperature coefficient for open circuit βVoc conditions. On the other hand,
Jadli et al. [28] assumes that the fifth condition is the slope of the PV current, determined
according to the PV voltage in the short-circuit condition.

Although the system of equations indicated in Equations (12)–(15) is not sufficient
to determine the five parameters of the model, it is enough to determine the cardinal
points. The solution of this system of equations is obtained through multiple optimization
techniques. However, in this study, the explicit expressions provided by Lambert’s W
function W(z) are used [29].

VD
Iph

ID Ipv

Vpv

Ish

Vs

Rsh

Rs

Figure 2. Single-diode PV model.

In order to determine the behavior of the IV curve under different operating conditions,
it is necessary to transform the SDM from the reference condition to the desired condition.
Such a method is exposed by De Soto et al., in Equations (17)–(21), where the sub index ref
and op indicates the reference and the desired operational condition, respectively. αIsc,re f
indicates the short-circuit current temperature coefficient at a known reference irradiance
Sre f . The band gap energy Eg is calculated using the Varshni equation applied to silicon
materials, indicated in Equation (22) [30,31]. The parameters used by the Varshni equation
are extracted from [32].

Iph,op =
Sop

Sre f
·
[

Iph,re f + αIsc,re f · (Tc,op − Tc,re f )
]

(17)

Io,op = Io,re f ·
[

Tc,op

Tc,re f

]3

· exp

[
1

kB

(
Eg,re f

Tc,re f
−

Eg,op

Tc,op

)]
(18)

aop =
Tc,op

Tc,re f
· are f (19)

Rsh,op =
Sre f

Sop
· Rsh,re f (20)

Rs,op = Rs,re f (21)

Eg = 1.166− 4.73 · 10−4 · T2
c

636 + Tc
(22)

3. Parameter Boundaries Definition

This section proposes a methodology for the calculation of the boundaries on which the
SDM parameters reside. However, it is only able to determine the boundaries for the following
variables: (i) the equivalent thermal voltage, (ii) the series resistance, and (iii) the shunt resis-
tance, since the remain parameters can be calculated according to Equations (23) and (24) [20].
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Io =

Isc +
Rs ·Isc

Rsh− Voc
Rsh

e
Voc

a − e
Rs ·Isc

a
(23)

Iph = Io · (e
Voc

a − 1) +
Voc

Rsh
(24)

3.1. Equivalent Thermal Voltage Boundaries

The equivalent thermal voltage is directly correlated to the ideality factor of the diode
in the electrical model. The impact of a on the PV power curve is displayed in Figure 3, and
the shape of the curve is not significantly altered with respect to the ideal curve. However,
as the value of a increases, the power and voltage of the PV curve increase in a near direct
proportional manner with respect to a.

0 5 10 15 20 25 30 35
Photovoltaic Voltage V

0

50

100

150

200

250

Ph
ot

ov
ol

ta
ic 

Po
we

r W

a = 1.4
a = 1.9
a = 2.8
aideal = 2.5

Figure 3. Behavior of the output power as a function of the voltage for different values of a using the
ideal photovoltaic model.

The range of the equivalent thermal voltage is determined by the values of the diodes
ideality factor A, which usually ranges from 1 to 2. Therefore, the limits of a can be
calculated by applying Equations (25) and (26). It should be noted that the calculation of a
requires knowledge of the number of cells connected in series Ns and the cell temperature
Tc for which the cardinal points were obtained.

amin = 1 · Ns ·Vt = 1 · Ns ·
kB · Tc

q
(25)

amax = 2 · Ns ·Vt = 2 · Ns ·
kB · Tc

q
(26)

3.2. Series Resistance Boundaries

The series resistance indicates the resistance of the cells material and resistive contacts
that oppose the current flow [25]. The value of the series resistance has a significant impact
on the output power between the open circuit voltage and maximum power point. As the
magnitude of Rs increases, the voltage produced by the SPVM tends to zero. Therefore,
the available power that the SPVM can deliver to an external load is limited, reaching zero
when Rs tends to infinite. This translates into a degradation of the PV curve. The effect of
the variation of Rs on the PV curve is indicated in Figure 4, where Rs varies between 0.5
and 50 Ω.

In order to calculate boundaries for Rs, geometric limitations are incorporated as
photovoltaic power restrictions. The upper limit of Rs is calculated by using the slope of
the line that connects the maximum power point (Vmpp, Impp) and the open circuit voltage
Voc, as indicated in Equation (27). On the other hand, the minimum value of Rs corresponds
to zero; however, it is useful to set an infimum value for series resistance Rs,in f as different
from zero. For this purpose, a detailed study on the variation of the maximum power
point in function of the series resistance Φs(Rs) is performed; nevertheless, the variation of
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the maximum power point is presented as the deviation of the ideal case as indicated in
Equation (28). Here, the maximum power is calculated using the ideal photovoltaic model
considering a series resistance values different from zero.

Figure 5 indicates the behavior of Φs(Rs) for a test SPVM. In this figure, a minimum
value of Φs(Rs) (referred to as ϕ) is defined in the [0, Φs(Rs,max)] range. By setting ϕ,
it is possible to calculate Rs,in f by means of Equation (29). This equation can be solved
using an optimization tool, e.g., the midpoint method, as the the Rs,in f bounds are known
(defined between 0 and Rs,max). For the test module indicated in Figure 5, the maximum
bound calculated is 867.20 mΩ, delivering a Φs(Rs,max) value of 23.68%. Assuming that
ϕ � Φs(Rs,max), according to Equation (30), a power margin ∆P ≈ Φs(Rs,max) = 23.68%
is achieved.

Rs,max =
Voc −Vmpp

Impp
(27)

Φs(Rs) = 100×
Pmax,ideal − Pmax(Rs)

Pmax,ideal
% (28)

Impp(Rs)×Vmpp(Rs)− Pmax,ideal ×
(

1− ϕ

100

)
= 0 (29)

∆P =
100

Pmax,ideal
× (Pmax,Rs,in f − Pmax,Rs,max ) = Φs(Rs,max)− ϕ (30)

0 5 10 15 20 25 30 35
Photovoltaic voltage V
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r W

Rs, ideal = 0 
Rs = 5 10 1 
Rs = 5 100 
Rs = 5 101 

Figure 4. Behavior of the power as a function of the voltage as Rs is adjusted on the SDM considering
Rsh → ∞ Ω.

10 3 10 2 10 1 100 101 102

Series resistance Rs 

10 2

10 1

100

101

102

s(R
s) 

%

Maximum bound (Rs, max)
Minimum bound ( )

Figure 5. Behavior of Φs(Rs) for a test SPVM. The minimum and maximum boundaries are indicated.

3.3. Shunt Resistance Boundaries

The shunt resistance indicates the leakage of current through the cell around the edges
of the device and between contacts of different polarities [25]. The shunt resistance Rsh
significantly impacts the PV curve as its value tends to 0 Ω, whereas for high values, the
impact on the curve is minimal. This is because small values of Rsh tend to short-circuit the
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current source of the five parameter model and, thus, the power is not able to leave the
SPVM. The situation described is presented in Figure 6, where it can be appreciated that
values in the order of 1 Ω degrade the maximum power of the PV curves by more than
100 W (with respect to the ideal PV model).

0 5 10 15 20 25 30 35
Photovoltaic voltage V

0

50

100

150

200

250
Ph

ot
ov

ol
ta

ic 
po

we
r W

Rsh, ideal   
Rsh = 5 101 
Rsh = 5 100 
Rsh = 5 10 1 

Figure 6. Behavior of the power as a function of the voltage for different values of Rsh on the SDM,
considering Rs = 0 Ω.

A similar calculation method to the one presented for series resistance can be applied
to determine the shunt resistance. Since a minimum value of the shunt resistance Rsh,min
is known, a finite maximum value needs to be defined. Then, a supremum value for the
shunt resistance Rsh,sup is calculated. In this case, Equation (31) presents the minimum
value of Rsh calculated using the short-circuit current Isc and the maximum power point
(Impp, Vmpp). To calculate Rsh,sup, the variation of the maximum power point Φsh(Rsh) is
studied as indicated in Equation (32). Here, the maximum power is calculated using the
ideal photovoltaic model, considering a shunt resistance different from zero.

Figure 7 indicates the behavior of Φsh(Rsh) for a test SPVM. In a similar manner to the
Rs scenario, ϕ indicates the minimum value expected for Φsh(Rsh); however, a supremum
value Rsh,sup is achieved. Rsh,sup can be calculated solving the Equation (33). For the test
SPVM indicated in Figure 7, the value of the minimum shunt resistance is equal to 43.83 Ω,
delivering a Φsh(Rsh,min) value of 7.5%. Assuming that ϕ � Φsh(Rsh,min), according to
Equation (34), a power margin ∆sh ≈ Φsh(Rsh,min) = 7.5% is achieved.

Rsh,max =
Vmpp

Isc − Impp
(31)

Φsh(Rsh) = 100×
Pmax,ideal − Pmax(Rsh)

Pmax,ideal
% (32)

Impp(Rsh)×Vmpp(Rsh)− Pmax,ideal ×
(

1− ϕ

100

)
= 0 (33)

∆P =
100

Pmax,ideal
× (Pmax,Rsh,sup − Pmax,Rsh,min) = Φs(Rsh,sup)− ϕ (34)
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100 101 102 103 104

Shunt resistance Rsh 

10 2
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s(R
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Minimum bound (Rsh, min)
Maximum bound ( )

Figure 7. Behavior of Φsh(Rsh) for a test SPVM. It is indicated the minimum and
maximum boundaries.

4. Differential Evolution Algorithm

The differential evolution algorithm DEA proposed by Price et al. [33], uses a solution-
seeking mechanism with a mutation operation over a user-defined boundary space in
a specific number of generations G. Each generation created by the algorithm has a
population PG of fixed magnitude NP. Here, every individual item of the population χp,
is composed by D elements xd, as indicated in Equations (35) and (36). The generations
evolve until the Gmax iterations are reached.

In order to calculate the single-diode photovoltaic model, the following variables
are used: equivalent thermal voltage, series resistance, and shunt resistance; therefore,
D equals 3. The photovoltaic current and saturation current of the diode are calculated
according to Equations (23) and (24).

PG =
[
χ1, . . . , χp, . . . , χNP

]
G = 1, 2, . . . , Gmax (35)

χp = [x1, . . . , xd, . . . , xD] p = 1, 2, . . . , NP (36)

4.1. Initialization

The algorithm begins with a population of magnitude NP, where NP ∈ N. Each
element of the population has a known dimension D and is constructed within lower and
upper boundaries, χL and χH . It is important to emphasize that the lower and upper
boundaries have D dimension, as well as each element of the generated population. This is
indicated in Equations (37) and (38). Once the boundaries are defined, a random vector
χrng of dimension D is generated in the [0,1] domain, in order to determine the elements of
the initial population, according to Equation (39). This scenario is illustrated in Figure 8a,
where seven 2D random elements are generated within the boundaries, and represented
by a dotted line.

χH = [x1,H , . . . , xd,H , . . . , xD,H ] (37)

χL = [x1,L, . . . , xd,L, . . . , xD,L] (38)

χp = χL + χrng · (χH − χL) (39)
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z1

z2

x1,L x1,H

x2,H

x2,L

(a) Initialization

z1

z2

x1,L x1,H

x2,H

x2,L

(b) Mutation process

Figure 8. Representation of the mutation process and first generation of the solution for the DEA.
Figure adapted from [19].

4.2. Mutation

The mutation process creates a mutant vector VG that is used to modify PG. This vector
is defined as follows: three different elements belonging to PG are randomly selected: χr1,
χr2, and χr3. Then, VG is calculated subtracting the difference between vectors χr2 and χr3.
This difference is then weighted by a mutant factor F and added to vector χr1, as indicated
in Equation (40). Note that F corresponds to a single number that lies in the range of [0.1].
Considering that VG is calculated from vectors of dimension D, it must also be composed
of D elements vG, as indicated by Equation (41). This calculus methodology is illustrated
in Figure 8b, where χr1, χr2, and χr3, are represented by vectors (9), (2), and (4). In this
example, the mutant vector begins in the origin of the reference system and ends in the
red dot.

VG = χr1 + F · (χr2 − χr3) (40)

VG = [v1, . . . , vd, . . . , vD] G = 1, 2, . . . , Gmax (41)

4.3. Crossover

Using the information provided by the mutant vector, it is possible to construct a
new population ρG. The elements of ρG have the possibility of replacing elements of
the current population, in order to improve the overall performance. The population
of ρG is referred to as trial vectors ψp, and is composed by D elements yd, as indicated
in Equations (42) and (43). yd elements are chosen according to the binomial crossover
strategy, which depends on three factors: (i) the crossover rate CR, (ii) the crossover
random number CRd,rng, and (iii) a random value drng, as indicated in Equation (44). Here,
CR remains the same for all generations, and usually is defined as a single number in the
[0, 1] domain. On the other hand, each yd element has its own CRd,rng number in the [0, 1]
domain. The third factor ensures that at least one chromosome of the mutant vector lives
on the new population, since drng is a natural number randomly selected from the [1, D]
domain. However, it is possible that some of the yd elements breach the bounds set by
xd,L and xd,H ; therefore, these values must be replaced. This is expressed in Equation (45),
and referred to as the penalty function. Here, a new random number yd,rng is generated to
calculate the value of the new element yd.

ρG =
[
ψ1, . . . , ψp, . . . , ψNP

]
G = 1, 2, . . . , Gmax (42)

ψp = [y1, . . . , yd, . . . , yD] p = 1, 2, . . . , NP (43)
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yd =

{
vd, if

(
CRd,rng ≤ CR or d = drng

)
xd, other case

(44)

yd = xd,L + yd,rng · (xd,H − xd,L) if (yd < xd,L) or (yd > xd,H) (45)

4.4. Evaluation and Selection

The screening process for new generations (G + 1) is based on comparing the value
of the objective function J(χp) between G and (G + 1), maintaining the solution that
minimizes the J(χp) value. Ishaque et al., suggests replacing the χp element by the new
ψp element as long as this new element presents a better value for the objective function,
i.e., the new elements will always provide a lower or at most equal value of J(χp). Unlike
the methodology proposed in [19], this paper adopts the method of replacing the element
that produces the largest J(χp) value of the entire population, as indicated in Equation (46).
It can also be seen that the solution provided by the proposed algorithm continuously
improves or, in the worst case, remains the same.

J(χp) is calculated from the mean value of two errors: (i) the cardinal points from the
first reference condition ξ1,k, and (ii) the cardinal points of the second reference condition
ξ2,k, as indicated in Equation (47). Vectors ξp,k(χp) and ξ ′p,k(χp) indicate the calculated
cardinal points of the first and second reference conditions. It should be noted that the
cardinal points vectors have 5 k-components. The same calculation method is valid to
determine the ψp element error.

χp =

{
ψp if J

(
ψp
)
> min(J

(
χp
)
)

χp other case
(46)

J(χp)% = 100× 1
2
×


√√√√1

5

5

∑
k=1

∣∣∣∣∣ ξ1,k − ξp,k(χp)

ξ1,k

∣∣∣∣∣
2

+

√√√√1
5

5

∑
k=1

∣∣∣∣∣ ξ2,k − ξ ′p,k(χp)

ξ2,k

∣∣∣∣∣
2
 (47)

4.5. Adaptive Boundaries

When compared to the conventional algorithm, the proposed differential evolution
algorithm considers the inclusion of two additional sections. These sections are (A) auto-
matic initial definition of boundaries based on the information of the cardinal points and
(B) adaptive optimization of the parameters based on statistical information.

In order to find the best solution, the DEA is executed Kmax times, generating a vector
of dimension Kmax. It is important to note that the values of the population K depend on
Gmax, NP, D, F, CR, χL, and χH . Once the population K has been obtained, a, Rs, and
Rsh upper and lower bounds must be rewritten according to the statistical maximum and
minimum of the elements that comprise their populations xp. Equations (48) and (49)
indicate the mathematical calculation of the above, where qn,xp represents the n−th quartile
of the xp elements. It is important to consider that the statistical maximum and minimum
values cannot be above or below the smallest element in the population. To solve this
problem, the results should be verified according to Equations (51) and (50).

This procedure must then be repeated B times until the solution reaches the required
tolerance Jtol , set by a user-defined threshold, or if the algorithm meets the maximum
number of iterations Bmax. The performance of the solution is determined as indicated in
Equation (47). Figure 9 indicates the proposed DEA flowchart.

xd,H = q2,xp + 1.5 · (q3,xp − q1,xp) (48)

xd,L = q2,xp − 1.5 · (q3,xp − q1,xp) (49)

xd,H =

{
max xp if xd,H > max xp
xd,H other case

(50)



Energies 2021, 14, 3925 12 of 24

xd,L =

{
min xp if xd,L < min xp
xd,L other case

(51)

Start

Dene

Calculate

• Initial boundaries according to 
   equations (25), (26), (27), (29), (31), and (33)  

G = 1

G>Gmax

End

G
 =

 G
+

1

Yes

No

• Classic differential evolution parameters: 
   G , NP, F, D, and CRmax

• B , K  iteration limits, J , and φmax max tol

• SPVM cardinal points, cell temperature 
   and cells connected in series

Calculate initial generation Equation (39)

K = 1

B = 1

Display optimum SPVM parameters

Yes

K>Kmax

Yes

No

Generate mutant vector Equation (40)

Generate trial vector Equation (44)

Apply penalty function Equation (45)

Evaluation and selection Equation (46)

K
 =

 K
+

1

B
 =

 B
+

1

• J(χ )% according to Equation (47)p

• χ according to Equations (48) and (50)L 

• χ according to Equations (49) and (51)H 

B>B |J(χ )<Jmax p tol

Calculate

No

Figure 9. Flowchart for the modified differential evolution algorithm.

5. Results and Analysis

This section is divided as follows (i) definition of the algorithm parameters, and
(ii) model validation and discussion under different scenarios.

5.1. Algorithm Parameters Definition

The behavior of the proposed algorithm is simulated from two different perspectives:
(i) impact on the solution when the adaptive evolution limit module is included, and
(ii) examination of the algorithm performance according to different values of ϕ. The differ-
ential algorithm parameters used are NP = 30, F = 0.4, and CR = 0.4, adopted from [19].
The maximum values of the iterations B, K, and G are assumed equal to Bmax = 15,
Kmax = 9, and Gmax = 6. Jtol is set to zero and the KC200GT SPVM is used to execute these
experiments. Note that since the optimized variables are a, Rs, and Rsh, D equals three.
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5.1.1. Adaptive Evolution of Limits

The performance of the adaptive limit module is studied by comparing the DEA J(χp)
% value on three trials. For this purpose, the SDM is used to execute the optimization,
assuming ϕ equal to 1%. The initial limits for the proposed ϕ value are indicated in Table 1.
It can be seen from Figure 10 that the error of the classical DEA algorithm decreases
stochastically as improved solutions are found within the initial boundaries specified.
On the other hand, the solution found by the proposed DEA algorithm improves in each B
iteration, until the fifth iteration. This is explained by the fact that in the fifth iteration, the
values of the upper and lower limits are similar; therefore, the algorithm has converged
to a final value. Table 2 indicates the best SDM solution achieved for both the classic and
proposed DEA. It can be seen that the error of the solution found by the proposed algorithm
is approximately 2.58% better than the result obtained by the classic method. However,
this does not mean that the classic algorithm cannot reach the same solution, as this value
is contained within the search range of the classic DEA.

Table 1. Initial parameter limits for the KC200GT SPVM using ϕ = 1%.

Bounds a V Rs mΩ Rsh Ω

XL,B=1 1.3874 0.8673 43.833
XH,B=1 2.7748 867.20 341.42

Table 2. Results for the different tests conducted in the experiment.

Parameter Classic Proposed

Iph A 8.2235 8.2236
Io nA 1.5173 1.6605
a V 1.4693 1.4752

Rs mΩ 315.58 313.11
Rsh Ω 192.57 188.63

J(χp) % 0.3652 0.3558

The evolution of the boundaries of a, Rs, and Rsh can be seen in Figure 11. This figure
indicates that the final value of the optimized variables is very similar for each trial. These
results suggest that the proposed DEA is capable of delivering a single high performance
solution in few iterations every time it is executed. Therefore, the adaptive boundary
module will be considered in every B iteration. Additionally, the algorithm is run three
times selecting the best solution.
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Figure 10. J(χp) % progression for the KC200GT SPVM.
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Figure 11. Behavior of the lower and upper boundaries parameters of the SDM. The KC200GT SPVM
is used.

5.1.2. Selection of ϕ

This test allows to study the performance of the proposed DEA for ϕ values con-
tained in the

[
10−3%, 20%

]
range. It is important to note that ϕ only affects Rs,in f and

Rsh,sup; therefore, the remaining variables involved in the SDM are not considered in
this sub-section.

Figure 12 shows the evolution of the objective function, where each point in the figure
represents the mean value of 100 executions of the proposed DEA. It can be seen from
this figure that as ϕ increases from 10−3%, the value of J(χp) decreases until it reaches
a minimum value which resides in the range of [1%, 2%]. From this minimum value,
as ϕ continues to increase, the objective function starts to increase. This performance
degradation is caused by the fact that the value of the upper and lower limits of the
series and shunt resistances have similar values; therefore, the DEA can only modify the
equivalent thermal voltage in order to find the optimal solution.
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p)
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Figure 12. Behavior of the objective function for different values of ϕ. The KC200GT SPVM is used.
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Figure 13a,b indicate the evolution of the optimal series and shunt resistances as well
as their boundaries. In the same manner to the results presented in Figure 12, the algorithm
is executed 100 times, obtaining the mean value of the DEA. It can be seen that for a given
ϕ critical value, the optimal resistances equals its upper (or lower) boundary. This fact
suggest that ϕ must be lower than the critical value. For the KC200GT SPVM, a critical
value near 2% is achieved. This work assumes an appropriate ϕ value of 1%, as a wide
range of solutions can be obtained from this value.
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(a) Series resistance
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Figure 13. Behavior of the SDM resistances for different values of ϕ. The KC200GT SPVM is used.

5.2. Model Validation

This sub-section is divided as follows: (i) comparison of the electrical parameters
obtained for the Kyocera KC200GT SPVM, and (ii) comparison of the cardinal points
estimated using the database added in Appendix A. The cardinal points considered as
input data correspond to (i) STC (reference condition), and (ii) NOCT (operating condition),
both available in the datasheet of each module.

5.2.1. Kyocera KC200GT Comparison

The performance of the SDM is compared to the information presented in the state-of-
the-art. In order to calculate the boundaries, a value of ϕ equal to 1% is used according to
the results indicated in Section 5.1.2. In addition, the DEA is executed three times, selecting
the best solution. The datasheet information is displayed in Table 3.

Figure 14 indicates the evolution of the differential evolution algorithms error. It
can be observed that the final solutions displays an error under 0.4%. To complement
this result, Table 3 indicates different SDMs that describe the behavior of the KC200GT
SPVM as well as the datasheet information. These parameters are obtained from the
state-of-the-art and represent several methods for determining the SDM model of the
SPVM under study, i.e., E.S. explicit solution, I.S. iterative solution, and H.S. heuristic
solution. Within the heuristic approaches, three methods have been presented (i) whale
optimization algorithm WOA, (ii) flexible particle swarm algorithm FPSOA, and (iii)
differential evolution algorithm DEA. The last row summarizes the performance values of
the different groups of parameters assessed, as indicated in Equation (47). Here, the three
best-performing SDMs are highlighted in bold-type.
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Table 3. Error of the calculated parameters for the Kyocera KC200GT SPVM. The table displays the cardinal points at the STC and NOCT conditions.

Datasheet Acarino et al. [34] N. Eddine et al. [35] Jadli et al. [28] Elazab et al. [13] Ebrahimi et al. [14] Biswas et al. [20] Proposed Method

Solution type - Explicit Explicit Iterative Heuristic Heuristic Heuristic Heuristic

Iph,STC A - 8.2100 8.2233 8.2119 8.2800 8.2186 8.2197 8.2236
Io,STC nA - 2.1546 2.1524 196.06 85.580 1.4360 68.000 1.6784

aSTC V - 1.4921 1.4926 1.87656 1.7897 1.4641 1.7702 1.4759
Rs,STC mΩ - 284.40 308.00 210.89 281.5 240.94 191.10 313.06
Rsh,STC Ω - 157.54 193.05 895.80 424.22 130.28 161.74 189.38

Isc,STC A 8.21 8.1952 8.2102 8.2100 8.2745 8.2034 8.2100 8.2100
Voc,STC V 32.9 32.879 32.901 32.926 32.892 32.849 32.900 32.900

Impp,STC A 7.61 7.5728 7.6087 7.6058 7.6436 7.5662 7.5279 7.6103
Vmpp,STC V 26.3 26.449 26.305 26.340 25.968 26.762 26.613 26.299
Pmpp,STC W 200.14 200.29 200.15 200.34 198.49 202.49 200.34 200.14

Isc,NOCT A 6.62 6.6144 6.6262 6.6242 6.6764 6.6211 6.6255 6.6261
Voc,NOCT V 29.9 29.436 29.457 27.970 28.276 29.516 28.366 29.557

Impp,NOCT A 6.13 6.0569 6.0819 6.0169 6.0614 6.0584 5.9899 6.0857
Vmpp,NOCT V 23.2 23.404 23.295 21.828 21.869 23.753 22.442 23.390
Pmpp,NOCT W 142.22 141.75 141.68 131.34 132.56 143.90 134.42 142.34

J(χp) % - 0.6501 0.3815 2.6112 2.6796 1.2281 2.2014 0.3563
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Figure 14. Proposed algorithm performance for the SDM using the KC200GT SPVM.

According to Table 3, the method proposed by N. Eddine et al. has the best perfor-
mance, with a J(χp) value of 0.3815%. In contrast, the worst solution is indicated by [13],
with a J(χp) value of 2.6796%. The proposed method reaches a J(χp) value equal to
0.3563%, representing an improved solution when compared with the results indicated
in the state-of-the-art. This set of parameters allow predicting the electrical behavior of
the SPVM for both STC and NOCT conditions with high precision. In addition, since
the proposed algorithm defines the boundaries of the variables automatically, it can be
executed by any user without prior knowledge being required. Figure 15a,b indicate IV
curves and PV curves for the three best SDMs solutions highlighted in Table 3. It can be
seen that there are no appreciable differences between the models presented; however,
the proposed DEA has the advantage of being adaptable and is capable of redetermining
other electrical models, such as the double-diode model.
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Figure 15. IV and PV curves traced for the highest-performance single-diode models shown in
Table 3. The performance for the standard test condition STC and the normalized operating cell
temperature NOCT are addressed.

5.2.2. Database Comparison

In order to study the applicability of the proposed method on different solar module
technologies, a database composed of 100 SPVM datasheets is used, and included in
Appendix A). The SPVMs database includes mono-Si, Si poly-Si, and thin-film module
technologies. The rated power ranges from 36 to 455 W.

Figure 16 indicates the behavior of the Rs,in f , and Rsh,sup parameters using a ϕ value
equal to 1%. It can be seen that Rsh,sup remains in the range of 102 Ω to 103 Ω for the
monocrystalline and polycrystalline SPVMs. In a similar way, the values of Rs,in f remain in
the range of 10−2 Ω and 10−1 Ω. However, when calculating the optimum SDM for the thin-
film SPVMs, the value of the boundaries increases approximately by an order of magnitude.
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This is explained by the fact that the shape of the IV curve of thin-film technologies is
significantly different when compared to monocrystalline and polycristalline technologies.

On the other hand, Figure 17 resumes the performance of the different collected
SPVMs. The configuration of the optimization algorithm remains the same as indicated in
the previous section. It can be seen that the error remains under 3% for all SPVMs tested.
This result indicates that the use of a ϕ value equal to 1% is capable of achieving a high
quality response, even for the thin-film SPVMs. The mean value of J(χp) obtained from
the database is 0.77%.
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Figure 16. Behavior of Rs,in f and Rsh,sup for the different SPVM included in the database.
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Figure 17. Objective function value J(χp)% for the selected modules.

6. Conclusions

This work presents a methodology able to determine the optimal boundaries of the
parameters, which describe the single-diode photovoltaic model SDM. The boundaries
are calculated by evaluating the deviation of the power at the maximum power point for
different values of series and shunt resistors, defined by the ϕ parameter. This study uses
the differential evolution algorithm DEA with step-by-step boundary definition module,
improving the performance of the classic DEA algorithm. The proposed calculation method
uses cardinal points provided from two different operating conditions, e.g., standard test
conditions, and normal operating cell temperature, data usually included in the technical
datasheet. The methodology was tested using two separate tests: (i) by comparing the
electrical parameters obtained with the model for the Kyocera KC200GT SPVM with the
results of well-established algorithms, and (ii) by comparing the algorithms predictions
with 100 SPVM datasheets of different technologies and rated powers.



Energies 2021, 14, 3925 19 of 24

A value of ϕ equal to 1% is established from the results of the KC200GT SPVM com-
parison. This study also demonstrates that the changes introduced in the optimization
algorithm reach a superior solution compared to the values achieved by traditional algo-
rithms presented in the state-of-the-art. The second section of the results indicates that
the methodology presented is capable of determining an optimal SDM for different solar
module technologies and rated powers, reaching a maximum error near 3%.

Future work will focus on the following points: (i) extension of the methodology
to support complex models, such as the double-diode model, and (ii) scalability of the
proposed algorithm applied to a group of PV panels. The first point considers a different
number of parameters to be optimized; therefore, the dimension D must be redefined in the
same manner as the initial definition of the boundaries. On the other hand, the second
point considers the application of the proposed algorithm for high accuracy estimation of
electrical power in PV plants.
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Appendix A

The following table present the STC and NOCT electrical parameters used in the results
section. In addition, the thermal coefficients of the short-circuit current αIsc , the open-circuit
voltage βVoc , and the maximum power γPmpp are given for STC.
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Table A1. STC and NOCT electrical parameters corresponding to the SPVM used in results section.

Number ID CellType Ncell Standard Test Condition STC Normal Operating Cell Temperature NOCT Thermal Coefficients at STC

Isc A VocV Impp A Vmpp V Pmpp W Isc A Voc V Impp A Vmpp V Pmpp W αIsc

mA/K
βVoc

V/K
γPmpp

%/K

1 RLM6144HP-430-M Mono 72 10.55 51 10.1 42.6 430 8.52 47.4 8.04 39.8 319.6 5.275 −0.148 −0.370
2 RLM6144HP-435-M Mono 72 10.6 51.2 10.17 42.8 435 8.56 47.6 8.09 40 323.4 5.300 −0.148 −0.370
3 RLM6144HP-445-M Mono 72 10.72 51.6 10.31 43.2 445 8.65 47.9 8.17 40.5 330.9 5.360 −0.150 −0.370
4 RLM6144HP-450-M Mono 72 10.82 51.8 10.5 44.4 450 8.7 48.1 8.21 40.8 336.1 5.410 −0.150 −0.370
5 RLM6144HP-455-M Mono 72 10.88 52 10.57 44.6 455 8.75 47.3 8.25 41.1 339.8 5.440 −0.151 −0.370
6 PMS50W Mono 36 3 22.5 2.78 18 50 2.45 21.2 2.2 16.8 37 1.500 −0.068 −0.400
7 AS-5M.185 Mono 72 5.45 44.8 5.1 36.3 185 4.41 41.2 4.13 33 136 3.052 −0.148 −0.430
8 AS-5M.190 Mono 72 5.54 45 5.21 36.5 190 4.49 41.4 4.22 33.2 140 3.102 −0.149 −0.430
9 AS-5M.195 Mono 72 5.63 45.1 5.32 36.7 195 4.56 41.5 4.32 33.4 144 3.153 −0.149 −0.430
10 AS-5M.200 Mono 72 5.72 45.2 5.43 36.9 200 4.63 41.6 4.38 33.6 147 3.203 −0.149 −0.430
11 AS-5M.205 Mono 72 5.81 45.4 5.53 37.1 205 4.71 41.8 4.47 33.8 151 3.254 −0.150 −0.430
12 AS-5M.210 Mono 72 5.9 45.6 5.64 37.3 210 4.78 42 4.58 33.9 155 3.304 −0.150 −0.430
13 ESP-250-6M Mono 60 8.73 37.44 8.16 30.62 250 7.08 34.36 6.56 27.73 182 6.111 −0.127 −0.460
14 ESP-255-6M Mono 60 8.79 37.89 8.23 30.97 255 7.13 34.77 6.62 28.14 186 6.153 −0.129 −0.460
15 ESP-260-6M Mono 60 8.83 38.25 8.28 31.34 260 7.16 35.18 6.67 28.57 196 6.181 −0.130 −0.460
16 ESP-265-6M Mono 60 8.87 38.61 8.3 31.84 265 7.2 35.59 6.71 28.92 194 6.209 −0.131 −0.460
17 ESP-270-6M Mono 60 8.93 38.76 8.39 32.23 270 7.24 35.79 6.73 29.31 198 6.251 −0.132 −0.460
18 ESP-275-6M Mono 60 8.99 39.03 8.47 32.57 275 7.3 36.09 6.79 29.63 202 6.293 −0.133 −0.460
19 BMO-280 Mono 60 9.35 39 8.8 31.8 280 7.57 35.6 7.13 29 207 4.500 −0.132 −0.350
20 BMO-285 Mono 60 9.5 39.1 8.85 32.2 285 7.69 35.7 7.17 29.4 211 4.500 −0.132 −0.350
21 BMO-290 Mono 60 9.6 39.3 8.95 32.4 290 7.77 35.9 7.25 29.6 214 4.500 −0.132 −0.350
22 RSM-100M Mono 36 5.87 21.95 5.59 17.9 100 4.74 20.29 4.35 17.08 74 2.935 −0.070 -
23 RLM6144HP-440-M Mono 72 10.66 51.4 10.24 43 440 8.61 47.8 8.14 40.2 327.2 5.330 −0.149 −0.370
24 HIT-N240SE10 Mono HIT 72 5.85 52.4 5.51 43.7 240 4.71 49.4 4.44 41.1 182 1.760 −0.131 −0.300
25 HIT-N235SE10 Mono HIT 72 5.84 51.8 5.48 43 235 4.7 48.9 4.41 40.5 179 1.750 −0.130 −0.300
26 HIT-N230SE10 Mono HIT 72 5.83 51.2 5.45 42.3 230 4.7 48.3 4.38 39.9 175 1.750 −0.128 −0.300
27 VBHN330SJ47 Mono HIT 96 6.07 69.7 5.7 58 330 4.91 66 4.54 56.5 253.5 3.340 −0.164 −0.258
28 VBHN325SJ47 Mono HIT 96 6.03 69.6 5.65 57.6 325 4.88 65.9 4.52 56.1 249.3 3.320 −0.164 −0.258
29 VBHN320SJ47 Mono HIT 96 5.98 69.4 5.59 57.3 320 4.84 65.7 4.47 55.7 245.2 3.290 −0.163 −0.258
30 REC340AA Mono HJT 60 10.09 43.1 9.34 36.4 340 8.15 40.6 7.54 34.3 259 4.036 −0.103 −0.260
31 REC345AA Mono HJT 60 10.12 43.4 9.39 36.7 345 8.18 40.9 7.59 34.6 263 4.048 −0.104 −0.260
32 REC350AA Mono HJT 60 10.16 43.8 9.45 37.1 350 8.21 41.3 7.63 34.9 266 4.064 −0.105 −0.260
33 REC355AA Mono HJT 60 10.19 44 9.5 37.4 355 8.23 41.4 7.67 35.2 270 4.076 −0.106 −0.260
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Table A1. Cont.

Number ID CellType Ncell Standard Test Condition STC Normal Operating Cell Temperature NOCT Thermal Coefficients at STC

Isc A VocV Impp A Vmpp V Pmpp W Isc A Voc V Impp A Vmpp V Pmpp W αIsc

mA/K
βVoc

V/K
γPmpp

%/K

34 STU-HJTB-W-310 Mono HJT 60 9.1 43.6 8.5 36.7 310 7.3 41.5 6.8 34.7 237.3 3.185 −0.103 −0.264
35 STU-HJTB-W-315 Mono HJT 60 9.2 44 8.5 37 315 7.4 41.8 6.9 35 241.2 3.220 −0.104 −0.264
36 STU-HJTB-W-320 Mono HJT 60 9.2 44.3 8.6 37.3 320 7.4 42.2 7 35.2 245 3.220 −0.105 −0.264
37 JHM3-72BH390 Mono PERC 72 10.25 48.5 9.7 40.2 390 8.28 45.9 7.8 37.5 292 6.150 −0.146 −0.380
38 JHM3-72BH395 Mono PERC 72 10.29 48.7 9.75 40.5 395 8.32 46.1 7.85 37.7 296 6.174 −0.146 −0.380
39 JHM3-72BH400 Mono PERC 72 10.33 48.9 9.8 40.8 400 8.35 46.3 7.89 38 300 6.198 −0.147 −0.380
40 JHM3-72BH405 Mono PERC 72 10.37 49.1 9.85 41.1 405 8.38 46.5 7.93 38.3 304 6.222 −0.147 −0.380
41 RSM132-6-360M Mono PERC 66 10.29 44 9.69 37.2 360 8.44 40.5 7.91 34.1 269.5 5.145 −0.128 −0.370
42 RSM132-6-365M Mono PERC 66 10.38 44.1 9.79 37.35 365 8.52 40.6 7.99 34.2 273.2 5.190 −0.128 −0.370
43 RSM132-6-370M Mono PERC 66 10.48 44.2 9.88 37.5 370 8.59 40.7 8.06 34.4 276.9 5.240 −0.128 −0.370
44 RSM132-6-375M Mono PERC 66 10.58 44.3 9.97 37.65 375 8.68 40.8 8.14 34.5 270.7 5.290 −0.128 −0.370
45 RSM132-6-380M Mono PERC 66 10.68 44.4 10.07 37.8 380 8.76 40.85 8.21 34.62 274.4 5.340 −0.129 −0.370
46 RSM132-6-385M Mono PERC 66 10.78 44.5 10.16 37.95 385 8.84 40.94 8.29 34.76 288.1 5.390 −0.129 −0.370
47 RSM40-8-390M Mono PERC 72 12.21 40.69 11.52 33.88 390 10.01 37.84 9.4 31.44 295.6 4.884 −0.102 −0.340
48 RSM40-8-395M Mono PERC 72 12.27 41 11.58 34.14 395 10.07 38.13 9.45 31.68 299.4 4.908 −0.103 −0.340
49 RSM40-8-400M Mono PERC 72 12.34 41.3 11.64 34.39 400 10.12 38.41 9.5 31.91 303.1 4.936 −0.103 −0.340
50 RSM40-8-405M Mono PERC 72 12.4 41.6 11.7 34.64 405 10.17 38.69 9.55 32.15 306.9 4.960 −0.104 −0.340
51 RSM40-8-410M Mono PERC 72 12.47 41.9 11.76 34.89 410 10.22 38.97 9.6 32.38 310.7 4.988 −0.105 −0.340
52 VSM.72.365.05 Mono PERC 72 9.73 48.3 9.17 39.8 365 7.87 44.7 7.34 36.8 270.2 5.546 −0.135 −0.390
53 VSM.72.370.05 Mono PERC 72 9.84 48.5 9.26 40 370 7.98 44.9 7.41 36.9 273.9 5.609 −0.136 −0.390
54 VSM.72.375.05 Mono PERC 72 9.94 48.7 9.36 40.1 375 8.04 45 7.49 37.1 2776 5.666 −0.136 −0.390
55 VSM.72.380.05 Mono PERC 72 10.04 48.8 9.46 40.2 380 8.03 44.9 7.57 37 271.2 5.723 −0.137 −0.390
56 VSM.72.385.05 Mono PERC 72 10.14 48.9 9.56 40.3 385 8.11 45 7.65 37.1 284.9 5.780 −0.137 −0.390
57 JP-345M Mono PERC 72 9.65 47.88 9.08 40.17 345 7.82 44.49 7.35 34.77 255.7 4.632 −0.139 −0.390
58 JP-350M Mono PERC 72 9.66 47.95 9.11 40.36 350 7.83 44.55 7.38 35.19 259.7 4.637 −0.139 −0.390
59 JP-355M Mono PERC 72 9.7 48.17 9.18 40.68 355 7.86 44.75 7.44 35.45 263.6 4.656 −0.140 −0.390
60 JP-360M Mono PERC 72 9.73 48.31 9.24 40.82 360 7.88 44.88 7.48 35.9 268.7 4.670 −0.140 −0.390
61 JP-365M Mono PERC 72 9.75 48.46 9.26 41.11 365 7.9 45.05 7.5 36.36 272.7 4.680 −0.141 −0.390
62 JP-370M Mono PERC 72 9.8 48.6 9.29 41.33 370 7.94 45.15 7.52 36.77 276.7 4.704 −0.141 −0.390
63 JP-380M Mono PERC 72 9.81 48.74 9.31 41.47 380 7.95 45.28 7.54 37.26 281 4.709 −0.141 −0.390
64 VSM.72.315.05 Poly 72 8.92 45.8 8.4 37.5 315 7.22 42.4 6.74 34.6 233.2 5.084 −0.133 −0.380
65 VSM.72.320.05 Poly 72 9.03 46 8.5 37.7 320 7.31 42.6 6.82 34.8 237.2 5.147 −0.133 −0.380
66 VSM.72.325.05 Poly 72 9.13 46.2 8.6 37.8 325 7.39 42.8 6.9 34.9 240.6 5.204 −0.134 −0.380
67 VSM.72.330.05 Poly 72 9.24 46.3 8.7 38 330 7.47 42.9 6.99 35 244.7 5.267 −0.134 −0.380
68 VSM.72.335.05 Poly 72 9.35 46.5 8.8 38.1 335 7.56 43.1 7.06 35.1 248.2 5.330 −0.135 −0.380
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Table A1. Cont.

Number ID CellType Ncell Standard Test Condition STC Normal Operating Cell Temperature NOCT Thermal Coefficients at STC

Isc A VocV Impp A Vmpp V Pmpp W Isc A Voc V Impp A Vmpp V Pmpp W αIsc

mA/K
βVoc

V/K
γPmpp

%/K

69 VSM.72.340.05 Poly 72 9.46 46.7 8.91 38.2 340 7.64 43.3 7.13 35.2 251.6 5.392 −0.135 −0.380
70 TP672P-320 Poly 72 9.16 45.5 8.63 37.1 320 7.42 42 6.92 34.1 236 5.496 −0.141 −0.400
71 TP672P-325 Poly 72 9.22 45.7 8.7 37.4 325 7.46 42.2 6.98 34.4 240 5.532 −0.142 −0.400
72 TP672P-330 Poly 72 9.27 45.9 8.76 37.7 330 7.51 42.3 7.04 34.6 243 5.562 −0.142 −0.400
73 CHSM6610P-220 Poly 72 8.46 36.95 7.89 28.02 220 7.12 33.73 6.51 25.36 165 4.399 −0.127 −0.469
74 CHSM6610P-225 Poly 72 8.49 37.14 7.92 28.4 225 7.15 33.93 6.56 25.74 168.8 4.415 −0.128 −0.469
75 CHSM6610P-230 Poly 72 8.53 37.35 7.99 28.78 230 7.18 34.12 6.61 26.08 172.5 4.436 −0.128 −0.469
76 CHSM6610P-235 Poly 72 8.56 37.56 8.06 29.16 235 7.21 34.31 6.67 26.42 176.3 4.451 −0.129 −0.469
77 CHSM6610P-240 Poly 72 8.59 37.77 8.13 29.54 240 7.23 34.5 6.73 26.75 180 4.467 −0.130 −0.469
78 CHSM6610P-245 Poly 72 8.62 37.98 8.2 29.92 245 7.26 34.7 6.79 27.06 183.8 4.482 −0.131 −0.469
79 CHSM6610P-250 Poly 72 8.65 38.19 8.27 30.3 250 7.28 34.89 6.85 27.37 187.5 4.498 −0.131 −0.469
80 ASM6612P-305 Poly 72 8.95 45.29 8.53 35.77 305 6.92 41.56 6.52 32.67 213 4.475 −0.141 −0.408
81 ASM6612P-310 Poly 72 8.99 45.42 8.68 35.8 310 6.95 41.68 6.62 32.7 216.5 4.495 −0.141 −0.408
82 ASM6612P-315 Poly 72 9.02 45.55 8.8 35.83 315 6.98 41.8 6.73 32.71 220 4.510 −0.142 −0.408
83 ASM6612P-320 Poly 72 9.06 45.68 8.92 35.86 320 7.01 41.92 6.83 32.72 223.5 4.530 −0.142 −0.408
84 ASM6612P-325 Poly 72 9.1 45.82 8.95 36.31 325 7.04 42.04 6.84 33.18 226.9 4.550 −0.143 −0.408
85 KC200GT Poly 54 8.21 32.9 7.61 26.3 200 6.62 29.9 6.13 23.2 142 3.180 −0.123 -
86 FS-6420 Thin Film CdTe 264 2.54 218.5 2.33 180.4 420 2.04 206.3 1.88 168.7 317.2 1.016 −0.612 −0.320
87 FS-6425 Thin Film CdTe 264 2.54 218.9 2.34 181.5 425 2.05 206.6 1.89 169.8 320.9 1.016 −0.613 −0.320
88 FS-6430 Thin Film CdTe 264 2.54 219.2 2.36 182.6 430 2.05 207 1.9 170.9 324.7 1.016 −0.614 −0.320
89 FS-6435 Thin Film CdTe 264 2.55 219.6 2.37 183.6 435 2.06 207.3 1.91 172 328.5 1.020 −0.615 −0.320
90 FS-6440 Thin Film CdTe 264 2.55 220 2.38 184.7 440 2.06 207.7 1.92 173.1 332.4 1.020 −0.616 −0.320
91 FS-6445 Thin Film CdTe 264 2.56 220.4 2.4 185.7 445 2.06 208 1.93 174.1 336 1.024 −0.617 −0.320
92 FS-6450 Thin Film CdTe 264 2.57 221.1 2.42 186.8 450 2.07 208.8 1.94 175.2 339.9 1.028 −0.619 −0.320
93 ShellST36 Thin film CIS 40 2.68 22.9 2.28 15.8 36 2.2 20.2 1.78 13.8 24.6 0.320 −0.100 −0.600
94 ShellST40 Thin film CIS 40 2.68 23.3 2.41 16.6 40 2.2 20.7 1.88 14.7 27.7 0.350 −0.100 −0.600
95 SF145-S Thin Film CIS 100 2.2 107 1.8 81 145 1.76 97.4 1.43 76 108 0.220 −0.321 −0.310
96 SF150-S Thin Film CIS 100 2.2 108 1.85 81.5 150 1.76 98.3 1.47 76.4 111 0.220 −0.324 −0.310
97 SF155-S Thin Film CIS 100 2.2 109 1.88 82.5 155 1.76 99.2 1.49 77.4 115 0.220 −0.327 −0.310
98 SF160-S Thin Film CIS 100 2.2 110 1.91 84 160 1.76 100 1.51 78.8 119 0.220 −0.330 −0.310
99 SF165-S Thin Film CIS 100 2.2 110 1.93 85.5 165 1.76 100 1.53 80.2 123 0.220 −0.330 −0.310

100 SF170-S Thin Film CIS 100 2.2 112 1.95 87.5 170 1.76 102 1.55 82.1 126 0.220 −0.336 −0.310
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