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Abstract: Dynamic Wave Energy Converter (WEC) models utilize a wide variety of fundamental
hydrodynamic theories. When incorporating novel hydrodynamic theories into numerical models,
there are distinct impacts on WEC rigid body motions, cable dynamics, and final power production.
This paper focuses on developing an understanding of the influence several refined hydrodynamic
theories have on WEC dynamics, including weakly nonlinear Froude-Krylov and hydrostatic forces,
body-to-body interactions, and dynamic cable modelling. All theories have evolved from simpler
approaches and are of importance to a wide array of WEC archetypes. This study quantifies the
impact these theories have on modelling accuracy through a WEC case study. Theoretical differences
are first explored in a regular sea state. Subsequently, numerical validation efforts are performed
against field data following wave reconstruction techniques. Comparisons of significance are WEC
motion and cable tension. It is shown that weakly nonlinear Froude-Krylov and hydrostatic force
calculations and dynamic cable modelling both significantly improve simulated WEC dynamics.
However, body-to-body interactions are not found to impact simulated WEC dynamics.

Keywords: wave energy converter; hydrodynamic theory; multibody dynamics; weakly nonlinear
Froude-Krylov and hydrostatic; body-to-body interactions; dynamic cable modelling

1. Introduction

Numerical modelling tools expedite the development of the wave energy sector by
aiding in the design, analysis, and optimization of wave energy converter (WEC) devices.
These tools aid in capturing the complex interactions between rigid bodies dynamics,
hydrodynamics, hydrostatics, power take-off (PTO) units, and control systems present in
WECs. With design decisions based heavily on predictions from simulation tools, it is of
vital importance to verify and validate WEC numerical software [1]. Users have the choice
to include numerous refined numerical theories within WEC software that may increase
the accuracy of simulated dynamics.

Numerical theories have evolved with the intention of improving the numerical repre-
sentation of the inherently complex dynamics of floating offshore systems. For instance,
floating body hydrostatic and Froude-Krylov force calculations traditionally concern a
static submerged portion of the body [2]. However, many floating bodies have dynamic
wetted surface areas. Weakly nonlinear Froude-Krylov and hydrostatic force calculations
pertain to incorporating this changing wetted surface area into WEC dynamics [3]. Ad-
ditionally, a rigid body usually has 6 degrees of freedom corresponding to the particular
body’s translational and rotational motion [2]. However, rigid bodies in close proximity to
one another impact forces on each other, and body-to-body interactions concern integrating
these cross-body forces into a numerical model [4]. Additionally, when marine cables
attach to a rigid body, forces cause structural deformation of the cable, and marine cable
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models, which have evolved from simple mass-spring-dampers to dynamic cable models,
simulate such structural responses [5]. The three aforementioned modelling techniques
are all theoretical refinements that may pertain to modelling a particular WEC’s dynamics
more accurately.

Several studies have focused on the implementation of an refined hydrodynamic
theories. Combourieu et al. determined that including body-to-body interactions is signif-
icant for a floating oscillating flap device [1]. Wendt et al. focused on the importance of
nonlinear Froude-Krylov and hydrostatic force calculations for a semi-submerged sphere
and a heaving float, and determined that nonlinear effects are most significant for large
motions in large waves [3]. Paduano et al. compared and validated different cable models
for moored floating WECs, and found close agreement between a quasi-static and dynamic
cable models [6]. All of these comparisons aid a particular aspect of the WEC design pro-
cess. However, numerous theories are often pertinent for a singular WEC, and the present
lack of a comprehensive review of the associated theoretical impacts creates uncertainty
and an inability to cross validate prior research efforts.

The objectives of this study are two-fold: (1) determine how weakly nonlinear Froude-
Krylov and hydrostatic force calculations, body-to-body interactions, and/or dynamic
cable models impact a WEC’s simulated dynamics, and (2) to validate numerical models
against field measurement data. Section 2 lays out various WEC numerical modelling
theories. Section 3 discusses the software and numerical model implementation of this
study. Section 4 presents the particular WEC this study focuses upon. Section 5 shows
the results and discussion for the code-to-code and code-to-field comparisons. Section 6
discusses this study’s conclusions and the opportunities for future work.

2. Wave Energy Converter Numerical Modelling Theory

WEC modelling varies in terms of fidelity of the simulation environment and the WEC
model’s inherent assumptions. Many WEC models aim to approximate Newton’s 2nd law
of motion. Figure 1 provides A broad layout of different WEC modelling approaches.
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Figure 1. Wave Energy Converter numerical modelling fidelity ranking.

The lowest fidelity WEC models employ analytical approximations of these forces, as
in Zhao et al., whom investigate the hydrodynamics of multi-pontoon floating platforms
that work as an oscillating water column WECs [7]. However, these low-fidelity approaches
rely on many assumptions that simplify WEC dynamics greatly. A slightly more robust
approach performs calculations solely in the frequency domain to predict WEC behavior, as
in Pastor and Liu, whom model a heaving point absorber WEC in the frequency domain [8].
Time-domain multibody dynamic modelling is a more robust approach, which this study
incorporates. This approach employs coefficients found in the frequency domain following
linear potential flow theory, and specifies additional forces in the time-domain through
a multibody dynamic solver [1,9,10]. The highest fidelity numerical models provide the
most robust and computationally expensive approach to approximating Newton’s 2nd law
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of motion numerically, and concern computational fluid dynamics (CFD) and smoothed
particle hydrodynamics (SPH). CFD and SPH differ in that CFD treats a fluid in an Eulerian
reference frame, whereas SPH is inherently Lagrangian [11,12]. CFD and SPH are the most
capable of approximating the Navier-Stokes equations for WEC dynamics. Active practice
in the wave energy sector employs numerical modelling with varying levels of fidelity.
However, the wave energy sector is highly reliant on time-domain multibody dynamic
models, and so this study restricts itself to that approach.

2.1. Baseline WEC Modelling Theory

Time-domain representations of WEC dynamics enable the inclusion of nonlinear and
higher order numerical schemes. The baseline time-domain representation of the WEC and
its associated forces are shown in Equation (1):

(m + maoo)i = Fexc + FHP + FRad + Fpto + FD +F, (1)

In Equation (1) the left-hand side concerns the inertial force, which includes the dry
mass of the body, m, the added mass at the infinite frequency, mae, and the rigid body
acceleration, x. The right-hand side of Equation (1) includes all remaining pertinent forces
present in the WEC system: Fey is the excitation wave force, Fyyp is the hydrostatic restoring
force, Fr,q is the radiation force (composed of radiation damping and frequency-dependent
added mass), Fpo is the PTO force, Fp is the drag force, and F. is the overall cable force [1].

2.1.1. Excitation Force

The excitation force, Fexc, is composed of the Froude-Krylov force, Frk, and diffraction
force, Fgi¢r, and results from the unsteady pressure field due to waves. Particularly, Frx
concerns the incident wave force, and is represented by:

Fri = / /S pger“nds, @)

where S, is the wetted surface area, p is the fluid density, g is gravitational acceleration, k
is the wave number, z is the vertical position, and 1 is the free surface elevation [2]. The
diffraction force, Fgjsf, results from the alteration of a wave field due to the presence of a
rigid body, as shown in Equation (4):

n a .
Faief = —p/'/s (d;‘:ﬁ>ndsl 3)

where ¢4; is the diffraction wave potential, and n is the body’s normal vector. The upper
boundary for Sy, in Equations (2)—(4) is the free-surface [2].

2.1.2. Hydrostatic Force

The hydrostatic force, Fyp, concerns the pressure loading of a liquid on a submerged
rigid body. Fyp, is represented by:

Fup = —pg/ /Sw zds. 4)

The upper boundary for Sy, in Equations (2)—(4) is the free-surface [2].

2.1.3. Radiation Force

The radiation force, Fr,q, represents the rigid body’s response to a wave impulse.
FRrad, is represented by:

Frad = /0 " K (£ 1) xdr. 5)
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In Equation (5) K; is the radiation impulse response function determined from
frequency-dependent added mass, m,, and damping coefficients, C,,q4. Rigid body veloci-
ties are specified by x [2,13].

2.1.4. Power Take-Off (PTO) Force

The PTO influences a WEC’s motions and the resulting power output, thereby im-
pacting WEC performance [9]. PTO systems are designed in the time-domain, and are
inherently unique for a particular WEC. The WEC’s power take-off force, Fpto, generally
concerns a hydraulic PTO system [14], a pneumatic air turbine transfer PTO system [10,14],
or a mechanical PTO system [15]. Fpo calculations are dependent on the type of PTO system
and the particular WEC characteristics; therefore, there is no uniform Fpt, equation [15].

2.1.5. Viscous Drag Force

Viscous drag is the resistive force acting from the fluid on a rigid body, and the drag
force, Fp, formulates from the fluid’s tendency to withstand deformation. Equation (6)
characterizes Fp:

CppAp
2

In Equation (6) Cp is the structure’s specific quadratic drag coefficient, p is the fluid
density, Ap is the characteristic area, and x is the rigid body’s velocity [16].

Fp = —

[ ©)

2.1.6. Cable Force

The cable force, F,, pertains to the force marine cables induce to secure floating systems
to a fixed location or to connect rigid bodies. Cable forces in their most simplistic form may
be calculated as mass-spring-dampers:

F. = —Kx — Ccx. (7)

In Equation (7), K. and C, are cable stiffness and damping coefficient matrices, and x
and x are the relative displacement and velocity of the body, respectively [17].

2.2. Refined Numerical Theories

WEC modelling approaches are constantly evolving, and novel hydrodynamic theories
reflect advances in understanding of WEC dynamic behavior. Each novel numerical theory
must be continuously verified and validated. In this work, the theories of focus are weakly
nonlinear Froude-Krylov and hydrostatic calculations, body-to-body (B2B) interactions,
and dynamic cable models. These theories are chosen because they are pertinent to many
WEC archetypes, and there is a present lack in literature on the verification and validation
for systems that concern multiple of the aforementioned theories.

2.2.1. Weakly Nonlinear Froude-Krylov and Hydrostatic Forces

The standard practice for time-domain multibody dynamic modelling Froude-Krylov
and hydrostatic forces are approximated from linear potential flow theory. These forces
are calculated from the equilibrium position of the body using frequency-domain terms,
which are found through a boundary element method BEM solver such as WAMIT [18] or
NEMOH [19]. For time-domain implementation, Frk coefficients are only dependent on
wave frequency, and Fyp coefficients are constant.

Weakly nonlinear models extend linear potential flow theory by incorporating weakly
nonlinear terms, which are induced by instantaneous water surface elevation and the
exact position of the rigid body’s geometry rather than mean surface elevation as in linear
models [3,20,21]. Weakly nonlinear terms are only of importance for rigid bodies with a
dynamic wetted surface area, and are dependent upon the portion of a geometric mesh
above the still water line, as shown in Figure 2b [16,17]. This differs from linear models,
where the submerged mesh is static, as displayed in Figure 2a.
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(a) (b)

Figure 2. Nonlinear Froude-Krylov and Hydrostatic force meshing dependency. (a) Linear cal-

culations with constant coefficients, (b) Weakly nonlinear calculations with instantaneous surface
elevation dependent coefficients.

For WEC cases concerning rigid body(s) with significant dynamic wetted surface
areas, the inclusion of weakly nonlinear calculations may considerably improve a WEC's
simulated power capture assessment [3,22,23]. For calculation of instantaneous water
surface elevation and associated pressure fields, linear wave theory is extended for a
given computational mesh at the surface. Initial calculations of flow velocity and pres-
sure show unrealistically large values for submerged mesh panels above still water level.
Time-varying instantaneous surface elevation may be found by employing Wheeler wave
stretching, where the instantaneous vertical position, z*, is represented by [24]:

o= btz ®)
(h+m)

In Equation (8) h is the mean water depth, and 1 is the instantaneous water surface

elevation [20,21,24,25].

2.2.2. Body-to-Body Interactions

When oscillating rigid bodies are in close proximity, hydrodynamic interactions can be
modelled with additional components. In multibody systems, body-to-body interactions
allow for the motion of one body to impart a force on nearby rigid bodies [18].

B2B interactions may be influential in the correct characterization of WEC perfor-
mance. B2B hydrodynamics may reduce WEC float’s motion, thereby, decreasing energy
production [26]. If cross-coupled coefficients are important, then a rigid body’s radiation
force, Fr,q, is extended. For example, in a two-body heaving system where cross-coupled
terms are important, the total radiation force of rigid body 1, Fraq 1, is [4]:

Frad 1 = Frad 11(21,21) + Frad 12 (22, 22). 9)

In Equation (9) Fraq 11 is the radiation force on rigid body 1 due to the motion of rigid
body 1, and Fr,q 12 is the radiation force on rigid body 1 due to the motion of rigid body 2.

B2B interactions are inevitable in multibody systems; however, the importance of
the inclusion of B2B interactions is not well-established. Depending upon the relative
magnitude of a rigid body’s self- vs. cross-coupled frequency coefficients, it may be
acceptable to neglect B2B interactions for a multibody WEC model, for in such cases the
added computational expense has an insignificant impact on WEC dynamics [4,27]. For
example, following Starrett et al., B2B interactions for an array of 5 single-body WECs
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situated approximately 50 m apart were found insignificant [4]. The importance of B2B
interactions corresponds to the distance between rigid bodies [27]. In order to show how
B2B interactions impact the system’s dynamics more clearly, it is important to verify and
validate this extension to the calculated hydrodynamics of the system.

2.2.3. Dynamic Cables

When a cable attaches to a rigid body, reaction loads corresponding to the cable’s
elastic deformation apply as external forces on the rigid body [28]. Marine cable dynamic
modelling is governed by nonlinear partial differential equations in terms of a space and
time [5]. A solution to these equations may be obtained by linearizing the equations’
dynamics about an equilibrium condition or employing numerical models in order to gain
an approximation of the equations [29]. Lumped mass cable models define a cable by forces
due to the weight, buoyancy, drag, and added mass at specified node positions [30-34].
These models account for cable elasticity through a series of point masses in a series of
linear visco-elastic elements [34]. Cable loads may be expressed by [29]:

Fe = meR = (K, + Ky +Kx) (r<O>T O ()T o <“)T) +W+H (10)

In Equation (10), F. is the force vector of the specified cable, m. is the mass of the cable
element, K, is the axial stiffness of the cable, K is the cable bending stiffness, K is the
torsional stiffness, W is the combined cable element weight and buoyancy, and H is the
hydrodynamic load in terms of the global reference frame. The cable has n nodes, and a
cable element is connected by two nodes. The term )T refers to the position of the ith
node, and 1’ T refers to that same node’s curvature, wherei =0, - - - ,n. Dynamic cable
models presently vary as to the degree to which nonlinearity or high-order polynomials
are included in the cable discretization scheme [35]. Linear lumped mass models neglect
curvature and corresponding nonlinearities such as bending stiffness and torsion [29]. The
MooDy model applies high-order polynomials for a cable’s spatial discretization, which
makes the numerical model well-suited for snap-loaded design [36]. Furthermore, it has
been shown that including nonlinear terms such as bending stiffness when modelling cable
dynamics helps prevent model instability [35,37]. To facilitate this, Buckham et al. present
a method to incorporate curvature variables present in the dynamics of a continuous cable
with cubic cable elements using finite element methods [38]. With some WEC designs, such
as a PTO tethered system, the necessity of dynamic and robust finite element cable models
for acceptable representation of the system’s dynamics is unclear and, hence, an objective
of this study.

3. Numerical Theory Implementations

Numerical models of WECs are an integral part of designing these floating energy
absorption systems. The computational tools investigated involve the geometric build of
a WEC to time-domain representation of the WEC’s equation of motion. Two common
WEC simulation tools are ProteusDS [39] and WEC-Sim [40]. With these codes, this study
compares the implementation of the fundamental hydrodynamic theories, and validates
simulation accuracy against experimental testing data.

The numerical modelling process follows that presented by Bailey et al. [9], which
implements a wave-to-wire methodology and shows the necessary pre-processing to model
a WEC in the time-domain. As shown in Figure 3, the numerical process begins with a
geometric build formed with a CAD model in SOLIDWORKS [41] or similar packages.
Then, the WEC geometry is discretized in Rhinoceros3D [42] or similar meshing software.
The mesh is then passed through a frequency-domain Boundary Element Method (BEM)
software, such as WAMIT [18], ShipMo3D [43], or NEMOH [44]. The BEM software resolves
the velocity potential and fluid pressure for the entire submerged mesh, and outputs
frequency dependent Fexc, Fyp and Frog coefficients. Time-domain multibody dynamic
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software such as ProteusDS or WEC-Sim implements these frequency-dependent force
coefficients as all other forces listed in Equation (1) into the time-domain.

Build WEC rigid Discretize CAD Pass Mesh through
bodies utilizing geometry into »| frequency domain
CAD software panelled mesh BEM solver

Implement frequency dependent
outputs in time domain

Figure 3. WEC numerical modelling procedure from creating a geometric build to implementating

into a time-domain multibody dynamic model.

3.1. ProteusDS

ProteusDS is a commercial time-domain analysis software package that tests vir-
tual prototypes of many marine applications. The software focuses on determining the
dynamic response of structures subject to currents, waves, and/or wind. Rigid body
connections in ProteusDS are represented through the development of an articulated body
algorithm (ABA) connection tool, which decreases the complexity of connections by re-
ducing the degrees of freedom of the downstream rigid body to the number of degrees
of freedom of an upstream joint [1,39]. Furthermore, ProteusDS has the capability to link
with MATLAB/Simulink through an Application Programming Interface, allowing for
control system customization [45]. In the time-domain, Feyx, Fup and Fr,q are calculated
from BEM software. With weakly nonlinear terms, Fex. and Fyp coefficients depend on
the instantaneous surface elevation, and utilize the Wheeler wave stretching method [24].
FRrad is only computed for a rigid body’s 6 degrees of freedom in ProteusDS, for ProteusDS
does not account for B2B interactions. Fpy, is calculated with specified joint damping and
stiffness coefficients with the ABA connection. Fp is calculated with Equation (6) about the
center of pressure acting on the submerged mesh. F. is calculated in ProteusDS utilizing
approach of Buckham et al., with material properties specified for the cable following
Equation (10) [38,39].

3.2. WEC-Sim

The Wave Energy Converter SIMulator (WEC-Sim) numerical tool is an open-source
software developed by Sandia National Laboratory and the National Renewable Energy
Laboratory with the U.S. Department of Energy. WEC-Sim is developed in the MAT-
LAB/SIMULINK environment using the multibody dynamics solver SimMechanics, al-
lowing for control system and model customization. WEC-Sim models are comprised of
rigid bodies, motion constraints, PTO units, and marine cable systems. Simulations are
time-domain approximations to the WEC’s governing equations of motion [1].

As in ProteusDS, Fexc, Fip, and Fr,q are computed in BEM software unless simu-
lations include weakly nonlinear forces, for which scenarios Fex. and Fyp rely upon the
instantaneous surface elevation, and employ the Wheeler wave stretching method [24].
FRrag calculation in WEC-Sim are dependent upon whether or not simulations enable B2B
interactions [40]. Fpto is calculated with specified joint damping and stiffness coefficients
with a WEC-Sim SIMULINK joint [40]. Fp is calculated with Equation (6) about each rigid
body’s specified reference areas [40]. This study performed simulations with WEC-Sim
v4.2, which is coupled with MoorDyn C, a dynamic cable model [46]. However, MoorDyn
C only permits a cable to connect to a rigid body to the seafloor, and so multibody cable
connections are prohibited [40,46]. To circumnavigate this matter, a pseudo-cable represen-
tation as a massless rod is implemented, where F. is modelled as a simple spring for, as in
Equation (7) [40].
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4. Case Study WEC and Field Campaign

This study aims to validate the refined numerical theories against field deployment
data (in addition to measuring the relative impact these theories have on the WEC’s
simulated environment). This study takes measurements from the Wave Energy Buoy that
Self-deploys (WEBS) device for model validation.

4.1. Wave Energy Buoy That Self-Deploys (WEBS)

WEBS is a multibody point absorber developed by researchers from the University
of Washington’s Applied Physics Laboratory and C-Power Technologies. WEBS consists
of a three-body surface float connected by a tether to a submerged heave plate as shown
in Figure 4. The aft float is rigidly connected to the nacelle, which houses a gear box
and rotary generator. The fore float rotates about the nacelle by means of a thru-axle on
the nacelle to drive the generator. The tether is %" Samson Tenex, which has a breaking
strength of 90 kN. The heave plate is a hexagonal cone located 60 m below the surface. This
multibody device is designed for a sea state concerning a significant wave height of 1.8 m
and an energy period of 7.9 s [47].

Communication antenna

Aft float \

Fore float

/

Nacelle / 1

(houses PTO)

Connecting yoke

Heave plate

\

Figure 4. Wave Energy Buoy that Self-deploys WEC device as deployed (tether length not to
scale) [47].

The relevant performance metrics of WEBS are the relative float angular velocity,
tether tension, and heave plate position. The float angular velocity (with respect to the
nacelle) is derived from an encoder’s position, and, when paired with knowledge of the
PTO, this metric allows for the calculation of power generation. Tether tension is a key
indicator of loads that the WEC experiences, and was directly measured by load cells
located along the tether. The heave plate position is derived from pressure sensors on the
WEC heave plate, and the heave plate’s operational mobility is a critical measure of design
performance.

Heave plate heave displacement measurements include surface elevation changes,
however, numerical values for heave plate depth are measured from the mean sea level
and do not take instantaneous surface elevation into account. This is corrected by su-
perimposing the surface elevation time-series on the numerical heave plate depth values.
Drag coefficients are specified from experimental data found in Rusch et al. and listed in
Table 1 [47].



Energies 2021, 14, 3959

90f18

Table 1. Wave Energy Buoy that Self-deploys Viscous Drag Coefficients for a z-vertical coordinate

system.
Rigid Body CDx CDy CDz
Aft Float 1 1.9 1
Fore Float 1 19 1
Nacelle 1 1 1
Heave Plate 14 14 45

The PTO system for this study is a mechanical PTO, where energy is generated as a
torque through a rotary generator between oscillating bodies:

Fpto = *Kmech(QZ - 91) - Cgen (92 - 91) (11)

In Equation (11), K;ecp, is the mechanical spring stiffness, relative pitch orientation
is denoted (6, — 6;), the PTO damping coefficient is given by Cgy, and relative pitch

angular velocity is denoted by (92 - 91) The PTO system concerns a rotational joint with
a stiffness coefficient value of 668 N/m and damping coefficient of 2400 Nms/rad [47].

4.2. Field Campaign Details

WEBS was deployed 9 nautical miles west of Moss Landing in Monterey Bay, CA,
USA on 17 and 18 August 2016. Surface Wave Instrument Float with Tracking (SWIFT)
buoys deployed alongside WEBS provide wind and wave measurements throughout
deployment [48]. Data was collected over an 8-h period. During deployment, SWIFT buoy
measurements found an average wave height of 1.33 m and period of 9.66 s [47].

Wave Reconstruction Methods

Wave spectra models and statistical techniques have been the norm for representing
environmental conditions in numerical WEC models and provide statistical complementar-
ity. Wave reconstruction is a novel concept determined to find predictions of instantaneous
wave energy, and allows for direct time-domain comparison. There are two standard
approaches to wave reconstruction: (1) the fixed-time approach, and (2) the fixed-point
approach. The fixed-time approach takes wave elevation measurements via snapshots
over a fixed area at a single instant, viewing the wavefield with a Eulerian reference
frame [49]. The fixed-point approach creates a time series of fixed points to find wave
elevation measurements, which is an inherently Lagrangian approach [49]. This study
follows the fixed-point approach, where heave data is collected at 25 Hz in 448 s bursts
every 9 min onboard SWIFT buoys [47,50]. This novel method employs deterministic wave
prediction in WEC models such that developers may have near-optimal wave-by-wave
control of a WEC in irregular waves [49].

Wave reconstruction is found to improve instantaneous heave predictions of exper-
imental data by 63% relative to wave spectra forecasts [50]. ProteusDS allows for wave
elevation reconstruction through custom wave segments, for which a user specifies a spe-
cific regular wave height, wave number, wave period, wave phase, and wave heading [39].
The number of wave segments is dependent on the number of frequencies specified in the
SWIFT dataset. These regular wave segments are then superimposed in the time domain in
order to generate the reconstructed wave field. This study applies 448 s of simulated waves,
corresponding to one burst of SWIFT buoy data. Wave direction is assumed constant in
this study. Spectral energy density from the SWIFT buoy data determines segment wave
height.

WEC-Sim is capable to import a wave time series or a frequency dependent wave
spectrum for wave reconstruction [39]. For comparative consistency within numerical
models, ProteusDS and WEC-Sim use the same wave reconstructed time series. WEC-Sim
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applies the reconstructed wave elevation time series developed in ProteusDS to ensure
compatible wave fields.

5. Results and Discussion

The objectives of this study are two-fold: (1) to show how the incorporation of weakly
nonlinear Froude-Krylov and hydrostatic calculations, B2B interactions, and/or dynamic
cable computations impact a WEC simulated dynamics, and (2) to validate the perfor-
mance of these numerical simulations against field measurement data. As such, this study
performs a code-to-code comparison and a code-to-field campaign comparison.

The code-to-code comparison helps clarify the relative impact of incorporating the
refined numerical theories discussed in Section 2.2. Regular wave tests are performed over
arange of wave frequencies and a 1 m wave height. Hydrodynamic theory implementation
within different scenarios are listed in Table 2. The code-to-field campaign comparison uses
wave elevation data from SWIFT buoys for numerically simulating WEBS and validating
model outputs for the various scenarios listed in Table 2.

Table 2. Refined numerical theories scenarios (WSM: WEC-5im, PDS: ProteusDS; X = Theory in-cluded).

Modelling Scenario

Theory

Weakly Nonlinear (NL) Body-to-Body Interactions (B2B) Dynamic Cables (DM)

WSM Base
WSM NL
WSM B2B
WSM B2B and NL
PDS DM
PDS DM and NL

X
X
X X
X
X X

5.1. Code-to-Code Comparison

A code-to-code regular wave comparison highlights the impact of hydrodynamic
theory differences in a known and predictable sea state. Combourieu et al. provided a
baseline understanding of a WEC’s simulated response in ProteusDS and WEC-Sim by
comparing and verifying similar responses of a floating three-body oscillating flap device
in different time-domain multibody dynamic modelling software, including WEC-Sim and
ProteusDS [1]. Furthermore, Wendt et al. compared and validated the dynamic response
of a floating sphere and regular a floating cylinder between numerous WEC numerical
modelling software, including WEC-Sim and ProteusDS [3]. The aforementioned studies
showed that WEC-5im and ProteusDS produce highly comparable dynamic responses
when utilizing common baseline theories (as described in Section 2.1). As such, this study
focuses on the impacts of refined numerical theories through a code-to-code comparison
for regular wave scenarios listed in Table 2. Comparison quantities of interest for WEBS
are the relative float pitch velocity, the PTO tether tension, and heave plate response.

Relative float angular velocity concerns the WEBS fore float pitching about the nacelle,
which houses the PTO, is directly correlated to energy generation. Figure 5 shows the
relative float angular velocity oscillation magnitude for the various simulation scenarios.

Including weakly nonlinear Froude-Krylov and hydrostatic force calculations has
a clear impact on float response. Specifically, when weakly nonlinear calculations are
included, the relative float angular velocity increases. This corresponds to the greater
phase difference between the nacelle and fore float with weakly nonlinear terms. Such
a phenomenon occurs because the fore float’s dynamic wetted surface area increases
variation in Fexc and Fyp calculations. When comparing WSM Base and WSM NL, the
inclusion of weakly nonlinear Froude-Krylov and Hydrostatic force calculations is found
to increase the relative float angular velocity by an average of 29% over the specified wave
frequency range. These findings align with Michele et al. [22], whom find that with the
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implementation of weakly nonlinear forces, extractable energy increases due to increased
float motion.
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Figure 5. WEBS relative float angular velocity oscillation magnitude in regular waves.

B2B interactions do not have a significant impact on WEBS dynamics. When compar-
ing WSM Base to WSM B2B or WSM NL to WSM B2B and NL, the relative float angular
velocity magnitude changes only slightly. When comparing WSM Base and WSM B2B, the
inclusion of B2B interactions alters the relative float angular velocity by an average of 1%
over the specified wave frequency range. The small impact of B2B interactions may be
due to the joint connection between bodies for the WEBS three-part float. Therefore, B2B
interactions may still be of importance for rigid bodies in an array as discussed in Starrett
et al. [27].

Cable model fidelity has a direct impact on WEC dynamics. Figure 5 shows that all
scenarios modelling the tether with a simplified spring have an inverse relationship with
wave period. A heave plate helps a WEC capture resonance within a particular frequency
range [51]. The simplified spring cable’s unable to capture resonance, for motion only
increases with decreasing wave period. Therefore, the heave plate’s load is not being
transferred to the WEC’s float through the tether. When the tether is more realistically
modelled with a dynamic cable model, the float angular velocity oscillation magnitude
increases toward a resonance condition and then decreases. Therefore, the heave plate
load is transferred to the WEC’s float. The trend difference hinders the determination of
a clear quantitative value that a dynamic cable model has on the relative float angular
velocity. However, dynamic cable modelling does improve the model’s ability to capture
peak energy extraction, for the resonance condition matches the design sea state’s energy
period of 7.9 s. Dynamic cable calculations are shown to directly correspond with the
WEC’s ability to capture resonance around the design sea state.

The PTO tether connects the hydrodynamically active surface float to the heave plate
and plays an important role in the hydrodynamic modelling and the design process.
Tension range displays the WEC’s load variability due to wave forcing.

As shown in Figure 6 the inclusion of weakly nonlinear calculations reduces tether
tension range. This differs from WEBS float motion magnitude, as seen in Figure 5. Recall
from Figure 2, weakly nonlinear calculations are dependent on both wave frequency and
the extent to which the mesh is submerged (rather than wave frequency alone as with linear
calculations). From Equation (2) and Equation (4), Fexc and Fyp terms are smaller with
increased rigid body submergence, and these smaller terms correspond to smaller WEC
loads. For WEBS, the nacelle, which attaches to the PTO tether, is continually submerged, so
weakly nonlinear calculations formulate a smaller WEC load and therefore a smaller tether
tension range as shown in Figure 6. The inclusion of weakly nonlinear Froude-Krylov and
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hydrostatic force calculations is found to decrease tether tension range by an average of
48% through comparisons between WSM Base to WSM NL.
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Figure 6. WEBS tether tension range in regular waves.

B2B interactions are not shown to impact tether tension. Cable tension is directly
related to WEC loads. Figure 6 displays that B2B interactions have little impact on tether
tension loads, which agrees with Figure 5 that showed B2B interactions have little impact
on WEBS dynamics. Specifically, when comparing WSM Base to WSM B2B, a 0.3% increase
in tension range is computed.

When implementing dynamic cable theories, WEBS experiences a significantly larger
tension range. Tension with a simplified spring model follows Hooke’s law, and has a fairly
small and consistent range across varying wave periods. By implementing a dynamic cable
theory, tether tension range varies significantly. When comparing WSM Base to PDS DM,
modelling with a dynamic cable model increases tether tension range by an average of
240%. The larger range in dynamic cable model scenarios is in part due to the numerical
model’s inclusion of an axial stiffness term. Axial stiffness is directly related to strain,
and tension grows linearly with strain [39]. Additionally, with dynamic cable models,
tether tension ranges in Figure 6 follow similar trends with wave period as shown for the
WEC’s float motion in Figure 5. As such, the larger tension ranges in dynamic cable models
correspond to larger WEC loads.

Heave plates play a key role in WEC dynamics and PTO efficiency, and provide
a reaction force from the relatively stationary water deep below the WEC [39,44]. The
heave displacement of a heave plate is directly correlated to how well the heave plate is
performing as an artificial seafloor.

Weakly nonlinear Froude-Krylov and hydrostatic calculations and not implemented
for the heave plate for any scenario, for it is 60 m deep and does not have a dynamic wetted
surface area. However, weakly nonlinear terms at the surface do influence heave plate
displacement. They are shown to decrease heave plate displacement when coupled with
dynamic cable models, but increase heave plate displacement when the tether is modelled
with a simplified spring. Recall from Figure 6 that tether tension does not vary significantly
when utilizing a spring cable model. Thus, focusing on scenarios PDS DM and PDS DM
and NL, the heave plate displacement magnitude decreases due with weakly nonlinear
Froude-Krylov and hydrostatic calculations. Comparisons between PDS DM and PDS
DM and NL show that the inclusion of weakly nonlinear Froude-Krylov and hydrostatic
force calculations decreases heave plate displacement by an average of 4%. This finding
confirms Figure 6, which showed tether loads decreased with the inclusion of weakly
nonlinear terms.
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B2B interactions are shown to not play a significant role in heave plate displacement.
Comparisons between WSM Base and WSM B2B show that the inclusion of B2B interactions
alters heave plate displacement by an average of 1%. This result is consistent with B2B
theory, for the heave plate is far away from any other rigid body, so B2B interactions are
presumably negligible.

The utilization of dynamic cable models significantly affects the heave plate response.
When included, displacement increases with wave period. This is because with an in-
creasing wave period there is a decreasing phase difference between the heave plate’s and
wave elevation’s oscillations, which increases overall oscillation size. When the tether is
modelled with a simplified spring cable, the heave plate’s oscillation does not change with
wave period, and is due to the inaccuracy in the transfer of loads from the surface to the
heave plate. As in Figure 5, the trend difference with cable modelling approaches prevent
clear quantitative heave plate depth in Figure 7.
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Figure 7. Maximum WEBS heave place heave displacement in regular waves.

5.2. Code-to-Field Campaign Comparison

The code-to-field campaign comparison uses the 448 s wave data from SWIFT buoys
for simulating WEBS numerically and validating simulations. Wave reconstruction meth-
ods as discussed in Section 4.2 are implemented in this code-to-field comparison. However,
weakly nonlinear calculations are not permissible when importing a time series, for weakly
nonlinear calculations require the wave induced pressure at each wetted mesh panel [40].
Therefore, an imported time-series in WEC-Sim scenarios that utilize weakly nonlinear
Froude-Krylov and hydrostatic calculations would not work, as the rigid bodies begin at
the mean water surface elevation as shown in Figure 2a, and there would be disparities
present in rigid body position relative to the instantaneous surface elevation [40]. PDS DM
and NL is capable of simulating the wave-reconstructed wavefield, for the wave elevation
time-series is developed from the frequency domain in the ProteusDS solver. Therefore,
only the WSM Base, WSM B2B, PDS DM, and PDS DM and NL scenarios are simulated for
wave reconstruction simulations. Comparisons between PDS DM and PDS DM and NL
scenarios will show the impact weakly nonlinear Froude-Krylov and hydrostatic calcula-
tions has on WEC dynamics, and so this study is still able to validate the relative impact of
all the refined numerical theories discussed in Section 2.2.

The WEBS field data is represented by the shaded green region in Figures 8-10 and is
based on the probability of occurrence for each 448 s segment of the 8 h WEBS field data.
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Float angular velocity is directly proportional to WEBS extractable energy calculations.

It is clear from Figure 8 that the maximum float angular velocity is underpredicted regard-
less of refined numerical theory implemented. The underpredictions can be attributed
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to: (1) inaccuracies in modelling calculation, or (2) the inability of the reconstructed wave
field to formulate waves as large as those experienced during the WEBS field campaign
due to the wave reconstruction’s reliance on regular wave superposition. Particularly, the
regular wave superposition approximation involved with the chosen wave reconstruction
methodology is unable to produce steep, higher order waves that occur in the field, as per
Whitmer et al. [52].

Simulated float angular velocity increases with weakly nonlinear Froude-Krylov and
hydrostatic terms, and more closely resembles the float angular velocity experienced in
the field. Furthermore, the shifting trend past 5 deg/s for the PDS DM and NL scenario
is due to the increased relative rotational velocity between the nacelle and the fore float
when employing weakly nonlinear Froude-Krylov and hydrostatics to the numerical model.
These findings validate the code-to-code results discussed in Section 5.1. B2B interactions
slightly increase float angular velocity, but this difference is small and could be attributed
to slight computational differences. Dynamic cable modelling is not shown to play a
significant role in simulation accuracy for the surface float’s motion, as Figure 8 displays
that WSM Base and PDS DM have similar float angular velocity probability ranges. The
representation used in Figure 8 underrepresents the differences due to dynamic cable
modelling. Figure 5 shows that relative float angular velocity differences due to cable
modelling scheme depend significantly on wave frequency. Specific wave conditions are
not shown in Figure 8, and so the impact due to dynamic cable modelling is not clearly
represented.

Tether tension indicates how well the numerical methods model captures the WEC
loads. As with float angular velocity, tether tension is underpredicted regardless of numer-
ical approach, as shown in Figure 9. PDS DM experiences the largest simulated tension
range with extreme tension values under 2 kN and over 6 kN. In the field campaign, the
5th and 95th tether tension percentiles are 0.5 kN and 6.6 kN, respectively [47]. Therefore,
the majority of the tensions experienced during the WEBS field campaign are met, but the
more extreme loads are not captured. The tether tension underprediction may be a result of
loading heave plate hydrodynamics from BEM software, for this method provides smaller
hydrodynamic resistance than experimental data, as per Rusch et al. [53].

The inclusion of weakly nonlinear Froude-Krylov and hydrostatic terms slightly
impacts the tether range. The linear approach with PDS DM experiences a slightly larger
range than PDS DM and NL, which confirms Figure 6. Additionally, the inclusion of B2B
interactions does not impact tether tension, for WSM B2B completely overlaps WSM Base
as shown in Figure 6. It is clear from Figure 9 that the static spring cable model has a much
smaller tension range than experienced by dynamic mooring calculations. This is expected,
as Figure 6 showed that with the static spring approach tether tension range is invariant
with wave frequency. Dynamic cable models significantly increase the fidelity in capturing
the cable’s structural dynamics, and provide a better representation of tension and final
power production.

Heave plate displacement indicates how well the numerical scenarios capture the
WEC dynamics far away from the surface, which is 60 m for WEBS. In Figure 10, the
numerical model heave displacement data is superimposed with surface elevation to
ensure consistency with the field data.

Weakly nonlinear Froude-Krylov and hydrostatic forces do not have a clear impact
on the heave plate displacement, for displacement probabilities in PDS DM and PDS
DM and NL consistently overlap one another. However, the linear calculations of PDS
DM has a 2% larger probability of a minimum displacement of 0 m than PDS DM and
NL. In Figures 5 and 8, we found an increase in float angular velocity with the inclusion
of weakly nonlinear terms. This increase in the WEC's float motion corresponds to a
more dynamic heave plate response. Therefore, the 2% difference due to the inclusion of
weakly nonlinear terms is expected. B2B interactions are shown to not impact heave plate
dynamics in Figure 10. This insignificance, matches what we saw in Figure 7 and found
in Section 5.1. The heave plate is far away from any other rigid body, thereby making
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inter-body coefficients miniscule or nonexistent. Finally, dynamic mooring calculations are
not shown to significantly impact heave plate displacement accuracy. Regardless of chosen
numerical theories implementation, the rigid body dynamics appear well-captured.

6. Conclusions

This study’s objectives concern: quantifying how the incorporation of weakly non-
linear Froude-Krylov and hydrostatic calculations, body-to-body interactions, and/or
dynamic cable computations impact a WEC’s dynamics; and validating the performance of
these numerical simulations against field measurement data.

Utilizing a case study WEC and field deployment data from the WEBS field campaign
and SWIFT buoy data, these refined hydrodynamic theories were verified and validated.
It is well understood that multibody WEC dynamics are highly intermingled and inter-
related. Therefore, this study quantifies the impact of each refined hydrodynamic theory to
better understand theoretical significance in WEC dynamics.

Weakly nonlinear Froude-Krylov and hydrostatic calculations are shown to signifi-
cantly increase the float motion of a WEC, and therefore increase extractable energy. For the
regular wave tests performed in the WEBS case study, the inclusion of weakly nonlinear
Froude-Krylov and hydrostatic terms increase the fore float’s relative angular velocity
about the nacelle by a maximum of 29% when the simulations also use a static spring
cable model, and by a maximum of 54% with dynamic cable models. Weakly nonlin-
ear Froude-Krylov and hydrostatic calculations have a clear impact on WEC dynamics,
and the relative impact of this theory is dependent on additional refined hydrodynamic
modelling techniques.

B2B interactions were negligible in this study. For the regular wave tests performed
in the WEBS case study, the inclusion of B2B interactions changed the fore float’s relative
angular velocity about the nacelle by less than 5%. However, the small impact of B2B
interactions may be due to the particular WEC's joint, which connects rigid bodies at
the surface.

Dynamic cable modelling is shown to significantly impact the overall performance of
a WEC. Particularly, dynamic cable models are shown to improve the simulated capacity
to capture resonance around the design sea state as discussed in Section 5.1. Furthermore,
with dynamic cable models, tether tension range increases by 300%, thereby showing
significantly more variability in simulating WEC loads due to wave forcing.

This research highlights the continued need for future investigation on the impact
of differing hydrodynamic theories, particularly, for floating wave energy converters.
Specifically, the impact of B2B interactions may be examined for WEC systems with
numerous disconnected but closely situated rigid bodies. Furthermore, incorporating more
realistic waves into the numerical wave field through wave reconstruction or nonlinear
wave methods provide an improved ability to do code-to-field data comparative fidelity.

Both rigid body hydrodynamics and cable dynamics must be well-represented to
ensure accurate WEC modelling. Implementing refined hydrodynamic theories into a
WEC numerical model may significantly improve simulation accuracy. This study found:
(1) that simulating body-to-body interactions did not alter WEC dynamics, and (2) that the
inclusion of weakly nonlinear Froude-Krylov and hydrostatic force terms and dynamic
cable models within a numerical model significantly improve simulated WEC dynamics.
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