Achieving Efficient and Stable Deammonification at Low Temperatures—Experimental and Modeling Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Origin of the Inoculum Biomass and Laboratory Set-Up
2.2. Experimental Procedure
2.3. Analytical Methods
2.4. Organization of the Simulation Study
2.4.1. Mathematical and Simulation Model
2.4.2. Estimation of the Temperature Correction Factors and Application in the Simulation
2.4.3. Model-Based Analysis of the Aeration Strategies for Highly Efficient and Stable Deammonification
2.5. Microbiological Analyses
2.5.1. Sampling and DNA Extraction
2.5.2. High-Throughput Illumina 16S rRNA Gene Sequencing and Bioinformatics Analysis
2.5.3. Biodiversity and Correlation Calculations
3. Results and Discussion
3.1. Process Performance at Decreasing Temperatures
3.2. Mathematical Modeling
3.2.1. Setting the Initial Biomass Composition for Simulations
3.2.2. Temperature Effects on Bacterial Growth
3.2.3. Temperature Effects on the N Conversion Pathways
3.2.4. Model-Based Analysis of the Aeration Strategies for Efficient and Stable Deammonification Performance at Decreasing Temperatures
3.3. Microbial Community Structure Adaptation to the Experimental Conditions
3.3.1. Shannon’s and Simpson’s Diversity
3.3.2. Differences in the Genetic Distance between Microbial Community Composition in Samples from the Distinct Experimental Stages
3.3.3. Changes in Composition of the Microbial Community
3.4. Energetic Aspects of the Application of the Deammonification Process
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nawaz, A.; Singh Arora, A.; Mun Yun, C.; Cho, H.; Lee, M. Cost effective nitrogen removal—Novel control strategies. Int. J. Comput. Methods Exp. Meas. 2019, 7, 376–384. [Google Scholar] [CrossRef] [Green Version]
- Klaus, S.; Baumler, R.; Rutherford, B.; Thesing, G.; Zhao, H.; Bott, C. Startup of a Partial Nitritation-Anammox MBBR and the Implementation of pH-Based Aeration Control. Water Environ. Res. 2017, 89, 500–508. [Google Scholar] [CrossRef]
- Lackner, S.; Gilbert, E.M.; Vlaeminck, S.E.; Joss, A.; Horn, H.; van Loosdrecht, M.C.M. Full-scale partial nitritation/anammox experiences—An application survey. Water Res. 2014, 55, 292–303. [Google Scholar] [CrossRef]
- Cao, Y.; Van Loosdrecht, M.C.M.; Daigger, G.T. Mainstream partial nitritation–anammox in municipal wastewater treatment: Status, bottlenecks, and further studies. Appl. Microbiol. Biotechnol. 2017, 101, 1365–1383. [Google Scholar] [CrossRef]
- Trojanowicz, K.; Plaza, E.; Trela, J. Pilot scale studies on nitritation-anammox process for mainstream wastewater at low temperature. Water Sci. Technol. 2016, 73, 761–768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miao, Y.; Peng, Y.; Zhang, L.; Li, B.; Li, X.; Wu, L.; Wang, S. Partial nitrification-anammox (PNA) treating sewage with intermittent aeration mode: Effect of influent C/N ratios. Chem. Eng. J. 2018, 334, 664–672. [Google Scholar] [CrossRef]
- Al-Hazmi, H.; Lu, X.; Majtacz, J.; Kowal, P.; Xie, L.; Makinia, J. Optimization of the aeration strategies in a deammonification sequencing batch reactor for efficient nitrogen removal and mitigation of N2O production. Environ. Sci. Technol. 2021, 55, 1218–1230. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Qi, G.; Yan, Y.; Gao, D. Influence of temperature fluctuations on one-stage deammonification systems in northern cold region. Environ. Sci. Pollut. Res. 2018, 25, 18632–18641. [Google Scholar] [CrossRef]
- Hoekstra, M.; Geilvoet, S.P.; Hendrickx, T.L.G.; van Erp Taalman Kip, C.S.; Kleerebezem, R.; van Loosdrecht, M.C.M. Towards mainstream anammox: Lessons learned from pilot-scale research at WWTP Dokhaven. Environ. Technol. 2019, 40, 1721–1733. [Google Scholar] [CrossRef] [Green Version]
- Hoekstra, M.; de Weerd, F.A.; Kleerebezem, R.; van Loosdrecht, M.C.M. Deterioration of the anammox process at decreasing temperatures and long SRTs. Environ. Technol. 2018, 39, 1–33. [Google Scholar] [CrossRef]
- Li, J.; Bai, L.; Qiang, Z.; Dong, H.; Wang, D. Nitrogen removal through “Candidatus brocadia sinica” treating high-salinity and low-temperature wastewater with glycine addition: Enhanced performance and kinetics. Bioresour. Technol. 2018, 270, 755–761. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, E.M.; Agrawal, S.; Karst, S.M.; Horn, H.; Nielsen, P.H.; Lackner, S. Low temperature partial nitritation/anammox in a moving bed biofilm reactor treating low strength wastewater. Environ. Sci. Technol. 2014, 48, 8784–8792. [Google Scholar] [CrossRef] [PubMed]
- Akaboci, T.R.V.; Gich, F.; Ruscalleda, M.; Balaguer, M.D.; Colprim, J. Assessment of operational conditions towards mainstream partial nitritation-anammox stability at moderate to low temperature: Reactor performance and bacterial community. Chem. Eng. J. 2018, 350, 192–200. [Google Scholar] [CrossRef]
- Lotti, T.; Kleerebezem, R.; van Loosdrecht, M.C.M. Effect of temperature change on anammox activity. Biotechnol. Bioeng. 2015, 112, 98–103. [Google Scholar] [CrossRef] [PubMed]
- Sobotka, D.; Czerwionka, K.; Makinia, J. Influence of temperature on the activity of anammox granular biomass. Water Sci. Technol. 2016, 73, 2518–2525. [Google Scholar] [CrossRef]
- Kaewyai, J.; Noophan, P.L.; Wantawin, C.; Munakata-Marr, J. Recovery of enriched anammox biofilm cultures after storage at cold and room temperatures for 164 days. Int. Biodeterior. Biodegrad. 2019, 137, 1–7. [Google Scholar] [CrossRef]
- Wu, P.; Chen, Y.; Ji, X.; Liu, W.; Lv, G.; Shen, Y.; Zhou, Q. Fast start-up of the cold-anammox process with different inoculums at low temperature (13 °C) in innovative reactor. Bioresour. Technol. 2018, 267, 696–703. [Google Scholar] [CrossRef]
- Ma, B.; Bao, P.; Wei, Y.; Zhu, G.; Yuan, Z.; Peng, Y. Suppressing nitrite-oxidizing bacteria growth to achieve nitrogen removal from domestic wastewater via anammox using intermittent aeration with low dissolved oxygen. Sci. Rep. 2015, 5, 13048. [Google Scholar] [CrossRef]
- Vlaeminck, S.E.; Clippeleir, H.; Verstraete, W. Microbial resource management of one-stage partial nitritation/anammox. Microb. Biotechnol. 2012, 5, 433–448. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Xu, S.; Zhou, Y.; Mohammed, A.; Ashbolt, N.J.; Liu, Y. The importance of integrated fixed film activated sludge reactor and intermittent aeration in nitritation-anammox systems: Understanding reactor optimization for lagoon supernatant treatment. International Biodeterior. Biodegrad. 2020, 149, 104938. [Google Scholar] [CrossRef]
- Pereira, A.D.; Fernandes, L.D.A.; Castro, H.M.C.; Leal, C.D.; Carvalho, B.G.P.; Dias, M.F.; Araújo, J.C.D. Nitrogen removal from food waste digestate using partial nitritation-anammox process: Effect of different aeration strategies on performance and microbial community dynamics. J. Environ. Manag. 2019, 251, 109562. [Google Scholar] [CrossRef] [PubMed]
- Miao, Y.; Zhang, L.; Li, B.; Zhang, Q.; Wang, S.; Peng, Y. Enhancing ammonium oxidizing bacteria activity was key to single-stage partial nitrification-anammox system treating low-strength sewage under intermittent aeration condition. Bioresour. Technol. 2017, 231, 36–44. [Google Scholar] [CrossRef]
- Al-Hazmi, H.; Grubba, D.; Majtacz, J.; Kowal, P.; Mąkinia, J. Evaluation of Partial Nitritation/Anammox (PN/A) Process Performance and Microorganisms Community Composition under Different C/N Ratio. Water 2019, 11, 2270. [Google Scholar] [CrossRef] [Green Version]
- Dapena-Mora, A.; Van Hulle, S.W.H.; Campos, J.L.; Méndez, R.; Vanrolleghem, P.A.; Jetten, M. Enrichment of Anammox biomass from municipal activated sludge: Experimental and modeling results. J. Chem. Technol. Biotechnol. 2004, 79, 1421–1428. [Google Scholar] [CrossRef]
- Anthonisen, A.C.; Loehr, R.C.; Prakasam, T.B.S.; Srinath, E.G. Inhibition of nitrification by ammonia and nitrous acid. J. Water Pollut. Control. Fed. 1976, 48, 835–852. [Google Scholar]
- Lu, X.; Pereira, D.S.T.; Al-Hazmi, H.E.; Majtacz, J.; Zhou, Q.; Xie, L.; Makinia, J. Model-Based Evaluation of N2O Production Pathways in the Anammox-Enriched Granular Sludge Cultivated in a Sequencing Batch Reactor. Environ. Sci. Technol. 2018, 52, 2800–2809. [Google Scholar] [CrossRef] [PubMed]
- Vavilin, V.A.; Vasiliev, V.B.; Rytov, S.V.; Ponomarev, A.V. Modeling ammonia and hydrogen sulfide inhibition in anaerobic digestion. Water Res. 1995, 29, 827–835. [Google Scholar] [CrossRef]
- Prigogine, I. Time, Structure, and Fluctuations. Science 1978, 201, 777–785. [Google Scholar] [CrossRef] [Green Version]
- Klindworth, A.; Pruesse, E.; Schweer, T.; Peplies, J.; Quast, C.; Horn, M.; Glöckner, F.O. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013, 41, e1. [Google Scholar] [CrossRef] [PubMed]
- Blankenberg, D.; Gordon, A.; Von Kuster, G.; Coraor, N.; Taylor, J.; Nekrutenko, A.; Team, G. Manipulation of FASTQ data with galaxy. Bioinformatics 2010, 26, 1783–1785. [Google Scholar] [CrossRef] [PubMed]
- Parks, D.H.; Beiko, R.G. Identifying biologically relevant differences between metagenomic communities. Bioinformatics 2010, 26, 71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, M.; Okabe, S. Anammox-based technologies for nitrogen removal: Advances in process start-up and remaining issues. Chemosphere 2015, 141, 144–153. [Google Scholar] [CrossRef]
- Lotti, T.; Kleerebezem, R.; Van Erp Taalman Kip, C.; Hendrickx, T.L.G.; Kruit, J.; Hoekstra, M.; Van Loosdrecht, M.C.M. Anammox growth on pretreated municipal wastewater. Environ. Sci. Technol. 2014, 48, 7874–7880. [Google Scholar] [CrossRef]
- Gilbert, E.M.; Agrawal, S.; Schwartz, T.; Horn, H.; Lackner, S. Comparing different reactor configurations for Partial Nitritation/Anammox at low temperatures. Water Res. 2015, 81, 92–100. [Google Scholar] [CrossRef]
- Wells, G.F.; Shi, Y.; Laureni, M.; Rosenthal, A.; Szivák, I.; Weissbrodt, D.G.; Joss, A.; Buergmann, H.; Johnson, D.R.; Morgenroth, E. Comparing the Resistance, Resilience, and Stability of Replicate Moving Bed Biofilm and Suspended Growth Combined Nitritation-Anammox Reactors. Environ. Sci. Technol. 2017, 51, 5108–5117. [Google Scholar] [CrossRef] [Green Version]
- Lackner, S.; Welker, S.; Gilbert, E.M.; Horn, H. Influence of seasonal temperature fluctuations on two different partial nitritation-anammox reactors treating mainstream municipal wastewater. Water Sci. Technol. 2015, 72, 1358–1363. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Lu, X.; Al-Hazmi, H.; Mąkinia, J. An overview of the strategies for the deammonification process start-up and recovery after accidental operational failures. Rev. Environ. Sci. Biotechnol. 2017, 16, 541–568. [Google Scholar] [CrossRef]
- Laureni, M.; Falås, P.; Robin, O.; Wick, A.; Weissbrodt, D.G.; Nielsen, J.L.; Ternes, T.A.; Morgenroth, E.; Joss, A. Mainstream partial nitritation and anammox: Long-term process stability and effluent quality at low temperatures. Water Res. 2016, 101, 628–639. [Google Scholar] [CrossRef] [Green Version]
- Zekker, I.; Rikmann, E.; Mandel, A.; Kroon, K.; Seiman, A.; Mihkelson, J.; Tenno, T.; Tenno, T. Step-wise temperature decreasing cultivates a biofilm with high nitrogen removal rates at 9 °C in short-term anammox biofilm tests. Environ. Technol. 2016, 37, 1933–1946. [Google Scholar] [CrossRef] [PubMed]
- Morales, N.; Val del Río, Á.; Vázquez-Padín, J.R.; Méndez, R.; Campos, J.L.; Mosquera-Corral, A. The granular biomass properties and the acclimation period affect the partial nitritation/anammox process stability at a low temperature and ammonium concentration. Process. Biochem. 2016, 51, 2134–2142. [Google Scholar] [CrossRef]
- Isanta, E.; Reino, C.; Carrera, J.; Pérez, J. Stable partial nitritation for low-strength wastewater at low temperature in an aerobic granular reactor. Water Res. 2015, 80, 149–158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ushiki, N.; Jinno, M.; Fujitani, H.; Suenaga, T.; Terada, A.; Tsuneda, S. Nitrite oxidation kinetics of two Nitrospira strains: The quest for competition and ecological niche differentiation. J. Biosci. Bioeng. 2017, 123, 581–589. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Yin, Z.; Sobotka, D.; Wisniewski, K.; Czerwionka, K.; Xie, L.; Zhou, Q.; Makinia, J. Modeling the pH effects on nitrogen removal in the anammox-enriched granular sludge. Water Sci. Technol. 2017, 75, 378–386. [Google Scholar] [CrossRef] [PubMed]
- Sobotka, D.; Zhai, J.; Makinia, J. Generalized temperature dependence model for anammox process kinetics. Sci. Total Environ. 2021, 775, 145760. [Google Scholar] [CrossRef]
- Kwak, W.; Rout, P.R.; Lee, E.; Bae, J. Influence of hydraulic retention time and temperature on the performance of an anaerobic ammonium oxidation fluidized bed membrane bioreactor for low-strength ammonia wastewater treatment. Chem. Eng. J. 2020, 386, 123992. [Google Scholar] [CrossRef]
- Gude, V.G. Energy and water autarky of wastewater treatment and power generation systems. Renew. Sustain. Energy Rev. 2015, 45, 52–68. [Google Scholar] [CrossRef]
- Hendrickx, T.L.; Wang, Y.; Kampman, C.; Zeeman, G.; Temmink, H.; Buisman, C.J. Autotrophic nitrogen removal from low strength waste water at low temperature. Water Res. 2012, 46, 2187–2193. [Google Scholar] [CrossRef]
- Hu, B.L.; Zheng, P.; Tang, C.J.; Chen, J.W.; van der Biezen, E.; Zhang, L.; Ni, B.J.; Jetten, M.S.; Yan, J.; Yu, H.Q.; et al. Identification and quantification of anammox bacteria in eight nitrogen removal reactors. Water Res. 2010, 44, 5014–5020. [Google Scholar] [CrossRef]
- Kartal, B.; Tan, N.C.; Van de Biezen, E.; De Kampschreur, M.J.; Van Loosdrecht, M.C.; Jetten, M.S. Effect of nitric oxide on anammox bacteria. Appl. Environ. Microbiol. 2010, 76, 6304–6306. [Google Scholar] [CrossRef] [Green Version]
- Kanders, L.; Areskoug, T.; Schneider, Y.; Ling, D.; Punzi, M.; Beier, M. Impact of seeding on the start-up of one-stage deammonification MBBRs. Environ. Technol. 2014, 35, 2767–2773. [Google Scholar] [CrossRef]
- Guo, J.; Peng, Y.; Huang, H.; Wang, S.; Ge, S.; Zhang, J.; Wang, Z. Short- and long-term effects of temperature on partial nitrification in a sequencing batch reactor treating domestic wastewater. J. Hazard. Mater. 2010, 179, 471–479. [Google Scholar] [CrossRef] [PubMed]
- Kouba, V.; Vejmelkova, D.; Proksova, E.; Wiesinger, H.; Concha, M.; Dolejs, P.; Hejnic, J.; Jenicek, P.; Bartacek, J. High-Rate Partial Nitritation of Municipal Wastewater after Psychrophilic Anaerobic Pretreatment. Environ. Sci. Technol. 2017, 51, 11029–11038. [Google Scholar] [CrossRef] [PubMed]
- Hellinga, C.; Schellen, A.A.; Mulder, J.W.; Vanloosdrecht, M.C.; Heijnen, J.J. The sharon process: An innovative method for nitrogen removal from ammonium-rich waste water. Water Sci. Technol. 1998, 37, 135–142. [Google Scholar] [CrossRef]
- Strous, M.; Kuenen, J.G.; Jetten, M.S. Key physiology of anaerobic ammonium oxidation. Appl. Environ. Microbiol. 1999, 65, 3248–3250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vázquez-Padín, J.R.; Pozo, M.J.; Jarpa, M.; Figueroa, M.; Franco, A.; Mosquera-Corral, A.; Campos, J.L.; Méndez, R. Treatment of anaerobic sludge digester effluents by the CANON process in an air pulsing SBR. J Hazard Mater. 2009, 166, 336–341. [Google Scholar] [CrossRef] [PubMed]
- Żubrowska-Sudol, M.; Yang, J.; Trela, J.; Plaza, E. Evaluation of deammonification process performance at different aeration strategies. Water Sci. Technol. 2011, 63, 1168–1176. [Google Scholar] [CrossRef] [PubMed]
Day | Temperature (°C) | Initial Bulk FA at pH = 7.5–7.9 (mg N/L) | AUR(mg N/g VSS/h) | NPR(mg N/g VSS/h) | NPR/AUR |
---|---|---|---|---|---|
1 | 30 | 8.6–20.9 | 13 | 0.9 | 0.07 |
8 | 26 | 6.6–16.2 | 12.3 | 1 | 0.08 |
11 | 22 | 3.8–9.3 | 7.9 | 0.8 | 0.10 |
15 | 22 | 4.2–10.4 | 6.2 | 0.4 | 0.06 |
17 | 18 | 4.2–10.4 | 4.0 | 0.6 | 0.15 |
22 | 18 | 3.0–7.5 | 2.9 | 0.3 | 0.10 |
26 | 16 | 3.0–7.5 | 2.5 | 0.3 | 0.12 |
30 | 16 | 1.1–2.8 | 2.5 | 0.2 | 0.08 |
33 | 14 | 1.1–2.8 | 2.5 | 0.25 | 0.10 |
36 | 14 | 0.5–1.3 | 1.6 | 0.1 | 0.06 |
40 | 13 | 0.5–1.3 | 1.6 | 0.1 | 0.06 |
44 | 13 | 0.4–1.0 | 1.4 | 0.1 | 0.07 |
50 | 12 | 0.4–1.0 | 0.7 | 0.15 | 0.21 |
53 | 12 | 0.4–1.0 | 0.7 | 0.1 | 0.14 |
56 | 12 | 0.4–1.0 | 0.7 | 0.1 | 0.14 |
59 | 12 | 0.4–1.0 | 0.7 | 0.05 | 0.07 |
66 | 12 | 0.1–0.3 | 0.7 | 0.05 | 0.07 |
70 | 11 | 0.1–0.3 | 0.5 | 0.05 | 0.10 |
75 | 11 | 0.1–0.3 | 0.5 | 0.05 | 0.10 |
83 | 11 | 0.1–0.3 | 0.5 | 0.05 | 0.10 |
89 | 11 | 0.2–0.5 | 0.5 | 0.1 | 0.20 |
Sample | Initial 30 °C | Day 10 26 °C | D21 22 °C | D39 14 °C | D68 12 °C | D87 11 °C | Temp. | R | Load |
---|---|---|---|---|---|---|---|---|---|
Shannon’s diversity (H) | 3.54 | 3.56 | 3.55 | 3.66 | 3.83 | 4.05 | −0.82 | 0.90 | −0.76 |
Simpson’s diversity (D) | 17.43 | 15.05 | 14.14 | 15.86 | 25.77 | 27.79 | −0.69 | 0.88 | −0.64 |
Physiological Function in Biomass | Affiliation at Specified Taxonomic Level | Abundance of the Specific Bacterial Group in Total Bacterial Community (%) | Correlation | Growth Trend | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
D0 30 ℃ | D10 26 ℃ | D21 22 ℃ | D39 14 ℃ | D68 12 ℃ | D87 11 ℃ | Temp | R | Load | |||
AOB | Proteobacteria>Betaproteobacteria>Nitrosomonadales>Nitrosomonas | 9.0 | 20.6 | 22.1 | 20.8 | 5.6 | 2.9 | 0.4 | −0.6 | 0.4 | ▼▲ |
NOB | Nitrospirae>Nitrospira>Nitrospirales>Nitrospiraceae>Nitrospira | 0.12 | 0.09 | 0.08 | 0.06 | 0.14 | 0.09 | 0.1 | 0.2 | 0.1 | ▼▲ |
Anammox | Planctomycetes>Planctomycetacia>Planctomycetales>Planctomycetacea>CandidatusBrocadia | 2.4 | 2.1 | 5.5 | 6.1 | 7.5 | 3.5 | −0.7 | 0.6 | −0.8 | ▲ |
HET/Sulphur | Proteobacteria>Betaproteobacteria> Burkholderiales> Burkholderiaceae> Limnobacter | 1.7 | 2.6 | 2.6 | 2.8 | 4.1 | 3.1 | −0.8 | 0.9 | −0.8 | ▲ |
Proteobacteria>Deltaproteobacteria> Desulfovibrionales | 4.3 | 7.5 | 5.5 | 5.4 | 6.6 | 5.5 | −0.2 | 0.2 | 0.0 | ▼▲ | |
Chlorobi>Ignavibacteria>Ignavibacteriales | 1.2 | 1.9 | 1.8 | 1.5 | 1.8 | 2.2 | −0.6 | 0.7 | −0.5 | ▼▲ | |
HET * | Acidobacteria>Solibacteres>Solibacterales>Solibacteraceae>Bryobacter | 1.0 | 1.3 | 1.6 | 1.2 | 1.6 | 0.7 | 0.0 | 0.0 | 0.0 | ▼▲ |
Armatimonadetes>Fimbriimonadia>Fimbriimonadales>Fimbriimonadaceae | 7.0 | 4.5 | 2.9 | 2.7 | 4.0 | 2.1 | 0.8 | −0.6 | 0.7 | ▼ | |
Chloroflexi>Anaerolineae | 33.5 | 21.0 | 20.8 | 15.6 | 11.7 | 8.8 | 0.9 | −0.9 | 0.9 | ▼ | |
Proteobacteria>Betaproteobacteria> Burkholderiales>Comamonadaceae> Comamonas | 0.9 | 0.8 | 1.8 | 2.9 | 6.1 | 4.1 | −0.9 | 0.9 | −0.9 | ▲ | |
Proteobacteria>Betaproteobacteriales> Rhodocyclales>Rhodocyclaceae>Denitratisoma | 1.1 | 2.8 | 3.9 | 4.4 | 6.9 | 13.1 | −0.8 | 0.9 | −0.7 | ▲ | |
Proteobacteria>Gammaproteobacteria> Pseudomonadales> Pseudomonadaceae>Pseudomonas | 0.0 | 0.1 | 0.1 | 0.1 | 0.0 | 4.4 | −0.5 | 0.6 | −0.4 | ▼▲ | |
Proteobacteria>Gammaproteobacteria> Xanthomonadales> Rhodanobacteraceae>Dokdonella | 2.5 | 1.5 | 1.4 | 1.1 | 1.6 | 1.2 | 0.7 | −0.5 | 0.7 | ▼ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Hazmi, H.; Lu, X.; Grubba, D.; Majtacz, J.; Kowal, P.; Mąkinia, J. Achieving Efficient and Stable Deammonification at Low Temperatures—Experimental and Modeling Studies. Energies 2021, 14, 3961. https://doi.org/10.3390/en14133961
Al-Hazmi H, Lu X, Grubba D, Majtacz J, Kowal P, Mąkinia J. Achieving Efficient and Stable Deammonification at Low Temperatures—Experimental and Modeling Studies. Energies. 2021; 14(13):3961. https://doi.org/10.3390/en14133961
Chicago/Turabian StyleAl-Hazmi, Hussein, Xi Lu, Dominika Grubba, Joanna Majtacz, Przemysław Kowal, and Jacek Mąkinia. 2021. "Achieving Efficient and Stable Deammonification at Low Temperatures—Experimental and Modeling Studies" Energies 14, no. 13: 3961. https://doi.org/10.3390/en14133961
APA StyleAl-Hazmi, H., Lu, X., Grubba, D., Majtacz, J., Kowal, P., & Mąkinia, J. (2021). Achieving Efficient and Stable Deammonification at Low Temperatures—Experimental and Modeling Studies. Energies, 14(13), 3961. https://doi.org/10.3390/en14133961