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Abstract: Transformers are generally considered to be the costliest assets in a power network. The
lifetime of a transformer is mainly attributable to the condition of its solid insulation, which in turn is
measured and described according to the degree of polymerization (DP) of the cellulose. Since the
determination of the DP index is complex and time-consuming and requires the transformer to be
taken out of service, utilities prefer indirect and non-invasive methods of determining the DP based
on the byproduct of cellulose aging. This paper analyzes solid insulation degradation by measuring
the furan concentration, recently introduced methanol, and dissolved gases like carbon oxides and
hydrogen, in the insulating oil. A group of service-aged distribution transformers were selected for
practical investigation based on oil samples and different kinds of tests. Based on the maintenance
and planning strategy of the power utility and a weighted combination of measured chemical
indicators, a neural network was also developed to categorize the state of the transformer in certain
classes. The method proved to be able to improve the diagnostic capability of chemical indicators,
thus providing power utilities with more reliable maintenance tools and avoiding catastrophic failure
of transformers.

Keywords: transformer; condition assessment; degradation; furan; methanol; multi-layer perceptron
(MLP)

1. Introduction

Power and distribution transformers are considered to be one of the most important
components of an electrical power system. Transformer failures not only cause blackouts
and energy loss, but they also reduce system reliability and have a significant effect on
power quality. Therefore, monitoring the condition of transformers during operation
is necessary, and the issue is of great interest to engineers and researchers [1,2]. The
lifetime of a transformer is generally assumed to be equivalent to the lifetime of its solid
insulation. This is because many dielectric defects or failures in the insulating system lead
to transformer collapse [3–6]. Figure 1 depicts two sets of distribution transformers that
have been removed from the power system due to damage to their solid insulation.

During operation, the insulation system of oil and paper is exposed to a variety of
electrical, thermal, and mechanical stresses that cause aging. The aging mechanism is a
complex phenomenon that accelerates in the presence of oxygen, heat, and moisture [4,5].
The degree of polymerization is a reliable index to evaluate the mechanical strength and
durability of the paper insulation. New insulating paper has an average DP of 1000–1200 [7].
As the paper ages, the DP decreases, and the color of the paper turns dark brown and loses
tensile strength. A DP value of 200 means the end of its life [8].

DP measurement (according to IEC 60450 or ASTM D4243) has high accuracy and reli-
ability for evaluating the quality of the paper. However, since sampling paper strips from
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the insulation system during operation is impossible because it requires the transformer to
be taken out of service, this method is rarely used for evaluating solid insulation. For this
reason, utilities would rather use indirect and non-invasive evaluative methods [8].
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Figure 1. Deteriorated solid insulation of distribution transformers.

The byproducts of solid insulation degradation (e.g., furanic compounds, gases, acids,
water, alcohols) remain dissolved in the transformer oil. The content and concentration of
these byproducts can provide important information about the state of the paper [8–14].
The details of these diagnostic chemical tests are discussed in subsequent sections of this
paper. Although these methods are effective in themselves, judging the transformer’s
overall status after a single test would be a challenge for a utility. It is accepted that
dissolved methanol, furan and carbon oxides in the insulating oil are prominent markers
of degradation. Using an artificial neural network (ANN) to combine them to access solid
insulation degradation will assure a more reliable detection compared to individual tools.

This study aims to measure dissolved methanol, furanic compounds, and carbon
oxides to achieve a more reliable assessment of solid transformer insulation. The study
had at its disposal several distribution transformers (aged 4–49 years) belonging to the
Iran electric power distribution utility. To perform direct tests on the paper, some of the
transformers were taken out of service for sample collection. For the rest of the transformers,
indirect methods were adopted, and cellulose decomposition byproducts were considered
for analysis. Based on an analysis of furans, methanol, and carbon oxides of the transformer
fleet, four classes of transformers were identified. Furthermore, an artificial neural network
model was designed to assign a comprehensive index of solid insulation degradation to
each transformer. The accuracy of degradation assessment proved to be better with the
neural network than by individual measurement.

The rest of the paper is organized as follows. Detailed measurements and analyses
of the dissolved gases, furanic compounds, and methanol are presented in Section 2. The
experimental and practical studies are discussed in Section 3. The design and performance
of the intelligent neural network are presented in Section 4. Conclusions and future
directions of research are given in Section 5.

2. Chemical Tests to Monitor the Status of Transformer Solid Insulation

The aging of insulation paper is associated with the breakdown of its chemical bonds
and is measured according to its degree of polymerization (DP), the average number of
cellulosic monomers in the paper’s polymeric chain. As the paper ages, the mechanical
properties of cellulose are affected more than its electrical properties are. The aging rate
depends on temperature, humidity, oxygen content, type of oil, and type and thickness of
paper. The coil temperature may be high during normal operation, which in turn may cause
a breakdown in the cellulosic chain, thereby reducing the paper’s mechanical strength [9].
To determine the DP value directly, paper samples should be taken from various locations
along the transformer windings, because the degree of polarization varies across different
sections of the transformer coil, and sent to a laboratory for analysis. To do this, the
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transformer must be overhauled and removed from the circuit. Given the cost associated
with the analysis of each paper sample, and to limit the amount of paper samples to a
reasonable size, various samples were taken at intervals between the bottom ends to the
top end of the coils. The approach adopted in this study, according to the findings of [10],
took samples at 0, 25, 50, 75, 83.3, 91.6, and 100% of the winding height, and the average DP
value of these samples could be used to represents the coil’s DP value. Figure 2 illustrates
the sampling points of an overhauled distribution transformer.
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Figure 2. (a) Illustration of the sampling points on a coil; (b) View of overhauled transformer and samples of paper collected
for testing the DP.

As mentioned, since access to solid insulation is difficult once the transformer is
commissioned and energized, the DP measurement is sometimes performed by taking
paper samples from an old transformer and extrapolating the results over a similarly
designed transformer fleet. However, this approach is not useful for providing an exact
degradation level of the solid insulation. With all these observations, indirect methods like
relating furan analysis to the DP to estimate the deterioration will be more meaningful.

2.1. Furan Analysis

It is widely accepted that furans arise from paper degradation but the actual mech-
anism of formation is not yet fully understood [4]. However, it is known that furans are
produced from the pyrolysis of levoglucosan (LG) and hydrolytic degradation of cellu-
lose [14]. LG, the precursor of the furanic compounds, is the byproduct of the thermal
degradation of cellulosic paper at temperatures higher than 130 ◦C [14]. Scheirs et al. [14]
found that LG leads to the production of all five types of furanic compounds: 2-furfural
(2-FAL), 5-methyl-2-furfural (5-MEF), 5-hydroxymethyl-2-furfural (5-HMF), 2-acetylfuran
(2-ACF), and 2-furfurylalcohol (2-FOL). The studies revealed through laboratory tests that
2-furfural (2-FAL), also referred to as 2-furaldehyde is a byproduct of cellulose aging that
can remain stable for years. Its concentration is, therefore, widely used as an to predict the
paper DP value.

High-performance liquid chromatography (HPLC) is normally used to measure fu-
ranic compounds based on the test procedure described in ASTM-D-5837 [15] and IEC
61198 [16]. However, no standard has yet been developed for interpreting the results,
but 2-FAL was the stablest of the five furanic compounds. Figure 3a shows the furfural
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compounds produced by paper insulation deterioration, and Figure 3b shows the HPLC
device used in this study when transformer oil was injected for furan measurement.
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Laboratory studies showed that paper degradation with the generation of furan
compounds occurs at temperatures above 100–120 ◦C [12]. Equations (1)–(5) resulted from
the experiences of four research groups relating furan compound concentration to the
degree of polymerization. In these equations, f represents 2-FAL concentration in ppm,
and DP is the degree of polymerization [17–19].

DP =
2.6 − log[ f ]

0.0049
(1)

DP =
1.51 − log[ f ]

0.0035
(2)

DP = 325(
19
13

− log[ f ]) (3)

DP =
1850

[ f ] + 2.3
(4)

DP =
800

0.1862 × [ f ] + 1
(5)

Equations (2) and (4) are suggested for 2-furfural concentration up to 5 ppm. However,
studies show that these equations approximate the condition of the paper better early in
the operation of a transformers [19]. It is worth noting that despite many studies on furan
compounds, no single standard has yet been developed for all transformers, especially
since research shows that in transformers that use thermally upgraded paper, have a very
low concentration of furan compounds; therefore, their use as a valid and reliable criterion
for assessing the state of paper insulation is still questionable.

2.2. Carbon Oxides

The other major byproduct of cellulose aging is carbon oxides, which also serve as
an aging indicator. These gases are formed not only during aging but also formed from
other activities such as partial discharges and overheating. During an electrical discharge,
carbon monoxide and carbon dioxide are formed. These gasses can also be formed from
materials other than those containing cellulose, such as oil under some conditions.

Dissolved gas analysis (DGA) is the globally accepted method for monitoring the
dissolved carbon oxides and other soluble gases arising from cellulose deterioration in
transformer oil. The first step in analyzing the oil sample is to extract soluble gases using
the Toepler Pump, a traditional, low-cost gas extraction method [20–22]. Figure 4a shows
the vacuum-soluble gas extraction system that is used in this study. Gases extracted from
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our samples were further separated and measured using different gas chromatography
(GC) devices, as shown in Figure 4b. GC is able to measure the concentration of hydrogen,
methane, ethane, ethylene, acetylene, carbon monoxide, carbon dioxide, oxygen, and
nitrogen [8,23,24].
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Regarding CO2 and CO as indicators for cellulose degradation, the IEC-60599 standard
suggests a CO2/CO ratio in the range of 3 < CO2/CO < 10 for normal paper aging. The ratio
becomes significant when individual gases are above 5000/500 ppm [25]. A ratio below 3
or above 10 may indicate aging by different mechanisms. As carbon oxides can have other
origins apart from cellulose degradation, IEC-60599 recommends that if the CO2/CO ratio
is lower or higher than the specified values, other tests such as furan concentration should
be used to better interpret the results.

2.3. Methanol

Methanol (CH3OH) was introduced as an indicator for aging transformer paper
in 2007 [26]. Experiments showed that a large proportion of methanol was produced
from the destruction of the 1,4-β-glucosidic bond that holds the monomers of cellulose
together [26,27]. According to the literature [8,26–29], the amount of furan or 2-FAL concen-
tration produced from cellulose destruction in the early stages of deterioration is very small
or near zero, but the amount of methanol produced is significant and increases linearly.
So, for the early periods of paper deterioration, methanol is a more reliable indicator than
carbon oxides. Other advantages are that methanol is stable under transformer operating
temperatures and the amount produced is independent of the type of insulating paper
(Kraft and thermally upgraded) [8].

Methanol is the simplest alcohol that is liquid at room temperature. Different chro-
matographic methods have been used to detect alcohols and gases in insulating oils, such
as Gas Chromatography–Mass Spectrometry (GC–MS), Flame Ionization Detection (FID),
High-Performance Liquid Chromatography (HPLC), and Solid-Phase Micro-Extraction
(SPME) [8,29]. In this work, the method presented in [8] was used to measure the methanol
concentration in the oil. A system consisting of a 6890 N gas chromatograph equipped with
a 5973 network mass spectrometer (MS), in the absence of a costly headspace autosampler,
was used to measure the alcohols.
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2.4. Hydrogen (H2)

Hydrogen is one of the oldest indicators used to assess of transformers dating back
nearly 100 years. At least 95% of online monitors measure hydrogen gas concentration in
transformer monitoring [30].

In all the electrical and thermal faults that occur inside the transformer, hydrogen is
produced in greater or lesser amounts in the oil [31]. This is because the energy required
to break hydrogen bonds to form H2 is much less than the energy required to break the
carbon bonds in other degraded materials. Hydrogen gas is produced abundantly as a
result of thermal errors, especially electrical discharges. Under the influence of an electrical
discharge, certain hydrocarbon bonds may break and increase free radicals such as H,
CH3, CH2, and CH. The recombination of these free radicals may produce gases such as
hydrogen, methane, ethane, ethylene, and acetylene.

Low-energy discharge in the oil (without paper) by itself also leads to the produc-
tion of hydrogen, methane, and ethane. However, in the paper–oil system, hydrogen
production increases and reaches about 85% [32]. Hydrogen is also produced as a result
of sparking fault conditions, and its concentration is directly and linearly related to the
number of sparks [33].

A concentration of 100 ppm (0.01%) is a critical value for hydrogen gas. Values less
than 100 ppm indicate a normal transformer operating conditions, but for values above
100 ppm, more tests should be performed on the oil to determine the source of the fault.

There are several different methods for measuring the concentration of H2 in oil,
including gas chromatography (GC), Photo-acoustic (PA) spectrometry, and Calorimetry
spectroscopy [34]. In this work, GC was used according to the method described in
Section 2.2.

Although hydrogen is the main gas in transformer fault detection, concerns have been
raised about hydrogen gas-based analysis because of its low measurement accuracy at low
concentrations in the oil, the possibility that it was produced by other materials inside the
transformer, and stray gassing [30,32].

3. Experimental Investigation of the Transformer Fleet and Laboratory Testing

As previously discussed, dissolved-gas, methanol, and furan analyses are widely
accepted as indirect measures to assess transformer insulation, but a single measurement
would not be reliable enough to identify the condition of the transformer effectively, so
most of the research in the literature was carried out in a laboratory.

In this paper, aged transformers with Buchholz relay faults were investigated and
tested to develop a more comprehensive index of solid insulation degradation. For this
purpose, 40 service-aged oil-filled distribution transformers belonging to Iran’s electric
power distribution utility were selected, and oil samples were taken for analysis. Based on
the available technical documentation, the insulation paper used in these transformers was
of normal kraft-type and the ages of the transformers ranged from 4 to 49 years.

Oil samples were taken according to the IEC 60567 standard for analysis of furan
concentration and dissolved gases. Then, furan compounds, gases and methanol were
measured according to [8,15,20]. In addition to age, the concentration of furan compounds,
methanol, carbon monoxide, carbon dioxide, and hydrogen were studied.

It should be noted that despite the limitations mentioned in Section 2.4 regarding the
use of hydrogen in the analysis and evaluation of insulation conditions, the concentration
of this gas in this study was used to classify the insulation conditions of transformers.
Because the research team believes that hydrogen is still one of the main products of
partial discharge, arcing and sparking, the use of this index with the furan and methanol
concentrations, can help accurately analyze the insulation status of the transformer.

To determine the maintenance and operation strategy of transformers according to
their insulation conditions, they were divided into 4 classes. Based on studies and records of
transformers that failed and in accordance with expert opinion of the utility, a classification
algorithm was designed.
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In this algorithm, critical ranges were extracted for each evaluation index (furan,
hydrogen, carbon oxides, methanol, and age), and a number was assigned to each range.
Table 1 shows the numbers assigned to the critical ranges of each index.

Table 1. Evaluation indicators, critical ranges, and assigned numbers.

Indicators Range Ai

Age
(year)

0–10 1
10–20 2
>20 3

CO2
(ppm)

0–1500 1
>1500 2

CO
(ppm)

0–500 1
>500 2

CO2/CO
3–10 1

0–3 or >10 2

H2
(ppm)

0–100 1
>100 2

2-Fal
(ppb)

0–100 1
100–500 2

500–1000 3
>1000 4

CH3OH
(ppm)

0–0.2 1
0.2–1 2
1–2 3
>2 4

To evaluate the condition, a parameter called B was defined, the value of which was
obtained according to Equation (6):

B =
i=CH3OH

∑
i=age

Ai (6)

where Ai was obtained from Table 2 based on the range of measured indices and the age of
the transformer.

Table 2. Classification of transformers based on insulation conditions and range of B.

Class Description Condition Requirement

1 7 ≤ B < 10 Good Normal Maintenance
2 10 ≤ B < 13 Fair Increase Diagnostic Testing

3 13 ≤ B < 16 Poor Start Planning Process to Replace or
Rebuild Considering Risk

4 16 ≤ B < 19 Very Poor Immediately Assess Risk

For each transformer, the value of B was calculated based on range of evaluation
indicators and indicates the state of the solid insulation. For different values of B, the
transformers were divided into four different classes, and for each the utility determined a
specific maintenance strategy. According to Table 2, a maintenance and operating strategy
can be defined for each transformer according to its class.

According to the abovementioned algorithm, the value of parameter B (age and
concentrations of furan compounds, hydrogen, methanol and carbon oxides and the
CO2/CO ratio) was calculated for each transformer, which was then assigned to a class
according to the condition of its insulation: good, fair, poor, or very poor (Table 2). Table 3
shows the classification ranges for all 40 transformers.
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Table 3. Results of measurements and classification of the transformers.

Sample Age
(year)

CO2
(ppm)

CO
(ppm)

CO2/
CO

H2
(ppm)

2-Fal
(ppb)

CH3OH
(ppm) B Class

S1 37 2569 187 13.7 12 42.3 2.203 14 3
S2 49 1983 189 10.4 11 6.3 0.884 12 2
S3 12 2998 197 15.2 10 98.6 0.976 11 2
S4 33 1760 379 4.6 3 715.1 12.34 15 3
S5 6 1283 157 8.1 10 9.1 0.735 8 1
S6 29 1903 192 9.9 1 92.7 0.138 10 2
S7 35 1734 83 20.8 3 5.8 1.123 13 3
S8 31 1666 159 10.4 1 15.8 0.455 12 2
S9 41 1504 192 7.8 1 13.6 0.867 11 2
S10 34 1720 152 11.3 1 587.0 3.458 16 4
S11 34 3461 219 15.8 16 55.1 0.542 12 2
S12 36 1867 194 9.6 3 192.7 4.658 14 3
S13 42 1351 183 7.3 1 186.9 3.370 13 3
S14 12 2460 155 15.8 18 64.0 0.534 11 2
S15 41 1669 126 13.2 1 185.6 1.183 14 3
S16 44 1979 117 16.9 6 177 20.20 15 3
S17 37 1808 227 7.9 4 47.5 1.675 12 2
S18 13 3644 167 21.8 9 90.0 0.873 11 2
S19 10 1319 120 10.9 0 75.0 0.124 9 1
S20 12 762 114 24.22 5 520 15.6 14 3
S21 15 1819 129 14.1 6 155.2 1.806 13 3
S22 14 3160 292 10.8 8 32.9 0.304 11 2
S23 14 2650 192 13.8 6 63.5 0.422 11 2
S24 14 3797 496 7.6 22 7.8 0.897 10 2
S25 4 2311 442 5.2 4 4.5 0.238 9 1
S26 25 3351 300 11.1 4 286.9 1.020 14 3
S27 13 1761 244 7.21 19 244 13.24 13 3
S28 15 2247 264 8.5 133 270.9 2.501 13 3
S29 14 2274 450 5.05 12 21.1 0.100 9 1
S30 6 2752 92 29.91 1 1391 20.16 15 3
S31 42 4778 1062 4.5 34 47.5 0.306 12 2
S32 42 7310 1128 6.5 64 120.5 1.090 14 3
S33 5 1261 139 9.0 4 23.6 0.603 8 1
S34 15 1752 235 11.71 5 222.2 10.108 14 3
S35 25 4778 457 10.4 0 519.1 1.846 15 3
S36 12 1296 255 5.08 2 305.3 13.83 12 2
S37 36 1335 110 12.1 5 24.4 0.768 11 2
S38 12 2131 220 9.7 2 450 16.6 13 3
S39 43 3144 400 7.8 9 1447 2.030 16 4
S40 23 1812 151 12 3 9.9 0.273 12 2

Then, to evaluate the algorithm and classification method, five transformers were ran-
domly selected from the fleet, and evaluation indices were measured according to [8,15,20].
Samples of insulation paper from selected transformers were taken according to [10] and
Figure 2. Then the DP of the paper samples was measured directly according to IEC 60450
standard. The value of parameter B was calculated, and the class of the transformers was
determined. Table 4 illustrates the results.

For sample 5, the 2-FAL content (587 ppb) and the methanol content (3.458 ppm)
were unusual, and the ratio of carbon oxides according to IEC 60599 was unreliable. High
amounts of both furan and methanol and the DP value showed accelerated paper aging.

Sample 4 had almost the same conditions as Sample 5 for concentrations of methanol,
hydrogen, and carbon oxides, but its furan compound concentration was lower. Its DP
value also indicated that the solid insulation of this transformer was in the early stages
of degradation.
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Table 4. Details of dissolved gases, furan concentrations, methanol in oil samples, DP of the paper
samples, value of parameter B, and the class of each transformer.

Sample Age
(year)

CO2
(ppm)

CO
(ppm)

CO2/
CO

H2
(ppm)

2-Fal
(ppb)

CH3OH
(ppm) DP B Class

1 41 1669 126 13.2 1 185.6 1.183 800 14 3
2 49 1983 189 10.4 11 6.3 0.884 800 12 2
3 4 2311 442 5.2 4 4.5 0.238 800 9 1
4 42 1351 183 7.3 1 186.9 3.370 740 13 3
5 34 1720 152 11.3 1 587.0 3.458 338 16 4

For Sample 2, the amount of furan and methanol are acceptable, the ratio of carbon ox-
ides according to IEC 60599 was unreliable, and the DP value was good. The values showed
normal aging without any electrical and thermal stress even though this transformer was
old. In Sample 1, the amount of furan and methanol indicated that this transformer is
probably in the early stages of insulation degradation but it was in better condition than
sample 4. The ratio of carbon oxides was unreliable, and the DP value is good. Sample
3, showed that this transformer was aging normally and was in better condition than
the others.

Based on the measurements of these 5 transformers, an improved method and al-
gorithm for classifying transformers should place more importance on the furan and
methanol indices. Therefore, furan and methanol concentrations are recommended as
complementary diagnostic tools. For this purpose, the artificial neural network was used
to improve the proposed method and algorithm and increase the classification accuracy in
this paper.

4. Intelligent Neural and Simulation Results
4.1. Description of Artificial Neural Networks

Artificial Neural Networks (ANNs) are outstanding tools for creating generalizable
models in many disciplines. In this study, a multilayer perceptron (MLP), one of the most
popular neural networks, was used to model and generalize the classification results for
the whole transformer fleet of the power utility. The basic principle of an MLP is that
applying a supervised training method to a few data samples with known outputs and
then producing a nonlinear function model makes it possible to predict output data from
new input data.

The MLP used in this study consisted of neurons with multiple inputs, the structure
of which is shown in Figure 5a. Each of inputs: p1, p2, p3, . . . , pR is multiplied by weights
(w1, w2, . . . , wR) and added together. Finally, a constant value b is added to form n, which
can be described as

n = w1p1 + w2p2 + . . . + wRpR + b (7)
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The above equation can be written in matrix form as

n = Wp + b (8)

The output of a multiple-input neuron can be written as

a = f(Wp + b) (9)

These multiple-input neurons stack together to produce multiple layers that operate in
parallel. Finally, these layers are cascaded together to form a fully connected MLP network
as depicted in Figure 5b, which was the structure used in this study.

This structure consisted of three layers: input, hidden, and output. Each layer con-
sisted of several neurons: Vector p represented the network input; vector w the weight of
the inputs; and vector y the output of the network output. Essentially, the input data were
fed into the MLP through the input layer, and these data were passed to the hidden neurons
via hidden weight connections. The hidden neurons performed some calculations and
passed the computed output to the output layer through the output weight connections.
Further computations were carried out at the output neurons, and results were presented.

4.2. Practice and Simulations

To increase the accuracy and efficiency of the proposed method for classifying trans-
formers by insulation condition, a three-layer MLP neural network with 7 neurons for the
input layer (for 7 evaluation indices) and one output neuron was designed. According
to Table 4, the values of age, CO2, CO, CO2/CO, H2, 2-Fal, and CH3OH were considered
as neural network inputs, and the transformer classification was the output. For th input
layers, the Tansig function was used, and the Purelin function was use for the output layer.
The Levenberg–Marquardt algorithm was used for training and estimating weights. Mean
squared error (MSE) was selected as a training performance evaluation as described by the
following equation

MSE =
1
n

n

∑
i=1

(
yi −

^
yi

)2
(10)

where n is the total number of inputs; i is the index of summation; yi is the desired (target)

output from the output layer; and
^
yi is the actual output.

Seventy percent of the available data, corresponding to the measurement results of the
40 transformers, was randomly selected and used to train the neural network to determine
the values of the input weights. Of the available data corresponding to 4 transformers,
10 percent was applied to the neural network for validation purposes. The remaining
20 percent, corresponding to another 8 transformers, was used as test data. To reduce
network error, the data were normalized, and the training was repeated for 1000 epochs.
Figure 6a shows the progress of the network error in terms of training and data.

According to Figure 6a, epochs greater than 94 reduced the training error, but at the
same time caused incorrect estimates of coefficients and weights of input data; consequently,
they increased validation and test performance. According to the results, the best validation
performance was obtained at the 94th iteration, in which the validation performance was
equal to 0.15791, and the training data and test data errors were close to zero. Figure 6b
shows the training state.

Table 5 shows the performance results of the network in analyzing the measurement
results of the sampled oils. Each sample, based on its corresponding oil analysis result,
fell into one of the four categories, described in Table 5 (class column). The columns
representing the learning and training results are associated with the samples used for
training and testing the network. With 10 testing samples and 32 training samples, the
network showed an accuracy of 75%. Given the limited number of samples for training
and testing the network, the results seemed to have appropriate accuracy. However, by
increasing the number of samples, this error will be very close to zero.
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Table 5. Performance results of the network in analyzing the measurement results of the sampled oils.

Sample Class Learning Results Test Results True/False

S1 3 3 - T
S2 2 3 - F
S3 2 2 - T
S4 3 3 - T
S5 1 2 - F
S6 2 2 - T
S7 3 3 - T
S8 2 2 - T
S9 2 2 - T
S10 4 4 - T
S11 2 1 - F
S12 3 3 - T
S13 3 3 - T
S14 2 2 - T
S15 3 3 - T
S16 3 3 - T
S17 2 2 - T
S18 2 1 - F
S19 1 1 - T
S20 3 4 - F
S21 3 3 - T
S22 2 3 - F
S23 2 2 - T
S24 2 2 - T
S25 1 1 - T
S26 3 3 - T
S27 3 2 - F
S28 3 3 - T
S29 1 1 - T
S30 3 3 - T
S31 2 2 - T
S32 3 3 - T
S33 1 - 1 T
S34 3 - 4 F
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Table 5. Cont.

Sample Class Learning Results Test Results True/False

S35 3 - 3 T
S36 2 - 2 T
S37 2 - 2 T
S38 3 - 3 T
S39 4 - 3 F
S40 2 - 2 T

5. Conclusions

In this study, an improved model for assessing the solid insulation of transformers
was developed based on a weighted combination of chemical indicators. A service-aged
transformer fleet from an Iranian electric utility was considered as case study. Methanol,
carbon oxides, 2-FAL, and hydrogen were four high-potential chemical indicators used
to detect solid insulation degradation to categorize transformers into four groups. The
classification was tailor-made to the specific maintenance and planning strategies of the
utility. A neural network model was developed to provide it with a reliable assessment
tool for assessing the condition of transformers by the degradation of their solid insulation.
The results proved that the assessment model helped the utility improve the diagnostic
value of the chemical indicators and avoid catastrophic failure from aged transformers.
However, by extending the transformer fleet and adding more samples to the database,
more accurate and reliable results are expected. This study could be helpful for researchers
and utility engineers to monitor solid insulation degradation and improve risk assessment.
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