Study on the Enhanced Shelf Lifetime of CYTOP-Encapsulated Organic Solar Cells
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tang, C.W. Two-layer organic photovoltaic cell. Appl. Phys. Lett. 1986, 48, 183–185. [Google Scholar] [CrossRef]
- Hori, T.; Miyake, Y.; Yamasaki, N.; Yoshida, H.; Fujii, A.; Shimizu, Y.; Ozaki, M. Solution processable organic solar cell based on bulk heterojunction utilizing phthalocyanine derivative. Appl. Phys. Express 2010, 3, 101602. [Google Scholar] [CrossRef]
- Steim, R.; Ameri, T.; Schilinsky, P.; Waldauf, C.; Dennler, G.; Scharber, M.; Brabec, C.J. Organic photovoltaics for low light applications. Sol. Energy Mater. Sol. Cells 2011, 95, 3256–3261. [Google Scholar] [CrossRef]
- Kaltenbrunner, M.; White, M.S.; Głowacki, E.D.; Sekitani, T.; Someya, T.; Sariciftci, N.S.; Bauer, S. Ultrathin and lightweight organic solar cells with high flexibility. Nat. Commun. 2012, 3, 770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, Y.; Zhang, L.; Cheng, N.; Andrew, T.L. ITO-Free transparent organic solar cell with distributed bragg reflector for solar harvesting windows. Energies 2017, 10, 707. [Google Scholar] [CrossRef]
- National Renewable Energy Laboratory. Available online: https://www.nrel.gov/pv/cell-efficiency.html (accessed on 22 June 2021).
- Liu, X.; Liang, Z.; Du, S.; Tong, J.; Li, J.; Zhang, R.; Shi, X.; Yan, L.; Bao, X.; Xia, Y. Non-halogenated polymer donor-based organic solar cells with a nearly 15% efficiency enabled by a classic ternary strategy. ACS Appl. Energy Mater. 2021, 4, 1774–1783. [Google Scholar] [CrossRef]
- Chai, G.; Chang, Y.; Zhang, J.; Xu, X.; Yu, L.; Zou, X.; Li, X.; Chen, Y.; Luo, S.; Liu, B.; et al. Fine-tuning of side-chain orientations on nonfullerene acceptors enables organic solar cells with 17.7% efficiency. Energy Environ. Sci. 2021, 14, 3469–3479. [Google Scholar] [CrossRef]
- Wang, Y.; Liang, Z.; Li, X.; Qin, J.; Ren, M.; Yang, C.; Bao, X.; Xia, Y.; Li, J. Self-doping n-type polymer as a cathode interface layer enables efficient organic solar cells by increasing built-in electric field and boosting interface contact. J. Mater. Chem. C 2019, 7, 11152–11159. [Google Scholar] [CrossRef]
- Park, S.; Kang, R.; Cho, S. Effect of an Al-doped ZnO electron transport layer on the efficiency of inverted bulk heterojunction solar cells. Curr. Appl. Phys. 2020, 20, 172–177. [Google Scholar] [CrossRef]
- Walker, B.; Choi, H.; Kim, J.Y. Interfacial engineering for highly efficient organic solar cells. Curr. Appl. Phys. 2017, 17, 370–391. [Google Scholar] [CrossRef]
- Cheng, P.; Zhan, X. Stability of organic solar cells: Challenges and strategies. Chem. Soc. Rev. 2016, 45, 2544–2582. [Google Scholar] [CrossRef] [PubMed]
- Levitsky, A.; Schneider, S.A.; Rabkin, E.; Toney, M.F.; Frey, G.L. Bridging the thermodynamics and kinetics of temperature-induced morphology evolution in polymer/fullerene organic solar cell bulk heterojunction. Mater. Horiz. 2021, 8, 1272–1285. [Google Scholar] [CrossRef]
- Kim, J.; Lee, Y.; Kim, J.Y.; Song, H.-J.; Song, J.; Lee, H.; Lee, C. Analysis of the improved thermal stability of Al-doped ZnO-adopted organic solar cells. Appl. Phys. Lett. 2021, 118, 023302. [Google Scholar] [CrossRef]
- Prosa, M.; Tessarolo, M.; Bolognesi, M.; Margeat, O.; Gedefaw, D.; Gaceur, M.; Videlot-Ackermann, C.; Andersson, M.R.; Muccini, M.; Seri, M.; et al. Enhanced Ultraviolet Stability of Air-Processed Polymer Solar Cells by Al Doping of the ZnO Interlayer. ACS Appl. Mater. Interfaces 2016, 8, 1635–1643. [Google Scholar] [CrossRef] [Green Version]
- Nam, C.-Y.; Qin, Y.; Park, Y.S.; Hlaing, H.; Lu, X.; Ocko, B.M.; Black, C.T.; Grubbs, R.B. Photo-Cross-Linkable Azide-Functionalized Polythiophene for Thermally Stable Bulk Heterojunction Solar Cells. Macromolecules 2012, 45, 2338–2347. [Google Scholar] [CrossRef]
- Sun, H.; Weickert, J.; Hesse, H.C.; Schmidt-Mende, L. UV light protection through TiO2 blocking layers for inverted organic solar cells. Sol. Energy Mater. Sol. Cells 2011, 95, 3450–3454. [Google Scholar] [CrossRef]
- Yin, H.; Chiu, K.L.; Bi, P.; Li, G.; Yan, C.; Tang, H.; Zhang, C.; Xiao, Y.; Zhang, H.; Yu, W.; et al. Enhanced electron transport and heat transfer boost light stability of ternary organic photovoltaic cells incorporating non-fullerene small molecule and polymer acceptors. Adv. Electron. Mater. 2019, 5, 1900497. [Google Scholar] [CrossRef]
- Wang, X.; Xinxin Zhao, C.; Xu, G.; Chen, Z.-K.; Zhu, F. Degradation mechanisms in organic solar cells: Localized moisture encroachment and cathode reaction. Sol. Energy Mater. Sol. Cells 2012, 104, 1–6. [Google Scholar] [CrossRef]
- Arredondo, B.; Romero, B.; Beliatis, M.J.; del Pozo, G.; Martín-Martín, D.; Blakesley, J.C.; Dibb, G.; Krebs, F.C.; Gevorgyan, S.A.; Castro, F.A. Analysing impact of oxygen and water exposure on roll-coated organic solar cell performance using impedance spectroscopy. Sol. Energy Mater. Sol. Cells 2018, 176, 397–404. [Google Scholar] [CrossRef]
- Weiss, A.; Hays, C.J. Simulation of daily solar irradiance. Agric. For. Meteorol. 2004, 123, 187–199. [Google Scholar] [CrossRef]
- Kim, N.; Potscavage, W.J.; Sundaramoothi, A.; Henderson, C.; Kippelen, B.; Graham, S. A correlation study between barrier film performance and shelf lifetime of encapsulated organic solar cells. Sol. Energy Mater. Sol. Cells 2012, 101, 140–146. [Google Scholar] [CrossRef]
- Gevorgyan, S.A.; Madsen, M.V.; Roth, B.; Corazza, M.; Hösel, M.; Søndergaard, R.R.; Jørgensen, M.; Krebs, F.C. Lifetime of Organic Photovoltaics: Status and Predictions. Adv. Energy Mater. 2016, 6, 1501208. [Google Scholar] [CrossRef] [Green Version]
- Giannouli, M.; Drakonakis, V.M.; Savva, A.; Eleftheriou, P.; Florides, G.; Choulis, S.A. Methods for improving the lifetime performance of organic photovoltaics with low-costing encapsulation. ChemPhysChem 2015, 16, 1134–1154. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, S.; Culp, J.H.; Whyland, J.T.; Garvan, M.; Misra, V. Encapsulation of organic solar cells with ultrathin barrier layers deposited by ozone-based atomic layer deposition. Org. Electron. 2010, 11, 1896–1900. [Google Scholar] [CrossRef]
- Potscavage, W.J.; Yoo, S.; Domercq, B.; Kippelen, B. Encapsulation of pentacene/C60 organic solar cells with Al2O3 deposited by atomic layer deposition. Appl. Phys. Lett. 2007, 90, 253511. [Google Scholar] [CrossRef] [Green Version]
- Dennler, G.; Lungenschmied, C.; Neugebauer, H.; Sariciftci, N.S.; Latrèche, M.; Czeremuszkin, G.; Wertheimer, M.R. A new encapsulation solution for flexible organic solar cells. Thin Solid Films 2006, 511, 349–353. [Google Scholar] [CrossRef]
- Channa, I.A.; Distler, A.; Zaiser, M.; Brabec, C.J.; Egelhaaf, H.-J. Thin film encapsulation of organic solar cells by direct deposition of polysilazanes from solution. Adv. Energy Mater. 2019, 9, 1900598. [Google Scholar] [CrossRef]
- Granstrom, J.; Swensen, J.S.; Moon, J.S.; Rowell, G.; Yuen, J.; Heeger, A.J. Encapsulation of organic light-emitting devices using a perfluorinated polymer. Appl. Phys. Lett. 2008, 93, 193304. [Google Scholar] [CrossRef]
- Zheng, Y.; Shi, W.; Kong, J.; Huang, D.; Katz, H.E.; Yu, J.; Taylor, A.D. A cytop insulating tunneling layer for efficient perovskite solar cells. Small Methods 2017, 1, 1700244. [Google Scholar] [CrossRef]
- Chang, C.-Y.; Wang, C.-C. Enhanced stability and performance of air-processed perovskite solar cells via defect passivation with a thiazole-bridged diketopyrrolopyrrole-based π-conjugated polymer. J. Mater. Chem. A 2020, 8, 8593–8604. [Google Scholar] [CrossRef]
- Kim, J.M.; Oh, J.; Jung, K.-M.; Park, K.; Jeon, J.-H.; Kim, Y.-S. Ultrathin flexible thin film transistors with CYTOP encapsulation by debonding process. Semicond. Sci. Technol. 2019, 34, 075015. [Google Scholar] [CrossRef]
- Jeon, P.J.; Min, S.-W.; Kim, J.S.; Raza, S.R.A.; Choi, K.; Lee, H.S.; Lee, Y.T.; Hwang, D.K.; Choi, H.J.; Im, S. Enhanced device performances of WSe2–MoS2 van der Waals junction p–n diode by fluoropolymer encapsulation. J. Mater. Chem. C 2015, 3, 2751–2758. [Google Scholar] [CrossRef]
- Seo, S.G.; Jin, S.H. Bias Temperature Stress Instability of Multilayered MoS2 Field-Effect Transistors with CYTOP Passivation. IEEE Trans. Electron Devices 2019, 66, 2208–2213. [Google Scholar] [CrossRef]
- Lare, Y.; Kouskoussa, B.; Benchouk, K.; Ouro Djobo, S.; Cattin, L.; Morsli, M.; Diaz, F.R.; Gacitua, M.; Abachi, T.; del Valle, M.A.; et al. Influence of the exciton blocking layer on the stability of layered organic solar cells. J. Phys. Chem. Solids 2011, 72, 97–103. [Google Scholar] [CrossRef]
- Na, I.; Lee, S.E.; Joo, M.-K.; Park, I.-H.; Song, J.-I.; Joo, H.; Kim, Y.K.; Kim, G.-T. Effect of Ir(pq)2acac doping on CBP in phosphorescence organic light-emitting diodes. Curr. Appl. Phys. 2020, 20, 78–81. [Google Scholar] [CrossRef]
- Qi, B.; Zhang, Z.-G.; Wang, J. Uncovering the role of cathode buffer layer in organic solar cells. Sci. Rep. 2015, 5, 7803. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Guo, W.; Liu, C.; Zhang, X.; Li, S.; Guo, J.; Zhang, L. Impedance investigation of the highly efficient polymer solar cells with composite CuBr2/MoO3 hole transport layer. Phys. Chem. Chem. Phys. 2017, 19, 20839–20846. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, L.; Hu, X.; Zhang, L.; Chen, Y. Low Work-function Poly(3,4-ethylenedioxylenethiophene): Poly (styrene sulfonate) as Electron-transport Layer for High-efficient and Stable Polymer Solar Cells. Sci. Rep. 2015, 5, 12839. [Google Scholar] [CrossRef] [Green Version]
- De Jong, M.P.; Van IJzendoorn, L.J.; De Voigt, M.J.A. Stability of the interface between indium-tin-oxide and poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) in polymer light-emitting diodes. Appl. Phys. Lett. 2000, 77, 2255–2257. [Google Scholar] [CrossRef]
- Greczynski, G.; Kugler, T.; Keil, M.; Osikowicz, W.; Fahlman, M.; Salaneck, W.R. Photoelectron spectroscopy of thin films of PEDOT–PSS conjugated polymer blend: A mini-review and some new results. J. Electron Spectrosc. Relat. Phenom. 2001, 121, 1–17. [Google Scholar] [CrossRef]
- Lim, J.; Park, M.; Bae, W.K.; Lee, D.; Lee, S.; Lee, C.; Char, K. Highly Efficient cadmium-free quantum dot light-emitting diodes enabled by the direct formation of excitons within InP@ZnSeS quantum dots. ACS Nano 2013, 7, 9019–9026. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Zhang, L.; Takagi, H.; Maeda, R. Cavity-first approach for microelectromechanical system–CMOS monolithic integration. Micro Nano Lett. 2013, 8, 700–703. [Google Scholar] [CrossRef]
- Schmidt, G.C.; Höft, D.; Haase, K.; Hübler, A.C.; Karpov, E.; Tkachov, R.; Stamm, M.; Kiriy, A.; Haidu, F.; Zahn, D.R.T.; et al. Naphtalenediimide-based donor–acceptor copolymer prepared by chain-growth catalyst-transfer polycondensation: Evaluation of electron-transporting properties and application in printed polymer transistors. J. Mater. Chem. C 2014, 2, 5149–5154. [Google Scholar] [CrossRef] [Green Version]
- Han, A.; Oh, K.W.; Bhansali, S.; Henderson, H.T.; Ahn, C.H. A low temperature biochemically compatible bonding technique using fluoropolymers for biochemical microfluidic systems. In Proceedings of the IEEE Thirteenth Annual International Conference on Micro Electro Mechanical Systems, Miyazaki, Japan, 23–27 January 2000; pp. 414–418. [Google Scholar]
- Arredondo, B.; Romero, B.; Del Pozo, G.; Sessler, M.; Veit, C.; Würfel, U. Impedance spectroscopy analysis of small molecule solution processed organic solar cell. Sol. Energy Mater. Sol. Cells 2014, 128, 351–356. [Google Scholar] [CrossRef]
- Kobori, T.; Kamata, N.; Fukuda, T. Impedance spectroscopy for annealing-induced change of molybdenum oxide in organic photovoltaic cell. Adv. Mater. Phys. Chem. 2017, 7, 323–333. [Google Scholar] [CrossRef] [Green Version]
- Bulgarevich, K.; Sakamoto, K.; Yasuda, T.; Minari, T.; Takeuchi, M. Operational stability enhancement of polymeric organic field-effect transistors by amorphous perfluoropolymers chemically anchored to gate dielectric surfaces. Adv. Electron. Mater. 2020, 6, 2000161. [Google Scholar] [CrossRef]
- Hamilton, R.; Smith, J.; Ogier, S.; Heeney, M.; Anthony, J.E.; McCulloch, I.; Veres, J.; Bradley, D.D.C.; Anthopoulos, T.D. High-performance polymer-small molecule blend organic transistors. Adv. Mater. 2009, 21, 1166–1171. [Google Scholar] [CrossRef]
- Hwang, D.K.; Fuentes-Hernandez, C.; Kim, J.; Potscavage, W.J., Jr.; Kim, S.-J.; Kippelen, B. Top-gate organic field-effect transistors with high environmental and operational stability. Adv. Mater. 2011, 23, 1293–1298. [Google Scholar] [CrossRef]
- Root, S.E.; Jackson, N.E.; Savagatrup, S.; Arya, G.; Lipomi, D.J. Modelling the morphology and thermomechanical behaviour of low-bandgap conjugated polymers and bulk heterojunction films. Energy Environ. Sci. 2017, 10, 558–569. [Google Scholar] [CrossRef] [Green Version]
- Seemann, A.; Sauermann, T.; Lungenschmied, C.; Armbruster, O.; Bauer, S.; Egelhaaf, H.J.; Hauch, J. Reversible and irreversible degradation of organic solar cell performance by oxygen. Sol. Energy 2011, 85, 1238–1249. [Google Scholar] [CrossRef]
- Yamilova, O.R.; Martynov, I.V.; Brandvold, A.S.; Klimovich, I.V.; Balzer, A.H.; Akkuratov, A.V.; Kusnetsov, I.E.; Stingelin, N.; Troshin, P.A. What is Killing Organic Photovoltaics: Light-Induced Crosslinking as a General Degradation Pathway of Organic Conjugated Molecules. Adv. Energy Mater. 2020, 10, 1903163. [Google Scholar] [CrossRef] [Green Version]
- Harwell, J.R.; Whitworth, G.L.; Turnbull, G.A.; Samuel, I.D.W. Green Perovskite Distributed Feedback Lasers. Sci. Rep. 2017, 7, 11727. [Google Scholar] [CrossRef] [Green Version]
- Sun, Q.; Liu, X.; Cao, J.; Stantchev, R.I.; Zhou, Y.; Chen, X.; Parrott, E.P.J.; Lloyd-Hughes, J.; Zhao, N.; Pickwell-MacPherson, E. Highly Sensitive Terahertz Thin-Film Total Internal Reflection Spectroscopy Reveals in Situ Photoinduced Structural Changes in Methylammonium Lead Halide Perovskites. J. Phys. Chem. C 2018, 122, 17552–17558. [Google Scholar] [CrossRef]
- Hwang, D.K.; Fuentes-Hernandez, C.; Fenoll, M.; Yun, M.; Park, J.; Shim, J.W.; Knauer, K.A.; Dindar, A.; Kim, H.; Kim, Y.; et al. Systematic reliability study of top-gate p- and n-channel organic field-effect transistors. ACS Appl. Mater. Interfaces 2014, 6, 3378–3386. [Google Scholar] [CrossRef] [PubMed]
- Qi, B.; Wang, J. Fill factor in organic solar cells. Phys. Chem. Chem. Phys. 2013, 15, 8972–8982. [Google Scholar] [CrossRef] [PubMed]
- Kyaw, A.K.K.; Wang, D.H.; Gupta, V.; Leong, W.L.; Ke, L.; Bazan, G.C.; Heeger, A.J. Intensity dependence of current–voltage characteristics and recombination in high-efficiency solution-processed small-molecule solar cells. ACS Nano 2013, 7, 4569–4577. [Google Scholar] [CrossRef] [PubMed]
- Guerrero, A.; Montcada, N.F.; Ajuria, J.; Etxebarria, I.; Pacios, R.; Garcia-Belmonte, G.; Palomares, E. Charge carrier transport and contact selectivity limit the operation of PTB7-based organic solar cells of varying active layer thickness. J. Mater. Chem. A 2013, 1, 12345–12354. [Google Scholar] [CrossRef] [Green Version]
- Yao, E.-P.; Chen, C.-C.; Gao, J.; Liu, Y.; Chen, Q.; Cai, M.; Hsu, W.-C.; Hong, Z.; Li, G.; Yang, Y. The study of solvent additive effects in efficient polymer photovoltaics via impedance spectroscopy. Sol. Energy Mater. Sol. Cells 2014, 130, 20–26. [Google Scholar] [CrossRef]
- Kim, J.Y.; Vincent, P.; Jang, J.; Jang, M.S.; Choi, M.; Bae, J.-H.; Lee, C.; Kim, H. Versatile use of ZnO interlayer in hybrid solar cells for self-powered near infra-red photo-detecting application. J. Alloys Compd. 2020, 813, 152202. [Google Scholar] [CrossRef]
- Jin, M.-J.; Jo, J.; Yoo, J.-W. Impedance spectroscopy analysis on the effects of TiO2 interfacial atomic layers in ZnO nanorod polymer solar cells: Effects of interfacial charge extraction on diffusion and recombination. Org. Electron. 2015, 19, 83–91. [Google Scholar] [CrossRef]
CYTOP | Bare | |||
---|---|---|---|---|
Pristine | Aged | Pristine | Aged | |
JSC (mA cm−2) | 12.83 ± 0.46 | 13.16 ± 0.19 | 12.67 ± 0.29 | 11.93 ± 0.29 |
(13.50) | (13.23) | (13.08) | (12.05) | |
VOC (V) | 0.75 ± 0.00 | 0.76 ± 0.00 | 0.75 ± 0.00 | 0.76 ± 0.00 |
(0.75) | (0.75) | (0.75) | (0.76) | |
FF | 0.66 ± 0.03 | 0.62 ± 0.01 | 0.66 ± 0.01 | 0.57 ± 0.02 |
(0.69) | (0.61) | (0.67) | (0.56) | |
PCE (%) | 6.36 ± 0.38 | 6.13 ± 0.18 | 6.32 ± 0.17 | 5.17 ± 0.18 |
(6.95) | (6.05) | (6.60) | (5.13) | |
RS (Ω·cm2) | 5.5 | 7.3 | 6.7 | 11.3 |
RSH (Ω·cm2) | 8.8 × 102 | 7.3 × 102 | 10.3 × 102 | 5.6 × 102 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.; Song, H.-J.; Lee, C. Study on the Enhanced Shelf Lifetime of CYTOP-Encapsulated Organic Solar Cells. Energies 2021, 14, 3993. https://doi.org/10.3390/en14133993
Kim J, Song H-J, Lee C. Study on the Enhanced Shelf Lifetime of CYTOP-Encapsulated Organic Solar Cells. Energies. 2021; 14(13):3993. https://doi.org/10.3390/en14133993
Chicago/Turabian StyleKim, Jaehoon, Hyung-Jun Song, and Changhee Lee. 2021. "Study on the Enhanced Shelf Lifetime of CYTOP-Encapsulated Organic Solar Cells" Energies 14, no. 13: 3993. https://doi.org/10.3390/en14133993
APA StyleKim, J., Song, H. -J., & Lee, C. (2021). Study on the Enhanced Shelf Lifetime of CYTOP-Encapsulated Organic Solar Cells. Energies, 14(13), 3993. https://doi.org/10.3390/en14133993