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Abstract: Microgrids operating on renewable energy resources have potential for powering rural
areas located far from existing grid infrastructures. These small power systems typically host a
hybrid energy system of diverse architecture and size. An effective integration of renewable energies
resources requires careful design. Sizing methodologies often lack the consideration for reliability
and this aspect is limited to power adequacy. There exists an inherent trade-off between renewable
integration, cost, and reliability. To bridge this gap, a sizing methodology has been developed to
perform multi-objective optimization, considering the three design objectives mentioned above. This
method is based on the non-dominated sorting genetic algorithm (NSGA-II) that returns the set of
optimal solutions under all objectives. This method aims to identify the trade-offs between renewable
integration, reliability, and cost allowing to choose the adequate architecture and sizing accordingly.
As a case study, we consider an autonomous microgrid, currently being installed in a rural area in
Mali. The results show that increasing system reliability can be done at the least cost if carried out in
the initial design stage.

Keywords: microgrid; off-grid; reliability; sizing; genetic algorithm

1. Introduction

Electricity is at the heart of modern economies, and its share in the global energy
demand continues to increase [1]. Global electricity demand is expected to grow by
30% by 2040, this growth is largely dominated by developing countries. Most modern
economies have robust electricity grids, which guarantee a high degree of reliability to
end-users. There is a direct link between access to reliable electricity and economic and
social development. However, in many places in the world, electricity access is still lacking.
Around 759 million people had no access to electricity worldwide in 2019 [2]. Most of the
concerned population lives in Sub-Saharan Africa and Asia. For the regions where the
electricity grid is not present, different solutions are available. Grid extension appears
to be the logical option, however, this solution becomes less viable as the distance from
existing grid infrastructure increases, and as the density, load demand, and revenues of the
concerned population decrease [3]. One promising alternative is to build small electricity
grids known as microgrids which mutualize production assets to consumers as opposed
to standalone systems [4]. It is estimated that at least 34 million people had access to
electricity from standalone systems (71%) and microgrids (29%) between 2010 and 2017 [3].
Microgrids integrate more and more renewable resources as the prices of these technologies
get more competitive. In terms of the type of renewable resources used, we can cite solar
photovoltaics, wind, biomass, micro-hydro, and tidal energy [5]. Autonomous microgrids,
which have no connection to the national electricity grid, are the topic of interest in this
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paper. In Section 2, a review is given including important aspects related to reliability and
existing methods for designing these types of power systems. In Section 3, the method
developed to size autonomous microgrids taking into consideration reliability aspects is
introduced. In Section 4, a microgrid project used as a case study for this article is described.
In Section 5, the results obtained after applying the proposed method to the case study
are presented.

2. Literature Review on Autonomous Microgrid Design

This paper focuses on microgrids that have no ability to connect to the grid and are
therefore referred to as autonomous microgrids, also known as mini-grids in the context of
rural energy access [6–8]. These systems have been used for a long time as a solution to
bring access to electricity to remote locations where grid extension is unaffordable. The cut
in renewable energy prices has introduced new types of autonomous microgrids, based
on renewable energy resources and energy storage. The power ratings of these systems
can range from as little as 50 kVA to a few MVA. Only PV systems and diesel generators
(Gensets) are considered as the potential sources of generation. PV arrays can be either DC
coupled (PVdc), AC coupled (PVac), or integrated into a hybrid architecture where one
part of the solar system is connected to a DC bus and another part is connected to an AC
bus. Figure 1 shows the microgrid architecture that is considered for the paper. Energy
storage systems (ESSs) are used to store excess renewable energy, allowing for a further
decrease in the use of fossil-based generation and can be in the form of electrochemical,
kinetic, compressed air, or gravitational; however, only battery storage is considered in this
paper. A power conversion system (PCS) is required to interface the DC sources (ESS and
PVdc) to the AC bus.
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Several articles have reviewed the methodologies proposed for the sizing and opti-
mization of autonomous hybrid systems [9–14]. Al-falahi et al. [10] listed various indicators
used as design objectives. Most of them are economic, reliability, and environmental in-
dicators. Social indicators can also be found in some papers. The authors have observed
that single-objective articles were focusing on the optimization of a cost indicator, whereas
multi-objective articles were often focusing on the objectives of cost and reliability. The
cost thus represents the first optimization objective and includes investment, operation,
maintenance, and replacement costs. A recent review on the sizing methodologies of
hybrid renewable energy systems from Lian et al. [15] shows that a large proportion of
the reviewed sizing methodologies were focusing on off-grid/autonomous applications
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(79%). To classify the different methods available, Tezer et al. [11] distinguish classical
optimization approaches to meta-heuristic approaches. Classical methods require limiting
mathematical properties linked to the objective function and include for example the it-
erative optimization method and linear programming. Meta-heuristic methods include
higher-level algorithms to control the whole process of search to explore the solution space
efficiently and avoid local optima. These methods can be applied to a wide range of
optimization problems. We can distinguish “neighborhood” meta-heuristics developing
a single solution at a time to “distributed” or “population-based” meta-heuristics that
process a whole population at a time, such as particle swarm optimization (PSO) and ge-
netic algorithms (GA). Various articles have used genetic algorithms to size hybrid energy
systems. Katsigiannis et al. [16] use the NSGA-II to design a small autonomous hybrid
power system comprising of both renewable and conventional power sources with the
objectives of minimizing the energy cost of the system and total greenhouse gas emission
during the system lifetime. Reliability was however not considered. Kamjoo et al. [17]
have used the NSGA-II algorithm to obtain the trade-offs between cost and reliability in
order to size a wind/solar/battery system. Roy et al. [18] used the NSGA-II algorithm to
size a multi-energy system solely on renewable energy under the objectives of cost (LCOE)
and reliability. Refs. [19–23] have considered long-term sizing with multi-step investments
using optimization techniques.

Some reviews also focus on available tools for the design and planning of hybrid
renewable energy systems [24–26]. Various articles use the software Homer to size hybrid
energy systems [27]. Homer is an optimization software that is used to design hybrid
systems for microgrid/stand-alone applications. It performs simulations of all possible
configurations, calculates energy flows, and lists results according to their relative cost of
energy (COE). iHOGA is another hybrid system optimization tool that can be used similarly
to model and simulate various components [28]. The authors in [29] make a comparative
assessment of Homer and iHoga using a case study, with the motivation that the latter has
not been explored as much in the literature. An interesting feature of iHOGA is its ability
to perform multi-objective optimization, using up to three objectives (Net Present Cost,
CO2 emissions, and Unmet Load), it offers also more flexibility in the control strategies
used in the simulations.

Reliability can have different meanings and can account for different aspects depend-
ing on the application and field. It can be summarized as the ability of a system to perform
as intended without any failure and within the desired performance limits for a specified
time, in its lifetime conditions [30]. In power systems, reliability deals with power interrup-
tions, whereas power quality concerns the quality of the sine wave when power is available.
Therefore, phenomena of interest in power quality studies, such as swells, swags, impulses,
and harmonics are not explored in reliability studies. The reliability of power systems can
be separated into adequacy and security [31]. Adequacy relates to the ability of power
systems to supply the demand with adequate generation and transmission facilities with a
desired level of reserve and can be evaluated in long-term planning studies [30]. Security
relates to the ability of the power system to withstand sudden contingencies and outages
and is more often integrated into short-term reliability assessment.

Reviews have investigated the use of reliability objectives in designing hybrid systems.
Several studies involve reliability assessment in the design of microgrids [32–36]. Most
of the reliability indicators used relate to adequacy assessment and account for the risk
that generation is lower than consumption [11]. The main adequacy indicators used in the
literature for sizing hybrid systems are loss of power supply probability (LPSP), loss of
load probability (LOLP), expected energy not supplied (EENS), deficiency of power supply
probability (DPSP), loss of load expected (LOLE), and loss of energy expected (LOEE) [15].
The software tools for hybrid system optimization mentioned above also account solely for
system adequacy. In the Homer software, reliability can be used as a constraint, specifying
a maximum capacity shortage fraction allowed. This capacity shortage accounts for the
shortage of generation to power the load, as well as insufficient reserves from the reserve
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requirement set up by the user. iHOGA also includes a reliability constraint using the
indicator of unmet load; however, this indicator does not account for operating reserves.

Some papers in the literature have investigated the security assessment of microgrids.
In [37], Paliwal et al. use a Particle Swarm Optimization method to determine optimal
autonomous microgrid component sizing with the incorporation of reliability constraints.
The reliability analysis of the microgrid is carried out using a multi-state availability model
(MSAM) of different generators to calculate the percentage of risk state probability (genera-
tion is inadequate to supply load) and the percentage of healthy state probability (system
has adequate reserves). Xu et al. [38–40] have integrated the consideration of protection
and operation into the reliability evaluation of microgrids. However, the reliability analysis
developed is not focusing on purely autonomous microgrids with centralized generation
and is not integrated into a design method. Escalera et al. [41] suggest that security aspects
could be incorporated into reliability analysis in the design phases of microgrids, as the
size of the considered systems is small enough to limit the computation time. Security
assessment, which in conventional power systems is performed with a short-term horizon,
could thus be implemented in long-term planning. Peyghami et al. [30] introduce a new
framework for the reliability evaluation of modern power systems. According to the au-
thor, security assessment would focus on static phenomena, dynamic and transient, and
cybersecurity. In rural autonomous microgrids, security issues are mainly concerned with
the stability and thermal limitations of the power electronic interfaces. These limitations
impact considerably the protection scheme of the microgrids, as those are typically based
on conventional overcurrent devices.

There is thus a research gap in the literature related to the consideration of reliability
in the design of isolated microgrid systems, often focusing solely on adequacy. There is
a need to model how the design can influence reliability, considering other aspects, such
as component failure and protection. There is also a need to explore further the trade-off
between design objectives such as cost, reliability, and renewable integration. Therefore,
this paper proposes a novel method to size individual components as well as redundancy
by exploring the trade-offs between the objectives mentioned above and considering the
impact of component failure and protection malfunction on reliability. It aims not to return
the optimal sizing of the system, but rather to give the designer the means to carefully
select the preferred option according to the observed trade-offs. The method is described
in Section 3. A case study is presented in Section 4, and the results obtained from applying
the method to this case study are discussed in Section 5 before a conclusion is drawn.

3. Method for Sizing Autonomous Microgrids

This section describes the methodology developed for the sizing and design of au-
tonomous microgrids. The methodology aims to give the user the means to select the
optimal component sizing, architecture, as well as control strategy, regarding the objec-
tives of cost, renewable integration, and reliability. There are two general approaches
to solve multi-objective optimization problems. The first approach consists of collecting
all objectives into a single objective function, using a weighted sum, or treating some
objectives as constraints [11]. The second approach is Pareto-based optimization, which
uses the Pareto-dominance concept. The Pareto-front is the set of all solutions for which
the corresponding objective vectors cannot be improved in any dimension without degra-
dation in another [20]. When considering three objectives, the Pareto-front becomes a
three-dimensional surface. The Pareto-based approach was preferred because it does not
require fixing a priority or a limit on one of the objectives and it gives the ability to observe
trade-offs between optimization objectives.

3.1. Global Multi-Objective Optimisation Method

A genetic algorithm was selected for its ability to implement various control algo-
rithms and component models without the need to adapt the optimization formulation.
A schematic of the global method developed is presented in Figure 2. This method is
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presented in [42]. In the evaluation of each microgrid configuration, the simulation gives
indicators for the objectives of cost and renewable energy integration and the reliability
analysis gives the indicator of unavailability. Both evaluations are performed in a python
environment [43]. The planning horizon is 15 years.
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The genetic algorithm NSGA-II, developed by K. Deb et al. [44], is used to obtain the
non-dominant pareto frontier of the objectives. The advantage of this type of algorithm is
that it can efficiently explore the search space. It starts with creating an initial population
of a predefined size. Each individual from the population is then evaluated with the
simulation and reliability analysis. The population is then ranked based on three indicators
(cost, renewable integration, reliability). The algorithm applies a selection, crossover,
and mutation to create a new child population. The parent population and children are
then combined and ranked to select individuals for the new generation. This process is
replicated until the stop criteria are reached. The selection is based on elitism, ensuring the
non-dominated individuals from the combined parent and child populations are passed to
the next generation.

The variables to optimize are shown in Table 1. Redundancy of diesel generators and
PCS inverters is also considered. Different dispatch strategies are considered including
“load following” and “cycle charging” as defined in [45]. The NSGA-II algorithm is
implemented with the package Pymoo [46], whose settings are given in Table 2. The
computation requirement for a population size of 65 is around 11 min per generation.

Table 1. Sizing variables of the genetic algorithm.

Sizing Variables Redundancy Variables Control Variables

PnomPVac Dispatch strategy
PnomPVdc
PnomGenset NGenset
PnomPCS NPCS
CnomESS
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Table 2. Tuning of the genetic algorithm.

Parameter Value

Population size 65
Number of generations 100

Selection type Elitism
Crossover probability 1.0
Mutation probability 1.0

Stop criteria Max number of generations

The first optimization objective is the net present cost (NPC) expressed in k€, and is
calculated through Equation (1), where NPCi is the net present cost of component i and
includes investment cost Cinv,i, yearly operation cost CO&M,i,t, and replacement cost Crep,i,t,
as calculated in Equation (2). r is the discount rate.

NPC = NPCPVac + NPCPVdc + NPCESS + NPCGenset + NPCAFE (1)

NPCi = Cinv,i +
Y

∑
y=1

CO&M,i,t + Crep,i,t

(1 + r)t (2)

The second optimization objective is the renewable integration as is calculated with
Equation (3). The objective is calculated through Equation (3), with PGenset(t) being the
power produced by all gensets at time t, PLoad(t) being the load consumption at time t,
∆t being the simulation time step, and T the total number of time steps in the project
duration considered.

ShareR.E. = 1− ∑T
t=1 PGenset(t)× ∆t

∑T
t=1 PLoad(t)× ∆t

(3)

The third optimization objective concerns reliability. The unavailability UµGrid is to
be minimized and is given as the ratio of the expected energy not served (EENS) to the
yearly load demand. The EENS indicator is a sum of three components which are detailed
in Section 3.3.

UµGrid = 100·
EENSµGrid

ELoad
= 100·

EENSAdequ. + EENSCont. + EENSProt.

ELoad
(4)

3.2. Simulation Platform Developed

The simulation is made in Python 3.6 (Python Software Foundation, https://www.
python.org/ (accessed on 22 July 2021)) and is based on various models describing the
behavior of the different microgrid components [43]. The simulation time step is taken as
10 min to account for variability in the load and renewable energy production as well as to
model the control of microgrid components with sufficient time resolution. The input data
is available as 1-year irradiation and temperature data as well as 15-years load consumption
data. Only active power flows are considered in the simulation. The same model is used to
calculate the power at the Maximum Power Point for the PV array connected to the AC bus
(PPVac,mppt) and the one connected to the DC bus (PPVdc,mppt). Equation (5) describes the
model where PPV,nom is the nominal power of the installed PV array (kWp), Gtot, β(t) is the
global horizontal irradiance in the plane of array (W/m2), and ηPV, glob(t) is the efficiency
of the global PV array.

PPV,mppt(t) = PPV,nom ×
Gtot, β(t)

1000
× ηPV, glob(t) (5)

ηPV, glob(t) (p.u.) includes temperature losses, inverter losses, and other miscellaneous
losses as calculated in Equation (6), where ηinv(t) is the inverter efficiency at time t (p.u.),
Lossesconst are constant losses and account for cable losses, mismatch, and dirt (p.u.), αtemp
is the temperature derating coefficient according to the datasheet of the PV module (%/◦C),

https://www.python.org/
https://www.python.org/
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Tc(t) is the module cell temperature (◦C), and Tc, re f is the reference cell temperature at
Standard Test Conditions (◦C).

ηPV, glob(t) = ηinv(t)× (1− Lossesconst ×
[
1−

αtemp

100
×
(

Tc(t)− Tc, re f

)]
(6)

The module cell temperature Tc(t) is calculated as per Equation (7), where Ta(t) is
the ambient temperature at time t (◦C), Tc NOCT is the nominal operating cell temperature
[◦C], Ta NOCT is the nominal operating ambient temperature (◦C), GNOCT is the nominal
operating irradiance (W/m2).

Tc(t) = Ta(t) + (Tc NOCT − Ta NOCT)×
Gtot, β(t)
GNOCT

(7)

The EMS model calculates active power setpoints for each microgrid component.
Only the battery system does not receive a setpoint as its power output is the difference
between the power from the bi-directional inverter and the power produced by the PV
array connected to the DC bus, both controlled by the energy management system (EMS).

The genset controller model decides to start/stop individual gensets and dispatches
the global genset power setpoint to each available unit. The PV converter model applies a
saturation of the active power setpoint to the nominal power rating of the converter as well
as an efficiency based on an efficiency versus operating power curve. The PCS also applies
a saturation and an efficiency to the setpoint but allows for bi-directional power flow.

3.3. Reliability Analysis Method

As discussed in Section 2, reliability can address both adequacy and security aspects.
In the sizing method developed, security aspects of component failure and protection
failure are considered in addition to generation adequacy. These two aspects considered
are described in this section. The system size is sufficiently small to be able to integrate
these aspects in a genetic algorithm with acceptable computation time. The methodology
is described in this section.

3.3.1. Adequacy Assessment

Adequacy relates to the ability of power systems to supply the demand with adequate
generation and transmission facilities with a desired level of reserve and can be evaluated
in long-term planning studies [30]. The indicator used in this paper for assessing adequacy
is the expected energy not supplied (EENS), which can be calculated from the simulation
results. At each time-step, the load power not supplied due to insufficient generation capa-
bility PN.S.(t) is obtained from Equation (8), Pprod, total(t) being the sum of active powers
from all generating sources. The EENS indicator is then calculated from Equation (9).

PN.S.(t) =
{

PLoad(t) i f Pprod, total(t) < PLoad(t)
0 otherwise

(8)

EENSAdequ. =
T

∑
t

PN.S.(t)× ∆t (9)

3.3.2. Contingency Enumeration Method

The first security aspect considered is the static response to component failure. Differ-
ent methods exist to obtain reliability indices in this regard. An enumerative contingency
analysis, often used for reliability analysis on conventional power systems, can be easily
applied for this application as a small number of components are present in the type of
microgrids considered. The following component failures are considered:

• Failure of an AC-coupled PV array;
• Failure of a DC-coupled PV array;
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• Failure of a diesel generator;
• Failure of the battery system;
• Failure of a PCS inverter.

Each component is modeled with a short-term failure rate λn,t corresponding to the
failure probability of component n at time step t. Failure rates are assumed constant
throughout the component life. A blackout state is obtained when there is not enough
reserve power to counteract the contingency or when no backup master unit is available to
take over the role of grid-forming. For each of the considered failures, the steps illustrated
in Figure 3 are followed.
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First, the available up and down reserves before contingency are calculated for each
time step from the simulation results. The reserve of the storage system and the reserve of
the diesel generators are assumed to be effective in counterbalancing generator failures
and to be independent of the grid-forming configuration. The storage system reserve
(up and down) is the minimum between the power reserve available on the inverters
and the power reserve available in the batteries that could be released during the time
required to turn on/off an additional generator (if available). The reserve on the diesel
generators is calculated based on their nominal power rating for the up-regulating reserve
and based on their minimum acceptable operating power for the down-regulating reserve.
The number of master units (operated in grid-forming) depends on the selected grid-
forming configuration. In this paper, we consider a single-master configuration, where the
grid-forming unit(s) is switched between a diesel generator(s) and the PCS inverter(s).

For each considered contingency, the available up and down reserves after the failure
of element n, PresCn,t, are calculated by subtracting the reserve provided by the failed unit
from the available reserve before contingency. The net power after contingency is then
calculated by subtracting the power produced by the failed unit from the available reserve
after failure. It is used to estimate whether the available reserve at time t is sufficient to
counterbalance the loss of element n. If at t, component n is generating power, then the
up-regulating reserve is used. However, if it is absorbing power, the down-regulating
reserve is used. The loss of element n at time t induces a blackout of the microgrid if one of
the following conditions are met:

• The net power after contingency is negative: PnetCn,t < 0;
• The number of remaining master units after contingency is zero: NmasterCn,t = 0.

If a blackout state is predicted, then the blackout rate λblackoutCn,t due to contingency
n is equal to the short-term failure rate of element n λn,t and a repair time µblackoutCn,t
is allocated. This repair time depends on the remaining nominal power available in the
microgrid after contingency. If sufficient nominal power is available to power the load, the
repair time is only the time taken to restart the microgrid. Otherwise, the repair time is
calculated according to the time the microgrid can be maintained online with the remaining
nominal power. The short-term reliability index at each time step t is calculated by summing
each product of failure rate and repair time corresponding to all considered contingencies:

rt =


λblackoutC1,t
λblackoutC1,t

. . .
λblackoutCn,t

.


µblackoutC1,t
µblackoutC2,t

. . .
µblackoutCn,t

 (10)

The chosen index to evaluate the reliability related to component failures is the
expected energy not supplied (EENS) and is calculated with Equation (11).

EENScont. = ∆t·
T

∑
t=1

dt.rt (11)

3.3.3. Protection Reliability Assessment

Protection selectivity is another important issue to address in autonomous microgrids,
especially as the microgrids of interest can operate in various modes with different short-
circuit levels available. There is a need to design a protection scheme that is operating well
in all configurations of the microgrid. The protection scheme that is used in our case is
based on conventional overcurrent relays and fuses. These devices require a sufficient level
of short-circuit current to operate in case of a fault.

Reliability analysis of the protection scheme aims at assessing how well the protection
will perform for a particular architecture and sizing, regarding coordination and selectivity,
considering two possible causes of protection malfunction:
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• The insensitivity of protections in the case of insufficient short-circuit contribution to
trigger the right protection;

• Overtripping in the case of protection triggering in healthy operation of the microgrid.

The different steps toward the protection reliability assessment method are described
in Figure 4. The microgrid is modeled with the package Pandapower [47] in the Python
environment, which is used for static network analysis. All buses, lines, converters, and
loads are modeled. The first step consists of calculating short-circuit currents on each
microgrid configuration observed from the simulation. These configurations correspond
to all possible on/off combinations of the different short-circuit current contributors,
including gensets, PCS inverters, and PVac inverters. Next, load flow simulations are made
for each simulation time-step to calculate the current flowing through each protection.
Reliability indicators are then calculated to assess the protection scheme. Three probability
distributions must be obtained to calculate these reliability indicators:

• The probability distribution of short-circuit current in each protection Isc (blue line in
Figure 4). This distribution is obtained using the minimum and maximum short-circuit
current calculated for each microgrid configuration and the frequency of occurrence
of each configuration;

• The probability distribution of the load flow current In (red line in Figure 4). This dis-
tribution is obtained directly from the load flow calculation made for each simulation
time step;

• The probability distribution of the pick-up current Ir (orange line in Figure 4). This dis-
tribution is modeled with a normal distribution with a mean equal to the pick-up setting.

The probability of insensitivity of protection i is the probability that the pick-up
current is higher than the short-circuit current available at the protection. This probability
is calculated by Equation (12) using a convolution of the probability distributions of Ir
and Isc:

Pinsensitivity,i = p(Iri > Isci) (12)

The probability of the over-tripping of protection i is the probability that the load flow
current In is higher than the pick-up current Ir. This is illustrated in Equation (13) and also
calculated by convolution:

Povertripping,i = p(Ini > Iri) (13)

These indicators are then combined into a single indicator for reliability assessment of
the protection scheme, which is the expected energy not supplied (EENS), calculated with
Equations (14)–(17), λi being the short-circuit rate, |Pi| the mean power flowing through
protection i (obtained from simulation results), rsc the short-term repair time of faults, and
rblc the repair time following a blackout.

EENSprotection =
I

∑
i

EENSinsensitivity,i + EENSovertripping,i + EENSnormal,i (14)

EENSinsensitivity,i = λi · Pinsensitivity,i ·
∣∣Pi
∣∣ · (rsc + rblc) (15)

EENSovertripping,i = (1− λi) · Povertripping,i ·
∣∣Pi
∣∣ · (rblc) (16)

EENSnormal,i = λi ·
(
1− Pinsensitivity,i

)
.
∣∣Pi
∣∣ · (rsc) (17)
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4. Case Study Description

The methodology introduced in the previous section was applied to a case study
of an autonomous microgrid currently in installation in the rural localities of Sanando
and Tissala in Mali, shown on a map in Figure 5. This microgrid project was enabled by
the Energizing Development Program (EnDev) and coordinated by GIZ together with
AMADER and the municipality of Sanando. This project aims to build a hybrid power
station including a solar PV array, a diesel generator (Genset), and a battery storage system
(ESS + PCS) connecting both villages. The operation and maintenance of the microgrid
will then be carried out by a consortium including Entech Smart Energies and Sinergie
SA. There was initially no electricity grid available to inhabitants, some of them relying on
individual solutions (gensets or small solar systems).
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The objectives of the operation of the hybrid system to be installed in the villages
of Sanando-Tissala are to minimize fuel consumption on-site, to limit the aging of the
equipment, and minimize the risk of blackout. To optimize the performance of the system,
the following functions will be implemented in the Energy Management System:

• Energy shifting—this function allows excess solar energy to be stored during the day
for later redistribution.

• Genset off capability—this function enables the microgrid to operate on solar + storage
only without any diesel generator online. It requires the grid-forming capability on
the PCS inverters to be able to stabilize frequency and voltage.

• Spinning reserve—this function enables the monitoring of available reserves on the
different generators and control the PCS inverters to ensure a certain level of reserve
(both upregulation and downregulation).

Figure 6 shows the layout of the case study with the variables to optimize using the
method. A wide range of values were considered for the optimization variables as shown
in Table 3.
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Table 3. Variable range of the genetic algorithm.

Sizing Variables
(Unit) Minimum Value Maximum Value Step Size

PGenset (kW) 0 100 20
PPVac (kWp) 0 1000 20
PPVdc (kWp) 0 1000 20
PPCS (kVA) 0 150 20
CESS (kWh) 0 1000 20
NGenset (nb) 0 4 1
NPCS (nb) 0 4 1

The simulation of the system operation requires various technical parameters whose
values are shown in Table A1 in Appendix A. To calculate the net present cost of each sizing
configuration, cost parameters regarding investment, operation, and replacement are also
required for each component and are shown in Table A2. Investment costs are modeled
with two coefficients, as proposed in [48]. Coefficient b accounts for the decreasing unit
cost of the equipment with increasing size. The resulting investment cost is given by
Equation (18).

Cinv,i = Pi ·
(

a·Pi
−b
)

(18)

The reliability parameters are given in Appendix A in Table A3 for the contingency
enumeration method and in Table A4 for the protection reliability assessment.

5. Results and Discussion

The multi-objectives optimization method presented in Section 3 was applied to the
case study. The NSGA-II has led to the 3D Pareto surface shown in Figure 7. There
is a strong relationship between all three objectives. To increase the renewable energy
integration, an increase in net present cost is required. Configurations without gensets
(in blue) lead to an increased unavailability and increased net present cost compared to
configurations with gensets (in orange). Configurations with renewable energy integration
less than 93% are not included in the Pareto frontier. They are thus not leading to an
improvement in either net present cost or reliability. Considering the control strategy, only
load following dispatch was found in the Pareto surface, which proves this type of control
more interesting for this level of renewable integration.

Figure 8 shows the same Pareto points in a 2D graph with the third objective of
reliability shown in a color scale. It can be observed that reliability can be improved with a
small increase in net present cost for a similar renewable energy integration. In this figure,
six configurations of interest have been selected for more detailed analysis:

1. Least cost: the configuration with the least net present cost;
2. Cost/reliability trade-off: the configuration with the least net present cost that has an

unavailability less than 0.1%;
3. Most reliable: the configuration with the lowest unavailability;
4. Cost/reliability/RE trade-off: the configuration with the least net present cost that

has an unavailability less than 0.1% and a renewable energy integration above 95%;
5. Most renewable: the cheapest configuration with 100% renewable energy integration;
6. Reliability/RE trade-off: The configuration with the highest renewable integration

and unavailability less than 0.1%.

The least-cost configuration (config 1) can be obtained at a net present cost of 1.050
M€ over the 15-year period considered. An improvement in reliability (config 2) can be
obtained for a net present cost of 1.074 M€. A solution with 0% unavailability (config 3) can
be obtained at a cost of 1.089 M€. A compromise between all three objectives (config 4) can
be found for a net present cost of 1.091 M€, having a renewable energy integration above
95% and an unavailability under 0.1%. A 100% renewable energy solution can be obtained
for a net present cost of 1.130 M€ but with high unavailability of 1.2% (config 5). Reaching
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a high level of reliability with 100% renewable energy integration (config 6) would require
oversizing considerably the components and, therefore, adds significant costs to the design
(1.76 M€).
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configurations of interest.

These six configurations are further explored in the following figures. In Figure 9,
the reliability indicator is decomposed into the different aspects considered. The least-
cost configuration has a significant lack of generation capacity (UAdequacy of 0.4%). The
most renewable configuration also has a significant unavailability related to adequacy
and to contingencies. For other configurations, unavailability is essentially related to
contingencies. The aspect of protection is well managed in these six configurations with
a sufficient short-circuit capacity and the configurations of the Pareto surface have an
unavailability related to protection malfunction that is null.
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Figure 10 shows the installed PV power, battery capacity, PCS power, and the genset
nominal power. In terms of architecture, AC-coupled PV power was preferred, except
for the reliability/RE trade-off which is a hybrid AC/DC configuration. The least-cost
configuration has a small renewable energy capacity in terms of PV power and battery
capacity installed (180 kWp/400 kWh). To increase the reliability (cost/reliability trade-off),
an increase in the genset capacity is required (60 kW). The most reliable configuration is
similar to the “cost/reliability trade-off” with an increase in PV power (200 kWp) and an
additional genset unit (2 × 40 kW). The fourth configuration, being a compromise on the
three objectives, requires a small increase in PV power and battery capacity as compared to
the least cost option as well as three genset units installed (3 × 20 kW). The most renewable
configuration has a significant amount of PV power installed (260 kWp) and ESS (620 kWh).
The configuration with the most renewable integration and constrained unavailability
(reliability/RE trade-off) leads to a further increase in PV and battery capacity, without
reaching 100% renewable integration. This configuration has also three 13 kW gensets
installed, as well as three PCS units of 27 kVA each. Apart from this configuration, an
optimum size of one unit of 80 kVA for the PCS inverter is found.
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Figure 11 shows the energy flows in the 15-year period for each of the six selected
configurations. A small part of the energy production in all configurations is from the
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gensets. When looking at how this energy is consumed, an important share of the PV
production is curtailed, from 31% for the least cost configuration up to 68% for the reliabil-
ity/RE trade-off.
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Figure 12 shows the cash flows involved in these six configurations. The investment
costs are dominated by the ESS and PV systems. BOS corresponds to the balance of system
costs to integrate the storage system. Regarding O&M costs, fuel and genset maintenance
costs are a significant part of the two first configurations but are less dominant as renewable
integration is increased. The replacement costs are dominated by battery costs. Although,
the “most renewable” and “reliability/RE trade-off” configurations have a larger battery
capacity installed, the cycling is expected to be less and, therefore, the battery replacement
cost over the 15 years is less important.
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6. Conclusions

This paper presents a method to optimize an autonomous microgrid considering the
three design objectives of cost, renewable integration, and reliability. The multi-objective
optimization is implemented with a genetic algorithm and involves a simulation of the
system operation as well as a reliability analysis for each configuration evaluated. By
accounting for reliability related to component failure and protection, the method gives
an additional investigation on the impact of microgrid design on power availability. Ad-
ditionally, rather than finding a single optimal configuration, it helps to understand the
trade-offs between all objectives and estimating the cost of improving either renewable
integration, reliability, or both. This method was applied to a case study of a rural mi-
crogrid in Mali to size the different microgrid components. The Pareto surface obtained
shows all non-dominated solutions over the three design objectives. It was first observed
that high renewable integration could be obtained without impacting the long-term cost
and reliability. The cost of having high reliability was found to be low in this typical case
study. Six different solutions were illustrated, each representing a trade-off between the
three design objectives. With the proposed method, the user can decide to select a sizing
according to the chosen trade-off. Reaching a high level of reliability with 100% renewable
energy integration would require oversizing considerably the components and, therefore,
add significant costs to the design. Moreover, it leads to an important curtailment of
surplus renewable energy. This energy could however be used for other applications such
as long-term energy storage, water heating, or water pumping.
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Appendix A. Parameters of the Optimization Method

Table A1. Technical parameters of the optimization method.

Component Variable Unit Value

Genset

Pmin % 30
Pmax % 120

Cons. f uel (at 10%, 25%, 50%,
75%, 100% Pnom) L/kWh (0.466, 0.304,

0.305, 0.325, 0.375)
NbHoursToOverhaul h 15,000

ThresholdStart % 90
ThresholdStop % 40

Pvac
ηconv % 96

Lossesconst % 10
αtemp %/◦C −0.35

PVdc
ηconv % 97

Lossesconst % 10
αtemp %/◦C −0.35

PCS
ηconv (at 20%, 30%, 50%, 75%,

90%, 100% Pnom) % (0.952, 0.962, 0.97,
0.973, 0.974, 0.975)

Lossesconst % 5
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Table A1. Cont.

Component Variable Unit Value

Batteries

SOCini % 50
C-rate p.u. 1

ηch % 93
ηdch % 93

Aux
Paux , const kW 3

Air conditioning use On/Off Off

EMS

Genset Off fun On/Off On
Spinning reserve fun On/Off On

SOCmin % 20
SOCmax % 100

Table A2. Economical parameters of the optimization method.

Component Cinv—Coef a Cinv—Coef b CO&M Crep. Trep.

GE 1821 €/kW 0.51 5 €/OpHr - -
PVac 730 €/kW 0 1.5% Cinv /y

100% Cinv

fixed year 15
PVac conv 130 €/kW 0 1.5% Cinv /y fixed year 15

PVdc 730 €/kW 0 1.5% Cinv /y fixed year 15
PVdc conv 200 €/kW 0 1.5% Cinv /y fixed year 10

PCS 1816 €/kW 0.45 1.5% Cinv /y fixed year 10
ESS 593 €/kWh 0.12 5% Cinv /y at EOL
BOS 50% overall ESS cost 0 5% Cinv /y - -

Table A3. Parameters for the contingency enumeration method [49].

Component Type Failure Rate (f/Year) Repair Time (h)

Genset 0.20 438
PVac 0.04 480
PVdc 0.04 480
PCS 0.14 168
ESS 0.03 168

Table A4. Parameters for the protection reliability assessment.

Parameter Unit Value

λi occ/an 0.2
rcc h 4
rblc h 4
rtrip h 2
δtrip % 10
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