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Abstract: The optimal planning of grid-connected microgrids (MGs) has been extensively studied
in recent years. While most of the previous studies have used fixed or time-of-use (TOU) prices for
the optimal sizing of MGs, this work introduces real-time pricing (RTP) for implementing a demand
response (DR) program according to the national grid prices of Iran. In addition to the long-term
planning of MG, the day-ahead operation of MG is also analyzed to get a better understanding of
the DR program for daily electricity dispatch. For this purpose, four different days corresponding
to the four seasons are selected for further analysis. In addition, various impacts of the proposed
DR program on the MG planning results, including sizing and best configuration, net present cost
(NPC) and cost of energy (COE), and emission generation by the utility grid, are investigated. The
optimization results show that the implementation of the DR program has a positive impact on the
technical, economic, and environmental aspects of MG. The NPC and COE are reduced by about
USD 3700 and USD 0.0025/kWh, respectively. The component size is also reduced, resulting in a
reduction in the initial cost. Carbon emissions are also reduced by 185 kg/year.

Keywords: optimal planning; renewable energy sources; demand response program; carbon emis-
sions

1. Introduction
1.1. Motivations

In recent years, Iran’s electricity consumption has encountered an accelerating trend
of an average of 8% per year [1–10]. This has become a significant issue for the Iranian
energy market [11–17]. Traditional fossil fuel-based power plants are not able to provide
the power demand [17–24], and blackouts are inevitable, especially in the hot months of
the year [25–33]. Meanwhile, renewable energy sources (RESs) are one of the efficient
solutions for dealing with such an important issue [34–43]. In fact, Iran benefits from
high-capacity potentials of solar energy with over 310 days with adequate sunlight and
an average irradiance of 4.4–5.5 kWh/m2/day. Furthermore, wind power production
potentials have been reported to up to 15 GW (about 35% of the nowadays electricity
generation). The governmental organization SATBA (Renewable Energy and Energy Effi-
ciency Organization) [44,45] has recently dedicated a few incentives to encourage localizing
clean energy generation plants, which make the concept of clean energy affordable for
households [46–48].

Nevertheless, there are several challenges in utilizing RESs in Iran, namely operation
and maintenance, control and shift of power between resources (energy management),
the short lifetime of system components, and sustainability, which have not been wholly
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investigated [49–51]. Utilizing microgrids (MGs) in different levels such as residential,
commercial, and industrial could be an appropriate solution for these challenges. According
to [52], MG is “a distribution system consisting of distributed generations (DGs), energy
storage systems (ESSs) and responsive loads”. In fact, MGs are operated as an isolated
network or interconnected networks. Upstream grid considers MG as a controllable system
operating as a power source or controllable load. In an on-grid connection, an MG sends or
receives power from the upstream grid and neighbor MGs in the area. Nevertheless, factors
such as decreasing the power quality of the upstream grid based on the specific standards,
significant disruption to the upstream grid, or maintenance program led to isolating the
MG from the upstream grid [53–56].

1.2. Literature Review

In order to utilize RESs in an economic and efficient manner, the optimal sizing of
MG components is essential. According to the type of the optimization method, the full
utilization of RESs and minimum investment along with the efficient MG performance can
be assured [56]. For this purpose, various optimization methods have been employed in
recent studies [57]. In Ref. [58], the optimal sizing of WT, photovoltaic (PV), and fuel cell
(FC) units in a 31-bus distribution system, as well as the best location, are determined using
the particle swarm optimization (PSO) technique. The aim of the study was to minimize the
total cost of RESs, the total power losses, emissions, and total harmonic distortion (THD).
The results showed that the utilization of RESs considerably decreases the emissions. In
addition, it was revealed that RESs improve the voltage stability of the system. However,
they neglected to consider an appropriate demand response (DR) program. The researchers
in [59] proposed an optimal sizing ESS approach to minimize the total costs by optimiz-
ing generation power, thermal units, load demand, and wind curtailment. The authors
proposed a method to transform the chance constraints, such as the network constraints,
into deterministic constraints. They also considered the correlations of the forecast errors
among WT and load at different buses, which improve the ESS operational reliability. In
another research study [60], the authors adopted the fuzzification process to find the best
location of RESs for optimizing a tri-objective function, including the installation cost,
emissions, and reliability. Furthermore, different techniques such as the Least Square tech-
nique [61–63], the Loss of Power Supply Probability technique [64–66], and the Trade-Off
technique [67,68] are represented to compute the optimal architecture of MG in terms of
economic and technical analysis, which is known as techno-economic analysis.

One of the efficient ways to obtain the optimal sizing and combination of MGs’ re-
sources to electrify an MG is to employ HOMER Pro software. This software has extensively
been used in the MG industry. In [69], the authors used HOMER Pro to compute the eco-
nomic benefits of utilizing PV, WT, and ESSs in different climate zone of Iran. They also
implemented an electricity pricing strategy based on the electricity tariffs considered by
the Ministry of Energy of Iran. The optimization results indicate that a moderate and rainy
climate zone such as Urmia city has the least net present cost (NPC) and levelized cost of
energy (COE). However, a semi-moderate and rainy climate zone such as Golestan city has
the highest NPC and COE. While the effect of different electricity pricing was investigated
in this study, demand changes corresponding to the price changes were not investigated
by the authors. The authors of [70] developed a decision-making method for the optimal
sizing of RESs, diesel generators, and converters. In addition, a multi-criteria decision-
making technique is proposed. According to this technique, a utility could concern various
self-organize criteria for the best system configuration, each with a different weighting. The
criteria were based on the costs of the system including, COE, COE, and investment costs.
The optimal system considering the suggested technique consisted of a diesel generator, PV,
WT, EES, and converter. However, DR programs have not been concerned in the proposed
multi-criteria decision-making technique. In [71], the researchers used HOMER Pro for the
techno-economic planning of islands in South Korea. In this study, three scenarios based
on the three off-grid islands located in South Korea are optimized. The study prioritized
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the first scenario due to the competitiveness of economic results (lowest NPC and COE
comparing other scenarios). The optimal system configuration for this island was obtained
from a diesel generator, PV, WT, and ESS. Nevertheless, the pricing scheme was not clearly
described in this study. In [72], an off-grid energy system was modeled by HOMER Pro
for a local city in Kenya. The project was aimed to select a few feasible solutions obtained
by HOMER, which provides the loads and then chooses the best available solution that
could satisfy the objectives identified at the start of the study by analytic hierarchy process
(AHP). The results indicated the importance of ESS utilization in the system architecture,
which reduces the dumped energy to a satisfying value. A similar method was introduced
in [73] for an educational institute. Therefore, they performed planning of the MG’s energy
resources using multi-criteria decision-making based on the AHP approach. Both studies
neglected price and load changes in the decision-making process. However, considerable
impacts of load and electricity price values cannot be ignored. In [74], an RESs-based
MG including PV/WT/ESSs is proposed for a grid-connected hybrid system in Iran. The
authors used this software to specify the optimum MG structure regarding predicted load
data. They also considered the load growth rate in their study to consider the impact of
consumption growth in the systems configuration and economic costs. To this end, the
previous years’ load data are used to forecast the future years’ load data, and the growth
rate is extracted from the mean growth rate of the predicted values. Among various system
configurations, the one that is the most economical was selected. The combination of the
WT system and ESSs, with a Total Net Present Cost (NPC) of 452,454 USD, was the optimum
configuration. While the annual load growth rate is considered in this study, a practical
technique that improves the flexibility of the system was not suggested by the authors. In
another study [75], a hybrid Organic Rankine Cycle (ORC) is proposed and optimized for
a household in Rayen, Iran. The exergy and exergo-economic analyses of hybrid ORC are
also performed. Then, HOMER software is employed to optimize a stand-alone MG. The
results showed that due to the higher COE and NPC of the ORC-based system, RESs-based
energy systems are proposed for the residential area. The software is employed to opti-
mize a stand-alone MG. The results showed that the optimum configuration of the MG
consists of PV/WT/Diesel/ESSs with a total NPC of 268,592 USD. In [76], a grid-connected
PV system for agricultural applications was proposed in Tabriz, Iran. They also utilized
PVSYST software to calculate the performance of the grid-connected PV system, which has
not been considered in previous research. The simulation results indicated that the utility
grid supplied 79.836% of the required electricity of the selected location and merely 20%
provided by the PV system. The suggested microgrid reduced greenhouse gas emissions
by about 508,713 kg per year. In [77], an MG including PV/WT/microturbine/BSS/FC
is optimized using HOMER software to anticipate the size of power generation units in a
grid-connected MG based in Nain, Iran. They used real data of Nain city for load demand,
market prices, and weather data for the optimization. According to the results, the demand
was provided by 23% of PV power, 43% of WT power, 32% of microturbine participation
and 2% of fuel cell power provision. However, the ESS as a back-up resource had few
participations over a year.

In addition to traditional resources in MG such as DGs and RESs, demand response
(DR) programs can also be introduced as the programmable resources in the MGs energy
management. The DR programs are one of the effective resources to obtain the economic
operation of MGs [51]. DR programs can enhance the performance of RESs in the MGs.
They can decrease the peak load consumption and shave the daily load pattern so that
the RESs supply the load demand efficiently. Therefore, the simultaneous utilization of
the DR program and RESs can improve the operation and planning results of the MGs. In
general, the DR programs are divided into two groups: incentive-based DR programs and
price-based DR programs. The latest refer to users altering their consumptions based on
the electricity price. Incentive-based DR programs refer to users decreasing or increasing
their consumption based on financial incentives. The potential of DR and RESs integration
has been investigated considerably [78]. Recent works in the literature discuss the merits of
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DR for RESs integration, particularly PV and WT systems, which are thoroughly analyzed
in [79,80]. Furthermore, participating behavior, namely load shifting, load transfer, and
load rebound is an essential factor for amending the reliability and feasibility of dispatching
DR sources in MG operation. The potential and applicability of DR programs to MGs
is yet another interesting research area, particularly in terms of peak consumed load
demand minimization [81], pollution reduction [82], energy costs [83], and reliability
improvement [84].

Nevertheless, few investigations have examined the participating behavior of DR
programs in the long-term planning of residential MGs [85–88]. In [85], a multi-energy
MG is optimized considering stochastic programming. The flexible demand control was
also conducted by load shifting of controllable loads (on/off appliances scheduling). The
model was applied for two days in the summer and winter seasons for a variety of studies,
including the storage impact, energy sell-back to the network, charging and discharging of
electric vehicles (EVs), and planning flexible equipment. According to the results, around
6% and 51% cost savings occurred for winter and summer days, respectively, when the
power was offered to the power distribution system. In [86], an off-grid MG including RESs
and ESSs system and a diesel generator is considered for addressing the issues of long-term
optimal capacity determination, short-term operation, and planning for an off-grid MG.
A RESs-based DR program dynamic pricing economic model to improve the flexibility of
the system was proposed. The implemented model considers the intermittence of RESs
as an instrument of effective demand-side flexibility improvement and system planning.
The objective of this study was to minimize annual investments costs, operating costs,
and demand-side management costs. According to the results, the mismatch between
demand and generation was minimized through using the implemented DR-program,
which considerably increased system flexibility. In [87], an integrated approach for optimal
planning and operation of a multi-energy MG is proposed in which electrical loads are
shifted based on TOU price signals. Uncertainties of various load and WT generation are
considered using Monte Carlo simulation in this study. Then, the scenarios are reduced
using the K-means clustering algorithm. Therefore, a two-stage optimization model repre-
sented as a stochastic programming problem was proposed in this study, which addresses
the impacts of the uncertain parameters. In addition, Benders decomposing approach is
applied to solve the complex model of coordinated planning and operation problem. The
authors of [88] examined and investigated the capability of DR programs in equipment size
optimization of an off-grid MG. Responsive loads could be controlled in order to balance
the demand and supply, in such way that the low production flexibility compensates for a
significant extent [88].

1.3. Contributions

Reviewing the above-mentioned studies, there still exists a research gap in proposing
a DR program that is based on the electricity usage features of consumer loads. To the
best of the author’s knowledge, there is no significant study in the size optimization of
MGs using HOMER software that considers the DR program as a flexibility tool. Therefore,
in this paper, a price-based DR program is implemented for long-term optimal capacity
sizing and short-term operation of the grid-connected residential MG system located in
Tehran, Iran. The MG has consisted of the PV unit, WT unit, bidirectional converter, and
ESS. Then, the proposed DR program is compared with the TOU DR strategy currently
employed in Iran’s electricity market. Environmental impacts of the proposed DR program
are also analyzed, and other analyses are also performed. The essential contributions of the
paper are as follows:

• Proposing a price-based DR program according to the long-term electricity
load consumptions.

• Techno-economic analysis of an off-grid MG considering the price-based DR program
to increase the flexibility of the system.
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• Considering coordinated planning and operation of the MG under different pricing
schemes, as well as concerning the environmental impacts of each scheme.

• Performing a sensitivity analysis on the inflation rate and discount rate to evaluate
the corresponding effects on optimization results.

2. Materials and Methods

This section methodology of the study, including system architecture, optimization
method, system components, energy management strategy, and the proposed DR program,
is discussed.

2.1. System Overview

The understudy MG structure is represented in Figure 1. As illustrated, the understudy
MG consists of RESs including a PV, WT system, battery bidirectional converter, and
ESS. Energy management carries out an important task such as balancing demand and
supply and cost optimization of the MG. The DR program is also connected to the energy
management system, which can enhance system performance. The energy management
system is responsible for finding the most economical system configuration and optimal
equipment sizing. While the proposed system includes two renewable components and a
battery ESS, the optimum design may not benefit from all these sources according to the
economic profits.

Energies 2021, 14, 4597 5 of 28 
 

 

• Techno-economic analysis of an off-grid MG considering the price-based DR pro-

gram to increase the flexibility of the system. 

• Considering coordinated planning and operation of the MG under different pricing 

schemes, as well as concerning the environmental impacts of each scheme. 

• Performing a sensitivity analysis on the inflation rate and discount rate to evaluate 

the corresponding effects on optimization results. 

2. Materials and Methods 

This section methodology of the study, including system architecture, optimization 

method, system components, energy management strategy, and the proposed DR pro-

gram, is discussed. 

2.1. System Overview 

The understudy MG structure is represented in Figure 1. As illustrated, the under-

study MG consists of RESs including a PV, WT system, battery bidirectional converter, 

and ESS. Energy management carries out an important task such as balancing demand 

and supply and cost optimization of the MG. The DR program is also connected to the 

energy management system, which can enhance system performance. The energy man-

agement system is responsible for finding the most economical system configuration and 

optimal equipment sizing. While the proposed system includes two renewable compo-

nents and a battery ESS, the optimum design may not benefit from all these sources ac-

cording to the economic profits. 

DR Program

Battery Energy Storage

Wind Turbines

Photovoltaic Panels

Utility Grid

Load Consumption

Energy Management 

 

Figure 1. Structure of the MG with energy management module. 

2.2. Optimization Method 

The optimization is performed according to the financial factors for feasible planning 

for investigations. The system configurations are ranked according to the lowest NPC. 

The NPC of equipment is the current values of all equipment operating and installing 

costs minus the current values of all the incomes the system obtains during the optimiza-

tion period. The costs consist of initial investment, replacement, O&M, and buying elec-

tricity from the utility. Incomes consists of grid sales revenue and salvage value. HOMER 

computes the annualized cost by dividing the NPC by the capital recovery factor (CRF) in 

the project time horizon. The following Equations (1)–(4) are used for calculating the an-

nualized cost of the system [74,88]. 

Figure 1. Structure of the MG with energy management module.

2.2. Optimization Method

The optimization is performed according to the financial factors for feasible planning
for investigations. The system configurations are ranked according to the lowest NPC. The
NPC of equipment is the current values of all equipment operating and installing costs
minus the current values of all the incomes the system obtains during the optimization
period. The costs consist of initial investment, replacement, O&M, and buying electricity
from the utility. Incomes consists of grid sales revenue and salvage value. HOMER
computes the annualized cost by dividing the NPC by the capital recovery factor (CRF)
in the project time horizon. The following Equations (1)–(4) are used for calculating the
annualized cost of the system [74,88].

Cann−total =
Cnpc

CFR(R, i)
(1)
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Cnpc = Ccap + CO&M + Cemissions + Creplacement + Cp−grid − Cs−grid − Csalvage (2)

CRF(R, i) =
i(1 + i)R

(1 + i)R − 1
(3)

i =
i′ − f
1 + f

(4)

In this equation, CFR(R, i) is the capital recovery factor, R is the project lifetime (year),
i is the real discount rate (%), i′ is the nominal discount rate, and f is the inflation rate.
In addition, Cnpc is the NPC of the system, Ccap is the capital cost of the system, CO&M
is the operating and maintenance cost, Cemissions is the emissions cost, Creplacement is the
replacement cost, Cp−grid is the cost for purchasing power from the grid, Cs−grid is the
revenue from selling power to the grid, Csalvage is the salvage value at the end of the project.
The COE is computed as the mean cost per kWh of useful electricity generated by the MG,
as follows [58,88].

CCOE =
Cann,total

Es
(5)

In (2), CCOE is Levelized COE, Cann,total is the total annualized cost, and Es is the total
load served

2.3. Renewability

Renewable fraction (RF) is the other important term associated with the extent of
using renewable generation in hybrid systems. The RF shows the ratio of the delivering
energy to the load originated from RESs. Equations (6) and (7) are used for the definition
of RF [44–46].

RF = 1− Eelec
Es

(6)

RP =
PRen

Lserved
(7)

where Eelec is conventional electrical generation per kWh/year. Moreover, the renewable
penetration (RP) in each time-step describes that PRen is the total renewable output power
(kW) and Lserved is the total electrical load served (kW).

2.4. System Components
2.4.1. Solar PV System

The solar irradiance and temperature are used for calculating the PV system’s output
power. Generally, there are two kinds of PV panel choices in Iran: concentric and generic
flat plate. The latter is more profitable; hence, a flat plate is considered in this study for
further analysis. For the proposed MG, a generic flat-plate PV is utilized with an efficiency
of 16.25%, a rated capacity of 1 kW, and an operating temperature of 45 ◦C. This kind of PV
is represented with a converter, and the converter efficiency curve is modulated based on
the datasheet (95%) [74]. The PV system output power can be computed as follows [44,47].

PPV = fPV XPV

(
GT

GT,STC

)[
1 + αp(Tc − Tc,STC)

]
(8)

In this equation, fPV is the derating factor of PV per percent, XPV represents the PV
array rated capacity, which means that the output power of the PV array under standard test
condition is in kW, GT indicates hourly solar irradiance on the PV surface in kW/m2, GT,STC
denotes the solar irradiation under standard test conditions, the temperature coefficient of
power is shown by αp (%/◦C), Tc signifies hourly temperature of the PV cell, and Tc,STC
shows the temperature of the PV cell under standard test conditions.
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2.4.2. WT System

In order to model and take the number and cost of WTs to fit the load demands with
other resources optimally, the initial step is to determine the type of the WT. Referring to
the components’ library, there are possibilities for different WT size ranges from 1000 to
1500 kW. In this paper, a generic model with a rated 1 kW capacity WT is selected [74]. The
overall WT output power is computed using Equation (9) [89].

PWT =
1
2
× ρ× A×V3 × Cp × 10−3 (9)

In the above equation, ρ is the air density (0.1225 × 10−1 kg/m3), A is the cross-
sectional area of wind, V is the wind speed, and Cp is the power efficiency of the WT
system. The capital cost for the WT system is 725 USD, and the O&M cost is 70.0 USD/year.

2.4.3. Battery ESS

In HOMER, batteries are used as the backup resources during power outages or insuf-
ficiencies of RESs in demand provision [90]. However, these resources play an important
role in the stand-alone operation of MGs because it is usually cost-effective to sell generated
power by RESs to the utility grid than storing it into battery ESS [68]. As there is an existing
variability in load demand and RESs generations, it is recommended to consider ESS in the
recommended system structure. In this paper, we proposed a battery ESS with a capital cost
of 124 USD and an O&M cost of 10 USD/year. The battery ESS output power is computed
as (10) [91].

Pt,BSS = VBSSCBSS(SOCt − SOCt−1) (10)

In the above equation, VBSS and CBSS are the voltage and total capacity (A.h) of the
battery. In addition, SOCt shows the state of charge of the battery during the operation of
the MG.

2.4.4. Converter

Systems containing both DC and AC components require a converter. In this paper, a
generic converter is considered, and its inverter consists of a power converter unit, power
control unit, power distribution unit, and bypass unit [88]. The converter has an initial cost
of 137.5 USD and O&M cost of 10 USD/year, also, the converter efficiency is considered as
95% [74].

2.5. DR Program

DR programs can respond to market price signals by increasing the demand-side
flexibility via reducing or temporary shifting load peaks. DR programs are also applicably
proposing incentive mechanisms that result in the avoidance of capacity investment and
costly electricity purchasing [50]. One of the most important components for the successful
DR performance is the RTP mechanism. In this regard, an RTP strategy based on the TOU
pricing is suggested in this paper. The RTP model will be utilized for implementing the
proposed DR program. More information regarding the proposed method can be found
in [92].

In this paper, five types of loads are considered for MG. The loads are HVAC and fans
(PHVAC

t ), interior lights (PInterLight
t ), exterior lights (POutLight

t ), main equipment (PMainEquip
t ),

and misc equipment (PMiscEquip
t ). The total load demand of the MG according to load types

could be calculated as shown in (11).

TLoad =
8760

∑
t=1

(
PHVAC

t + PInterLight
t + POutLight

t + PMainEquip
t + PMiscEquip

t

)
(11)
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The mean load is computed as shown in (12).

Pmean =
TLoad
8760

(12)

Furthermore, real-time prices are determined based on (13) and (14).

Krtp
r =

(
TLoad
Pmean

)
Ktou

r (13)

krip,min
r ≤ krip

r ≤ krip,max
r (14)

where Pmean is the float factor, krip,min
r and krip,max

r are respectively the upper and lower
bounds of RTP. In the proposed method, the price-based DR program has been suggested
to evaluate the effects of the DR on the MG planning and operation, as (15).

PDRP
t = PT

t + e·PT
t ·

(
Krtp

r − Ktou
r

)
Krtp

r
(15)

In the above equation, PT
t is the load profile of the MG, e represents the demand-price

elasticity coefficient that is considered as [−0.5], and Ktou
r is TOU prices (see Figure 2) [51].
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2.6. Energy Management Strategy

HOMER software benefits from two energy management systems, i.e., cycle charging
(CC) and load following (LF). In this paper, the LF dispatch strategy is used for energy
management of the MG. In this energy management strategy, HOMER dispatches the MG’s
controllable power resources i.e., grid and ESS, to meet the hourly electrical load demand
at the minimum NPC, providing the operating reserve requirements. The NPC consists
of capital cost, O&M cost, and replacement cost. For this purpose, HOMER computes the
marginal and fixed costs of each dispatchable resource [92].

The fixed and marginal costs of the utilized battery ESS are equal to zero and the ESS
degradation cost, respectively. In addition, the grid fixed cost is zero, and the marginal cost
is equal to the grid electricity price. The marginal cost of the grid rises by considering a
cost for carbon emissions.
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After characterizing each dispatchable resource, HOMER explores to find the optimum
configuration of production resources that supply electrical load demand and operating
reserve at minimum cost. Figure 3 shows a flowchart of the energy management system
in HOMER. In general, the output power of RESs is designated for supplying primary
loads, and surplus power will be used for grid sales or storing in the ESS according to their
marginal costs.
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3. Case Study and Results

In this paper, a residential household in Tehran, the capital of Iran, is selected as the
case study. The reason for studying this city is the availability of the infrastructure for
implementing large-area MGs and DR programs. The location of the understudy household
is depicted in Figure 4. Tehran is located in semi-arid weather conditions [69]. Weather
parameters including air temperature, solar irradiation, and wind speed are represented
in Figure 5. The monthly values are gathered from NASA’s surface meteorology that can
be found in the software’s environment. Figure 5a,b indicate that the understudy location
benefits from adequate solar energy over a year. Nevertheless, a notable solar potential
is available during the summer months of the year. As can be seen in Figure 5a,b, the
maximum daily temperature is below 30 ◦C, and solar irradiation scarcely arrives at its
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peak value at 0.95 kWh/m2/day. The location has a moderate wind potential over the year
(Figure 5c) [74].
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In order to have accurate techno-economic values for the grid-connected MG, it
is necessary to consider realistic technical and economic data. In this paper, essential
economic parameters, such as inflation and discount rates, are assumed as 16.18% and 18%,
respectively [69,93–97]. Furthermore, the simulation lifetime is considered to be 25 years.
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3.1. Utility Grid and DR Program Implementation

TOU pricing is considered a DR strategy that is implemented in many countries, in-
cluding Iran. According to this DR strategy, three electricity rates are determined according
to the hour of the day. The rates are defined according to the off-peak, mid-peak, and peak
hours of the day. The rates could be changed during the hot and cold months. For instance,
in peak months, two peak periods could be considered by the utility grid. It is assumed
that the consumers react to the price signals and lower their consumption during peak
prices and increase their usage in off-peak hours of the days. This strategy ultimately led
to peak load shaving and flexibility of the power system.

In Iran, the Ministry of Energy (MOE) is responsible for defining the TOU rates. There
are generally two types of electricity tariffs in Iran. The first one is the constant electricity
pricing, and the second is TOU electricity pricing. In order to implement TOU prices, it is
necessary to install smart meters. Such meters are substituting with the mechanical and
analog devices, which are merely used for recoding constant electricity prices. In contrast,
smart meters can be used for registering three different rates over a day. According to the
legislation, the electricity price at peak hours is four times higher than the mid-peak prices.
Furthermore, the electricity price in off-peak times is a quarter of the mid-peak price.

Figure 6 shows the TOU electricity prices for the residential sector over a year. As
can be seen, there are four peak hours with the highest electricity prices. In addition to
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this, a fixed feed-in tariff (FiT) is also considered in this study [92]. It means that surplus
electricity generated by RESs could be sold to the utility grid according to this rate.
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Figure 6. TOU pricing implemented on Iran’s national grid.

To perform long-term planning and implement a DR program, it is essential to have
hourly load values for at least a year. In this study, five types of load consumption are
considered for the consumer, including Fans & HVAC, interior and exterior lights, main and
miscellaneous interior equipment. Hourly load consumption according to the mentioned
category is depicted in Figure 7 [93]. It is clear that interior equipment has the highest
consumption rate among the other ones. In addition, Fans and HVAC have minor electricity
consumptions especially compared to interior equipment.
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Figure 7. Electric load profiles based on the type of the consumer (a) fans and HVDC consumptions; (b) interior
lights consumptions; (c) exterior lights consumptions; (d) interior equipment consumptions; (e) interior equipment
(misc) consumptions.
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After collecting five load categories, it is time to calculate the total hourly load values
to optimize and implement the proposed DR program. As mentioned in (13), TOU prices
and total hourly load values are used for calculating RTP. Figure 8 shows RTP values based
on the load consumptions. In fact, real-time electricity values are in response to electricity
demand. It can be seen that in the hours with higher load consumption, electricity prices
are greater than those hours with lower load consumption. So, instead of having a fixed
pattern for electricity usage, which may be ineffective because of variability in consumer
power usage, an efficient RTP is considered in response to load consumption.
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Figure 8. RTP based on the TOU prices and load consumption.

The proposed DR program is implemented by RTP and TOU pricing according to
(14). Figure 9 shows load demand data with and without implementing the proposed DR
program. As can be seen, a significant reduction in load demand consumption occurred
over the year. The aim of the DR program is to shave the load profile over the year so as
to achieve a flatter pattern for load demand. A flatter load profile not only has economic
merits for the consumer but also for power systems. For example, improvement in the
stability of power systems on a large scale. Table 1 shows grid emission production in
grams per kilogram [74]. These criteria will be used for evaluating the environmental
impacts of implementing the DR program in the MG structure.
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Figure 9. Load demand (a) before implementing the RTP-based DR program; (b) after implementing
the RTP-based DR program.



Energies 2021, 14, 4597 14 of 28

Table 1. Grid greenhouse gases based on Iran’s national grid factors [74].

Emission Type Value Unit

Carbon Dioxide 6.32 g/kWh
Sulfur Dioxide 2.74 g/kWh

Nitrogen Oxides 1.34 g/kWh

3.2. Long-Term Planning Results

In order to conduct better evaluations of the proposed DR method, two scenarios are
defined based on the type of the DR program, as shown below.

• Scenario 1: Optimal planning of the MG using TOU pricing mechanism.
• Scenario 2: Optimal planning of the MG using RTP mechanism.

3.2.1. Scenario 1

This scenario is designated for considering standard TOU pricing in the planning of
the MG. Therefore, the proposed MG is optimized using the RESs and other specifications
of the system. Table 2 shows techno-economic results of the proposed MG, including
component sizing and NPC. As can be seen, solar PV with a capacity of 11 kW in addition
to 6 kW of converter were found to be economical for supplying the MG’s load demand. In
contrast, the utilization of the WT system and BSS were not found to be economical. For
the WT system, the higher initial cost and potential of the environment are two important
reasons. BSS is a backup resource, and it is equipped when there is a lack of power in
the system. Since the utility grid is assumed to be reliable, typically, there would not be
any need for backup resources in the system structure. The NPC (−19,687 USD) and COE
(−0.0635 USD/kWh) values show the system’s high profits, which is particularly due to
the electricity sell-back to the utility grid. Other configurations show that the increase in
system equipment, including the WT system and BSS, raises the NPC and COE values.
However, utilizing both WT and PV systems such as configuration 3, the RF of the system
improves from 87.2% to 89.5%.

Table 2. Techno-economic planning results for Scenario 1.

Technical Results Economic Results

SPV
(kW)

WT
(kW)

BSS
(kW)

Conv.
(kW)

RF
(%)

COE
(USD/kWh)

NPC
(USD)

Initial
Cost (USD)

11.00 - - 6.00 87.2 −0.0635 −19,687 4675
11.00 - 1.00 6.00 87.2 −0.0595 −19,272 4799
11.00 1.00 - 6.00 89.5 −0.0619 −19,202 5400
11.00 1.00 1.00 6.00 85.5 −0.0580 −18,788 5524

Figure 10 shows the electricity purchased/sold to the utility grid over the months.
It is clear that a significant amount of produced electrical energy by the PV unit is sold
to the utility grid. In addition, the purchasing power from the utility grid is lower than
the electricity sold every month. In cold months, we observe that the need for electricity
is increased; therefore, the amount of sell-back electricity decreases. Variability in PV
output power can be observed in Figure 11. It indicates that the output power of the PV
unit is highly dependent on weather conditions. Table 3 also indicates the number of
produced emissions through the grid connection. As mentioned before, the utilization
of grid connections causes the production of greenhouse gas emissions. In this scenario,
1397 kg/year of carbon dioxide is produced, which is significant compared to sulfur dioxide
(6.08 kg/year) and nitrogen oxides (2.96 kg/year).
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Table 3. Grid emission productions over the optimization year.

Emissions Value

Carbon Dioxide 1397 kg/year
Sulfur Dioxide 6.08 kg/year

Nitrogen Oxides 2.96 kg/year

3.2.2. Scenario 2

In this scenario, simulations are performed using the proposed DR program. The
optimal sizing results of this scenario are indicated in Table 4. As can be observed, the
optimal capacity for a solar PV system is reduced from 11 kW in Scenario 1 to 9 kW
in Scenario 2. In addition to this, the NPC and COE are obtained as −23,461 USD and
−0.0660 USD/kWh. In comparison to the previous scenario, improvements in both NPC
and COE can be observed. The main reason is the modifications of the consumer’s load
profile. As indicated, the proposed DR program modified the consumer’s peak load
consumption, and the total demand for electricity was reduced. Therefore, the consumer
can sell more electricity to the grid and obtain economic profits.



Energies 2021, 14, 4597 16 of 28

Table 4. Techno-economic planning results for Scenario 2.

Technical Results Economic Results

SPV
(kW)

WT
(kW)

BSS
(kW)

Conv.
(kW)

RF
(%)

COE
(USD/kWh)

NPC
(USD)

Initial Cost
(US$)

9.00 - - 6.00 83.3 −0.0660 −23,461 3975
9.00 1.00 - 6.00 90.0 −0.0647 22,977 4700
9.00 1.00 1.00 6.00 87.3 −0.0618 22,663 4099
9.00 1.00 1.00 6.00 90.0 −0.0605 22,178 4824

Figure 12 shows the purchased/sold electricity from/to the utility grid. A result that
claims attention is the lower level of monthly load consumption in this scenario, which
shows the significance of the DR program on the consumption rate. In addition to this,
electricity sell-back is increased as a result of a decrease in total load consumption. However,
the total generated electricity by the PV system is a bit lower than the previous scenario
because of the lower designated capacity (Figure 13). Table 5 also shows the amount of the
emitted greenhouse gases in Scenario 2. Comparing the values with previous scenario, it
can be seen that the proposed DR program had a positive impact on the environmental
issues of MGs. The value of produced CO2, as well as other emissions, is reduced over
a year. Therefore, it can be concluded that implementation of an efficient DR program
such as the proposed one can significantly improve the system’s technical, economic, and
environmental performances.
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Figure 13. Average monthly PV system output power. 
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Table 5. Grid emission productions over the optimization year.

Emissions Value

Carbon Dioxide 1212 kg/year
Sulfur Dioxide 5.26 kg/year

Nitrogen Oxides 2.57 kg/year
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Figure 13. Average monthly PV system output power. Figure 13. Average monthly PV system output power.

3.3. Day-Ahead Operation Results

This section may be divided by subheadings. It should provide a concise and precise
description of the experimental results, their interpretation, as well as the experimental
conclusions that can be drawn.

To better understand the DR program of the operation of the MG, two scenarios are
considered based on the utilization of the proposed DR program, as shown below.

• Scenario 1: Optimal operation of the MG using TOU pricing mechanism.
• Scenario 2: Optimal operation of the MG using RTP mechanism.

Most of the previous papers do not consider the operation of the optimal system
and focus mainly on the planning and techno-economic results. However, it is of great
importance to analyze the daily operation of the MG to get more insights into the sys-
tem’s behavior. Therefore, in the following, we will analyze the results and draw some
important conclusions.

3.3.1. Scenario 1

In this scenario, the day-ahead operation results of the MG are presented using
TOU pricing. To have a more accurate understanding, a sample day from each season is
selected for further analysis. Hence, four days are considered as representative of the four
seasons selected in this study. The reason for selecting four days is the variability of load
consumption, renewables output power, and grid sales/purchases in each season. In this
way, a better understating of the MG over the optimization period could be achieved. The
daily standard deviation (STD) values for the load demand corresponding to four seasons
are indicated in Table 6.

Figure 14a–d shows the power balance of the MG, including the generated PV system,
electricity consumption, grid sales, and purchases during four days. Figure 14a shows
the operating results for a winter day. It is clear that PV output power could not fully
supply the load demand at most hours; hence, the MG is forced to buy electricity from
the grid, especially in peak hours. Peak generation has occurred at 10:00, and peak load
consumption has occurred at 20:00. At three distinct hours, we can see that the MG is
injecting extra generated electricity back into the grid. Figure 14b indicates the operation
of the MG over a spring day. PV production is relatively significant at this time of the
year, and the PV system is able to provide load demand for twelve hours of the day. In
addition to this, a significant amount of surplus generation is sold to the grid, which
obtains economic profits for the MG. Similar to the winter day, there are two peaks on this
day. However, the overall consumption on the winter day is more remarkable than on the
spring day. Figure 14c also shows the optimal operation of the MG on the summer day.
Power generation by the PV system is considerable even from a spring day. PV generation
started at 6:00 and lasted for 14 h. Furthermore, the PV is the primary source of power
supply in the MG system. On the summer day, most PV generation occurred between 12:00
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and 4:00, while this has taken place from 8:00 to 13:00 on the spring day. Finally, Figure 14d
indicates the power balance results of the optimal system on the fall day. The operation
is more similar to the winter day. However, the main difference is in the PV production,
which more considerable than the winter day.

Table 6. Standard deviation of load demand for different seasons before DR program implementation.

Hour
Standard Deviation Values

Winter Spring Summer Fall

1 0.1445 0.1298 0.10951 0.17311
2 0.14837 0.13355 0.11306 0.17687
3 0.15048 0.13441 0.11422 0.18068
4 0.15054 0.13399 0.11399 0.18336
5 0.14973 0.13345 0.11345 0.18475
6 0.14938 0.1331 0.11343 0.18446
7 0.14986 0.13316 0.11386 0.18396
8 0.15054 0.1336 0.11435 0.18431
9 0.15129 0.13408 0.11489 0.18511
10 0.15175 0.1343 0.11489 0.18608
11 0.15185 0.13394 0.11458 0.18665
12 0.15148 0.13355 0.11423 0.18721
13 0.15106 0.13309 0.11389 0.1874
14 0.15063 0.13298 0.11389 0.1869
15 0.15066 0.13301 0.114 0.18632
16 0.15088 0.13314 0.1142 0.18588
17 0.15133 0.13341 0.1146 0.18618
18 0.15142 0.13386 0.11472 0.18681
19 0.15021 0.13394 0.11431 0.18576
20 0.147 0.13335 0.11319 0.18253
21 0.14272 0.13144 0.11053 0.17854
22 0.13954 0.12775 0.10676 0.17501
23 0.13902 0.12455 0.10566 0.17236
24 0.14083 0.12515 0.1067 0.17142
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Figure 14. TOU-based operation results of the MG for (a) winter day; (b) spring day; (c) summer day;
(d) fall day.
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3.3.2. Scenario 2

In this scenario, the day-ahead operation results of the system are represented using
the RTP mechanism. The operation results for the same days as Scenario 1 are indicated in
Figure 15a–d. The daily standard deviation (STD) values for the load demand correspond-
ing to four seasons are indicated in Table 7. An important result that claims attention is the
impact of the suggested DR program on the load consumption profile. Applying the DR
program could successfully shave the two peaks, as shown in Figure 15a. This has resulted
in a decrease in the purchasing power from the grid during peak hours and, ultimately,
a reduction in the NPC of the system. Considering the proposed DR program, the MG
is more responsive to the electricity prices. Similar to BSS, the DR program is a flexible
resource for the MGs. While the optimum system was not equipped with BSS, the DR
program played a similar role as BSS for the MG. Typically, BSS are charged during off-peak
times and discharged in peak times when the electricity price is higher than average. The
proposed DR program also plays relatively the same role as BSS in the MG operation. The
same conclusions are also valid for the other operation days, as illustrated in Figure 15b–d.

Table 7. Standard deviation of load demand for different seasons after DR program implementation.

Hour
Standard Deviation Values

Winter Spring Summer Fall

1 0.034416 0.047639 0.055011 0.05175
2 0.034409 0.048225 0.055883 0.05198
3 0.03439 0.048599 0.05661 0.052198
4 0.034516 0.048866 0.057055 0.052301
5 0.034909 0.048697 0.056891 0.05189
6 0.034949 0.048192 0.056684 0.051631
7 0.034916 0.048154 0.056872 0.051924
8 0.035133 0.048423 0.057149 0.052184
9 0.035191 0.048554 0.057514 0.052633
10 0.03551 0.048833 0.057764 0.053087
11 0.036092 0.048742 0.057743 0.053169
12 0.036252 0.048524 0.057517 0.052986
13 0.036187 0.048451 0.057321 0.052985
14 0.03636 0.048177 0.057111 0.052849
15 0.036365 0.048123 0.057178 0.052868
16 0.03641 0.048225 0.057346 0.053017
17 0.03654 0.048426 0.057593 0.053172
18 0.036347 0.048709 0.057584 0.052925
19 0.036119 0.04861 0.057272 0.052391
20 0.036209 0.048216 0.056662 0.051917
21 0.036243 0.047592 0.055711 0.051463
22 0.036214 0.047027 0.054623 0.050832
23 0.036315 0.046783 0.054019 0.050678
24 0.036226 0.046692 0.054231 0.051171

3.4. Sensitivity Analysis

In this subsection, two sensitivity analyses on the inflation rate and discount rate
are performed in order to evaluate the optimal configuration and economic results of the
system under pessimistic economic conditions. Similar to previous subsections, two cases
as sensitivity analyses are suggested based on the proposed RTP-based DR program.



Energies 2021, 14, 4597 21 of 28

Energies 2021, 14, x FOR PEER REVIEW 21 of 28 
 

 

 
(a) 

 
(b) 

 
(c) 

5 10 15 20
0

1

2

3

4

5

Po
w

er
 [k

W
h]

Hour

 PV Output Power [kWh]
 Load Consumption [kWh]
 Grid Purchased Power [kWh]
 Grid Sell-back Power [kWh]

5 10 15 20
0

1

2

3

4

5

6

Po
w

er
 [k

W
h]

Hour

 PV Output Power [kWh]
 Load Consumption [kWh]
 Grid Purchased Power [kWh]
 Grid Sell-back Power [kWh]

Figure 15. Cont.



Energies 2021, 14, 4597 22 of 28Energies 2021, 14, x FOR PEER REVIEW 22 of 28 
 

 

 
(d) 

Figure 15. RTP-based operation results of the MG for (a) winter day; (b) spring day; (c) summer 
day; (d) fall day. 

3.4. Sensitivity Analysis 
In this subsection, two sensitivity analyses on the inflation rate and discount rate are 

performed in order to evaluate the optimal configuration and economic results of the sys-
tem under pessimistic economic conditions. Similar to previous subsections, two cases as 
sensitivity analyses are suggested based on the proposed RTP-based DR program. 

3.4.1. Sensitivity Analysis 1 
In this part, TOU-based prices are utilized to perform sensitivity analysis. To this end, 

the implemented inflation and discount rates are increased from 0% to 100%. Simulation 
results, including optimal configuration type and the values for the NPC and COE, are 
indicated as shown in Figure 16. It can be seen from Figure 16a that the optimal system 
configuration under different values of inflation and discount rates is not affected by uti-
lizing the WT units. However, under higher inflation rates and moderate discount rates, 
we can observe the integration of the WT system to the MG structure (Figure 16a). Fur-
thermore, the increase of the inflation rate reduces the NPC and COE of the system (Figure 
16b). This is primarily due to the considerable impact of the inflation rate on the annual 
cost of the system, as shown in Equation (1). In some conditions, higher renewable pene-
tration and grid revenues cannot be ignored. However, the discount rate has an adverse 
impact on the system costs, as illustrated in Figure 16c. It can be seen that the discount 
rate increases the NPC and COE of the system. The discount rate also is correlated with 
the annual cost of the system. 

(a) 

5 10 15 20
0

1

2

3

Po
w

er
 [k

W
h]

Hour

 PV Output Power [kWh]
 Load Consumption [kWh]
 Grid Purchased Power [kWh]
 Grid Sell-back Power [kWh]

Figure 15. RTP-based operation results of the MG for (a) winter day; (b) spring day; (c) summer day;
(d) fall day.

3.4.1. Sensitivity Analysis 1

In this part, TOU-based prices are utilized to perform sensitivity analysis. To this end,
the implemented inflation and discount rates are increased from 0% to 100%. Simulation
results, including optimal configuration type and the values for the NPC and COE, are
indicated as shown in Figure 16. It can be seen from Figure 16a that the optimal system
configuration under different values of inflation and discount rates is not affected by
utilizing the WT units. However, under higher inflation rates and moderate discount
rates, we can observe the integration of the WT system to the MG structure (Figure 16a).
Furthermore, the increase of the inflation rate reduces the NPC and COE of the system
(Figure 16b). This is primarily due to the considerable impact of the inflation rate on the
annual cost of the system, as shown in Equation (1). In some conditions, higher renewable
penetration and grid revenues cannot be ignored. However, the discount rate has an
adverse impact on the system costs, as illustrated in Figure 16c. It can be seen that the
discount rate increases the NPC and COE of the system. The discount rate also is correlated
with the annual cost of the system.
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Figure 16. The results of sensitivity analysis regarding (a) optimal system type; (b) effect of different 
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Figure 16. The results of sensitivity analysis regarding (a) optimal system type; (b) effect of different
values of inflation rate on NPC and COE of the MG; (c) effect of different values of discount rate on
NPC and COE of the MG.

3.4.2. Sensitivity Analysis 2

In this part, simulation results using the proposed RTP mechanism are presented.
Sensitivity analyses results are indicated in Figure 17. The results show that the increase
of the inflation rate (in lower discount rates) will lead to the integration of WT units to
the MG architecture, which could decrease NPC and COE of the system. This is mainly
because of renewable penetration increase and financial incomes from the sell-back energy
to the grid. However, the major impact of the inflation rate (as well as the discount rate) is
on the annual cost of the system (Figure 17b). Similar to previous sensitivity analysis, the
discount rate has a negative impact on the system costs, as demonstrated in Figure 17c. As
illustrated, the increase of discount rates will raise the NPC and COE of the system.
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Figure 17. The results of sensitivity analysis regarding (a) optimal system type; (b) effect of different
values of inflation rate on NPC and COE of the MG; (c) effect of different values of discount rate on
NPC and COE of the MG.

4. Conclusions

In this paper, a renewable-based MG is proposed for optimal planning and day-ahead
operation. The MG is a residential household located in Tehran, Iran. The location has
significant potentials for solar radiation and a moderate temperature. An RTP-based DR
program is also implemented in HOMER software to improve the techno-economic perfor-
mance. The HOMER Optimizer is also used for finding optimal sizing of the components.

Two electricity pricing mechanisms, TOU pricing and RTP, are compared in two
scenarios. Among the proposed system components (PV/WT/ESS/converter), the combi-
nation of PV and converter found to be economical in both scenarios. The DR program
significantly shaved the peak load values. Moreover, the MG planning results indicated
that the proposed DR program reduces NPC and COE from −19,687 USD to −23,461 USD
and −0.0635 USD to −0.0660 USD/kWh, respectively. The obtained results for NPC and
COE indicate an improvement in the financial results of the study. While purchasing power
from the utility grid decreased, the power sales to the grid increased. The capacity of the PV
system was also reduced from 9 to 12 kW. In addition, carbon emissions are reduced from
1397 to 1212 kg/year by implementing the proposed DR program. Daily operation results
indicated that the proposed DR program modifies load profiles for economic purposes.
Since the battery ESS is considered a backup resource, it was not found to be economical
in the optimum configuration. However, under an unreliable electricity grid, it could
be essential for a constant power supply. The results of sensitivity analysis showed the
negative impact of discount rate on the NPC and COE of the MG. In addition, higher
inflation rates reduce the NPC and COE of the MG due to the renewable penetration and
grid revenues. Uncertainties of RESs may affect the planning results; hence, for future
work, stochastic planning of the proposed method will be conducted by the authors.
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