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Abstract: In order to predict the gasoline consumption in China, this paper propose a novel data-trait-
driven rolling decomposition-ensemble model. This model consists of five steps: the data trait test,
data decomposition, component trait analysis, component prediction and ensemble output. In the
data trait test and component trait analysis, the original time series and each decomposed component
are thoroughly analyzed to explore hidden data traits. According to these results, decomposition
models and prediction models are selected to complete the original time series data decomposition
and decomposed component prediction. In the ensemble output, the ensemble method corresponding
to the decomposition method is used for final aggregation. In particular, this methodology introduces
the rolling mechanism to solve the misuse of future information problem. In order to verify the
effectiveness of the model, the quarterly gasoline consumption data from four provinces in China
are used. The experimental results show that the proposed model is significantly better than the
single prediction models and decomposition-ensemble models without the rolling mechanism. It can
be seen that the decomposition-ensemble model with data-trait-driven modeling ideas and rolling
decomposition and prediction mechanism possesses the superiority and robustness in terms of the
evaluation criteria of horizontal and directional prediction.

Keywords: gasoline consumption forecasting; decomposition-ensemble model; data-trait-driven
modeling; rolling mechanism

1. Introduction

With the development of the economy and people’s living standards [1], car ownership
has been increasing substantially [2]. As the main energy product of the transportation
industry [3], gasoline also shows a trend of gradual increase. According to the related
data from the National Bureau of Statistics of China, the number of private cars in China
in 2018 was 205.74 million, a year-on-year increase of 11.13%. At the same time, China’s
gasoline consumption in 2018 was 130.55 million tons with a year-on-year increase of
5.14%. It can be seen that the gasoline demand will continue to grow rapidly in the future;
hence, effective forecasting of gasoline consumption can provide important measurement
standards for the country, related industries, sales companies and individuals, which is of
great significance.

For gasoline consumption forecasting, there have been many studies in the past few
decades. According to the current research, there are four kinds of gasoline consumption
forecasting models. They are the traditional statistical model, the artificial intelligence (AI)
model, the hybrid model and the ensemble model.

In the traditional statistical model, it mainly includes the autoregressive integrated
moving average model (ARIMA) [4,5], random walk (RW) model [6], grey forecast model [7],
error correction model (ECM), Bayesian model average (BMA) [8], the panel data regres-
sion [9], and so on. The above models are often used to predict time series. For example,
Bhutto et al. [10] used ARIMA to predict the gasoline consumption in the transportation
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sector. The empirical results showed the high prediction accuracy. Chen et al. [11] used
the grey wave forecasting model for multi-step-ahead crude oil price forecasting. The
empirical results showed that grey wave forecasting model had superior performance
for multi-step-ahead crude oil price forecasting. Kapoguzov et al. [12] used a Bayesian
approach to forecast the gasoline volume and price till 2026. Although this kind of model
performed well in forecasting, it still has problems in analyzing complex and non-linear
gasoline consumption data. Therefore, AI models were subsequently proposed for time
series forecasting.

In the second category, AI methods mainly include heuristics, metaheuristics, and
nature-inspired algorithms, etc. These methods are applied in many different domains,
such as online learning [13], scheduling [14], medicine [15], multi-objective optimization,
vehicle routing, and data classification, etc. Additionally, many AI models, such as back
propagation neural network (BPNN) [16,17], random vector functional link (RVFL) [18],
support vector regression (SVR) [19,20], extreme learning machine (ELM) [21], and wavelet
neural network (WNN) [22], are widely used for energy forecasting. For example, Kazemi
et al. [23] presented a hierarchical artificial neural network (ANN) method, which was based
on supervised multilayer perceptron (MLP). Then the backpropagation (BP) algorithm
was used for training to predict gasoline demand. The empirical results illustrated the
prediction capability. Xie et al. [24] proposed a new model to predict crude oil price, which
is based on support vector machine (SVM). The results showed that SVM was a good model
to predict the crude oil price. Kulkarni et al. [25] proposed a model to forecast crude oil
spot price direction in the short-term, which is based on the multilayer feedforward neural
network (FNN). The results proved the forecasting effectiveness of the proposed model.
Although the AI models can solve the nonlinear problems that traditional statistical models
fail to solve, the AI models sometimes have the problem of overfitting, local optimization
and parameter sensitivity. Therefore, hybrid models and ensemble models are adopted for
these issues.

In the third category, different single prediction methods are used to formulate the
hybrid model. The hybrid model includes the combination of different econometric mod-
els [26], the combination of AI models and econometric models [27,28], and the combination
of different AI models [29,30]. For example, Xu et al. [31] presented an integrated model
based on pattern modeling, recognition system (PMRS), error correction model (ECM)
and artificial neural network (ANN) to forecast crude oil prices. Babazadeh et al. [32]
presented a hybrid model for gasoline consumption forecasting, which was based on ANN
and ARIMA approach. The results showed the prediction capability of the hybrid ARIMA-
ANN method. Li et al. [33] integrated a firefly algorithm (FA) with least squares support
vector regression (LSSVR) for forecasting. The results showed that the proposed model had
better prediction performance than other benchmark models. Accordingly, these existing
studies showed that the hybrid models can improve the prediction accuracy effectively.

In the fourth category, because the ensemble model is the integrated prediction of
multiple same-type models, it can solve the issues that caused by the single model. It mainly
include Bagging [34,35], Boosting [36], AdaBoost [37], and XGBoost [38,39], etc. At present,
the ensemble model is widely used in various domains. For example, ensemble methods
were employed for the classification problem for power systems security assessment in [40].
The decision tree based ensemble method was proposed for the case of concept drift
in datasets in [41]. Besides, the ensemble model is also adopted to predict the energy.
Specifically, Zhao et al. [42] utilized stacked denoising autoencoders (SDAE) and bootstrap
aggregation (bagging) to deal with the problem of crude oil forecasting. The approach
showed superior prediction ability in three statistical tests. Qu et al. [43] used empirical
mode decomposition (EMD) and BPNN adaptive boosting (BP_AdaBoost) to model the
oil price. The empirical results showed that it effectively improved the short-term price
forecasting accuracy compared with other listed models. Su et al. [44] proposed the least
squares regression boosting (LSBoost) algorithm to forecast the natural gas spot prices. The
empirical results revealed that this method had a superior prediction performance.
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Next, Yu et al. [45] first proposed the decomposition-ensemble model, which belongs
to a new type of the ensemble model. The decomposition-ensemble learning paradigm
is based on the idea of “divide-and-conquer”. First, multi-scale decomposition of the
original data is performed. Then, each component is predicted separately. Finally, the
prediction results of these components are aggregated to output the final prediction result.
Decomposition-ensemble models can reduce the complexity of modeling and improve
the prediction performance, especially for nonlinear time series data [46]. For example,
He et al. [47] proposed a wavelet decomposed ensemble model to forecast the oil price.
The empirical results showed that the prediction performance of the proposed algorithm
was better than that of the benchmark models. Tang et al. [48] proposed a CEEMD-
EELM model, i.e., complementary ensemble empirical mode decomposition (CEEMD)
and extended extreme learning machine (EELM) to predict the oil price. The results
revealed that the proposed model had better performance than all listed benchmark models.
Tang et al. [49] proposed randomized-algorithm-based decomposition-ensemble learning
models for forecasting. The proposed models were proved to be efficient and fast. Although
the “divide-and-conquer” strategy was used by the decomposition-ensemble model to
reduce the complexity of modeling and improve prediction performance, the data traits of
the original data didn’t be considered by the many existing models. Therefore, in response
to this problem, data-trait-driven modeling idea was proposed by some scholars to select
suitable models in terms of the traits hidden in the data [50].

In the novel “data-trait-driven modeling” method, data analysis and forecast model-
ing, are mainly involved [48]. Starting from the traits of the data, the model that matches
its traits can be built, so as to better analyze and improve the prediction accuracy. In
fact, “data-trait-driven modeling” has been adopted to build some effective predictive
learning paradigms and improve prediction performance. For example, Wang et al. [51]
proposed a seasonal decomposition (SD)-based least squares support vector regression
(LSSVR) ensemble learning paradigm for hydropower consumption forecasting. The re-
sults showed that the proposed model was a superior approach for seasonal time series
prediction. Tang et al. [52] proposed a mode-trait-based decomposition ensemble model to
predict nuclear energy consumption. The results demonstrated that the data-trait-driven
model strikingly improved prediction performance. Yu et al. [53] proposed a methodol-
ogy combined “divide and conquer” and “data-trait-driven modeling” for crude oil price
forecasting. The results indicated the effectiveness of the proposed model.

According to the existing studies, it is easy to find that although the decomposition-
ensemble methods based on data traits have made great progress in prediction, some
problems with these models are still existed. For example, Wang et al. [51] only considered
the seasonal trait of original series in hydropower data, but did not consider the component
traits after decomposition. They directly used LSSVR model for component prediction
without reasons. Furthermore, in the existing decomposition-ensemble forecasting studies,
there was an improper information use case. However, the testing dataset data is unknown
in actual problems. Therefore, decomposing the testing dataset is equivalent to using future
information to make predictions, which leads to the errors of prediction results.

Accordingly, for the purpose of solving the above problems, this paper not only con-
siders the data traits of the original time series data and decomposed component data, but
also decomposes the training data only instead of the overall data. This is the difference
between the existing literature and this paper. In order to further improve the forecasting
performance, the rolling decomposition and prediction mechanism are introduced into
the data-trait-driven decomposition ensemble model for gasoline consumption forecast-
ing. Additionally, the prediction performance of the proposed data-trait-driven rolling
decomposition-ensemble model is compared with some typical benchmark models.

The main purpose of this paper is to propose a data-trait-driven rolling decomposition-
ensemble learning model to predict gasoline consumption. In the proposed model, at first,
the original data of the gasoline consumption is used to test their main data trait to de-
termine the decomposition method. Then the original data is decomposed into multiple
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components. Next, component trait analysis is performed on each mode component to
determine the component prediction method. Subsequently, each mode component is
forecasted separately in terms of their own traits. Finally, the prediction results of each com-
ponent are integrated to obtain the final prediction result. In order to verify the effectiveness
of the model, the quarterly gasoline consumption data from four provinces in China are
used. In addition, to verify the robustness of the proposed model, Diebold-Mariano (DM)
test is adopted. The rest of the paper is organized as follows. The methodology formulation
is described in Section 2. The empirical results are introduced in Section 3. The conclusions
and future directions are elaborated in Section 4.

2. Methodology Formulation

The formulation process of the proposed model is introduced in this section. Specif-
ically, the general framework of the proposed model is given in Section 2.1. The related
technologies of the data-trait-driven data decomposition, data-trait-driven component
prediction and data-trait-driven ensemble output are introduced in Sections 2.2–2.4. The
rolling decomposition and prediction mechanism is described in Section 2.5.

2.1. General Frameworks of the Proposed Methodology

Gasoline consumption data fluctuates widely and irregularly, which brings about
great challenges to forecasting. For the purpose of improving the prediction performance,
a data-trait-driven rolling decomposition-ensemble learning methodology is proposed.
Particularly, the idea of “data-trait-driven modeling”, “decomposition and ensemble” and
the rolling mechanism are adopted. In order to proceed from the traits of the data itself
and explore the hidden data traits, the data traits of the original data and decomposed
component data are analyzed. Not only that, in order to fully use the known knowledge
in the training dataset, the rolling decomposition and ensemble mechanism is adopted
into the general framework. The framework of the data-trait-driven rolling decomposition-
ensemble learning paradigm can be illustrated in Figure 1.

As can be seen from Figure 1, the proposed data-trait-driven rolling decomposition-
ensemble learning paradigm consists of five steps, those are data trait test, data decompo-
sition, component trait analysis, component prediction and ensemble output, which are
elaborated below.

Step 1: Data Trait Test
Due to the effect of economic, social environment and other factors, the quarterly

gasoline consumption data has relatively regular cyclicity fluctuations every year. Thus,
the cyclicity trait of the original time series data is tested. Accordingly, the autocorrelation
analysis is used as the main method for the cyclicity trait test [54] in this paper. In terms
of the cyclicity trait, seasonal decomposition is adopted as the decomposition method for
original gasoline consumption data, as it can remove the influence of seasonal fluctuations,
as shown in Step 1 of Figure 1. The steps of the data trait test and related technologies will
be introduced in detail in Section 2.2.

Step 2: Data Decomposition
In the second step, in order to reduce the modeling difficulty of the complex system,

the original data is decomposed at multiple components with different scales. According
to the result of Step 1, the seasonal decomposition is selected as the decomposition method
for original time series data. Accordingly, two decomposition forms are adopted respec-
tively, namely additive decomposition and multiplicative decomposition. Additionally, the
original time series data with the cyclicity trait is decomposed into three components with
different meanings and scales: trend cycle (TC), seasonal factor (SF), and irregular compo-
nent (IR). During the decomposition process, the gasoline consumption data is decomposed
through the rolling decomposition and prediction mechanism. In each decomposition,
new known training data is added until all the testing data are predicted. Therefore, the
existing knowledge can be fully used in such process, which lays a solid foundation for the
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subsequent prediction. The related technologies of data decomposition are described in
detail in Section 2.2.

Figure 1. General framework of the proposed data-trait-driven rolling decomposition-ensemble
learning paradigm.

Step 3: Component Trait Analysis
In the third step, three main components are decomposed in Step 2: TC, SF, and IR, are

respectively analyzed for data trait exploration. For different components, different compo-
nent trait test methods are used. Firstly, in the data trait analysis of TC, the Augmented
Dickey–Fuller (ADF) test is used to test the stationary trait of TC. If TC is non-stationary, the
permutation entropy (PE) test is adopted to estimate the complexity trait of TC. According
to the above tests, the data traits of TC component can be judged and the corresponding
prediction model can be selected. Secondly, in the data trait analysis of SF, autocorrelation
analysis is used to test the seasonality trait of SF. Then the prediction model of SF can be
selected according to seasonality trait of SF. Thirdly, in the data trait analysis of IR, the
complexity trait is tested using permutation entropy (PE) test. If IR has complexity trait, the
mutability trait is tested. In the mutability trait test, first perform the iterative cumulative
sum of squares (ICSS) test to find the suspect points of IR, and then Chow test is used to
test the mutability trait of suspect points. The steps of component trait analysis and related
techniques will be introduced in Section 2.3.
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Step 4: Component Prediction
In order to obtain the prediction results of the components, the corresponding predic-

tion model is chosen to predict each component separately according to their data traits
obtained in the Step 3. Because SVR can alleviate overfitting and local minimum problems,
it has superior prediction performance. Therefore, an adaptive, stable and flexible SVR can
be used as a prediction model for components with complexity trait or mutability trait. In
addition, because SARIMA is a model with seasonal difference operators, it can be used
as the prediction model for data with seasonality trait. Then each component is predicted
by corresponding prediction models to get component prediction results. The steps of
component prediction and related techniques will be described in detail in Section 2.3.

Step 5: Ensemble Output
In the Step 5, according to the decomposition-ensemble principle, the component

prediction results are fused, as shown in Step 5 of Figure 1. The component forecasting
results are fused to output the final prediction result using the selected ensemble method.
Specifically, according to the data trait analysis in the Step 1 and the selection of the
decomposition method in the Step 2, the corresponding ensemble model will be selected to
fuse the component prediction results. The steps of ensemble output and related techniques
will be described in Section 2.4.

2.2. Data-Trait-Driven Data Decomposition

In this section, the cyclicity trait test in Step 1 of Figure 1 and the seasonal decompo-
sition in Step 2 of Figure 1 are introduced. For this purpose, autocorrelation analysis is
used as a method of cyclicity trait test, which is introduced in Section 2.2.1. Meantime,
X-12-ARIMA is used as a seasonal decomposition method to decompose data with the
cyclicity trait, which is introduced in Section 2.2.2.

2.2.1. Cyclicity Trait Test

The cyclicity trait mainly refers to the fact that the data repeats the previous fluctu-
ations at a fairly regular time interval, often accompanied by peaks and valleys. These
fluctuations are the important factor hidden within the data, revealing the main laws
of time series data. Therefore, the cyclicity trait reflects the unique impact factors and
potential laws of the time series data, which is one of the most important data traits [55].
For the quarterly gasoline consumption data, due to the economic and social environment
and other factors, it has relatively regular cyclicity fluctuations every year. Therefore, the
cyclicity trait test is conducted on the gasoline consumption time series data, as shown in
Step 1 of Figure 1.

As autocorrelation (AC) analysis measures the correlation between two points at a
given interval in the time series, it is helpful to determine the cycle period scale in the
data. For the quarterly gasoline consumption data, this method can determine whether
there is a cyclicity pattern in the observed time series data. Therefore, in this paper, the
autocorrelation analysis is performed as the method of the cyclicity trait test. The specific
processes can be referred to in the literature [56] for more details.

2.2.2. Seasonal Decomposition (SD)

This section describes the decomposition method adopted in Step 2 of Figure 1. For
the gasoline consumption data with the cyclicity trait, it has periodic changes caused by
the influence of seasonal components, which is called seasonal fluctuation in the economic
analysis. Because the seasonal decomposition (SD) method can remove cyclicity elements
from the original time series with the cyclicity trait, so as to remove the influence of
seasonal fluctuations. Therefore, the seasonal decomposition (SD) method is used for the
decomposition method in this paper.

In the existing SD method, X-12-ARIMA can extract seasonal patterns hidden in time
series data. Not only that, X-12-ARIMA is the seasonal adjustment program of the Census
Bureau [57]. Therefore, this paper will adopt X-12-ARIMA as the SD method. Accordingly,
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the time series Xt is decomposed by the X-12-ARIMA method into three components, i.e.,
the trend cycle TCt, the seasonal factor SFt and the irregular component IRt. The X-12-
ARIMA method has a variety of forms to combine these components into original data.
Generally, the forms mainly include the additive form of Equation (1) and the multiplicative
form of Equation (2):

Xt = TCt + SFt + IRt (1)

Xt = TCt × SFt × IRt (2)

As for which form of X-12-ARIMA is selected, it depends on different gasoline con-
sumption data. The specific form will be selected from the experimental results.

2.3. Data-Trait-Driven Component Prediction

In this section, the component trait analysis in Step 3 of Figure 1 and the component
prediction in Step 4 of Figure 1 are introduced in this section. Specifically, this section
illustrates the main methods of component trait analysis, including the complexity trait test
and the mutability trait test. In addition, the details of two important prediction models,
i.e., seasonal auto regressive integrated moving average (SARIMA) and support vector
regression (SVR) can be referred to in the given specific literature.

For the three components decomposed in Step 2, their data traits will be analyzed
separately in order to find the suitable prediction model corresponding to each decomposed
component. As introduced in Section 2.2.2, the original data is decomposed by X-12-ARIMA
into the trend cycle (TC), the seasonal factor (SF) and the irregular component (IR). For
these components, different data trait test methods are used in terms of their traits.

Firstly, the trend cycle (TC) term represents the long-term trend of the original time
series. Therefore, for the time series with long-term trends, ADF test is first used to test its
stationarity. If it is stationary, traditional statistical and econometric model is suitable for
prediction in order to save time. If it is non-stationary, its complexity trait need to be further
tested to determine whether there are many internal disorder components in its dynamic
system. Thus, the permutation entropy (PE) first proposed by Bandt and Pompe [48] can
be used to test whether it has complexity trait. According to the result of PE test, the
prediction model can be determined to predict the TC.

As one of the complexity trait test methods, PE estimates the complexity of data
dynamics by mapping time series into symbol sequences. When the PE value is less than
the given threshold h, the component appears low complexity. Likewise, the component
with PE value above h has high complexity. In this paper, the threshold h is set to 0.5.
Compared with other methods (such as sample entropy), it has the advantages of simplicity,
speed and stationary. In addition, even for complex data with a lot of noise, the PE can
perform well [58]. Specific steps can be referred to in the literature [59] for more details.

Secondly, the seasonal factor (SF) refers to the cyclical changes that occur repeatedly
every four quarters, resulting in a cyclical effect. Seasonal change is a self-circulation
in a fixed interval. Therefore, the seasonal trait needs to be tested. Accordingly, the
autocorrelation analysis can be used to test whether the time series has seasonality trait. If
it has seasonal trait, a model that adapts to the data with seasonal trait can be selected to
predict the SF.

Thirdly, the irregular component (IR) is also called random factor. Its changes have
no rules to follow, usually caused by accidental events. Therefore, for this more complex
sequence, the permutation entropy (PE) can be used to test whether it has complexity trait.
If it has, the iterative cumulative sum of squares (ICSS) can be further used to find whether
it has the suspect breaking points [60], and the Chow test at the suspect breaking points
can be used to test its mutability trait [61].

In summary, for decomposed three components, the stationarity trait and complexity
trait are tested for the trend cycle (TC), the seasonal trait is tested for the seasonal factor
(SF), and the complexity trait and mutability trait are tested for the irregular component
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(IR). In terms of these different component traits, different forecasting models are selected
for prediction purpose.

In the component prediction, because the seasonal auto-regressive integrated moving
average (SARIMA) model is an ARIMA-based econometrical method, which is often used
to deal with time series data containing periodic fluctuations [62]. Therefore, the SARIMA
model can be used to predict the data with seasonality trait. Moreover, based on Vladimir
Vapnik’s concept of support vectors [63,64], support vector regression (SVR) has been
proposed. As SVR is adaptive, stable and flexible and it has the global approximation
capability for data scarcity issue, it can be used as the prediction model for the data with
complexity trait and mutability trait.

2.4. Data-Trait-Driven Ensemble Output

In this section, the ensemble method of Step 5 in Figure 1 is introduced. In this step,
the ensemble method integrates the forecasting results of TC, SF, IR to obtain the final
forecasting result. Corresponding to the two forms of X-12-ARIMA decomposition model
in Section 2.2.2, which are shown in Equations (1) and (2), the ensemble method also has
two forms. Accordingly, the specific expressions are shown in Equations (3) and (4) below.

X̂t = ˆTCt + ŜF + ˆIRt (3)

X̂t = ˆTCt × ŜF× ˆIRt (4)

where X̂t is the forecasting result as shown in Figure 1. ˆTCt, ŜF, ˆIRt is the forecasting
result of the component TCt, SFt, IRt respectively. As for which specific form of ensemble
method is selected, it depends on the form of the decomposition method.

2.5. Rolling Decomposition and Forecasting Mechanism

In the existing studies, the training dataset and testing dataset in the decomposition
ensemble model are decomposed at the same time. However, in actual problems, the
testing dataset represents future information and cannot be used for the training process.
Therefore, if the rolling decomposition and prediction mechanism is introduced into the
decomposition ensemble model, the accuracy of the prediction results will be ensured.

Considering that the forecasting problem is carried out under the premise that the
testing data is unknown, when using the decomposition model, the decomposed data
should always be the existing data. In the rolling mechanism, one testing data point
is forecasted at a time. When predicting the next data point, the current data point is
considered to be known. This method can make full use of existing data to ensure the
maximum knowledge learning. More details about rolling decomposition and prediction
mechanism can refer to the Yu et al. [65].

3. Empirical Analysis

To verify the effectiveness of the proposed model, quarterly gasoline consumption
data from Qinghai Province, Shandong Province, Jiangsu Province, and Henan Province
in China are used as sample data. Accordingly the experimental design is introduced in
Section 3.1, the experimental results are analyzed in Section 3.2, the further discussions are
shown in Section 3.3, and the main findings are summarized in Section 3.4.

3.1. Experimental Design

In this paper, the quarterly gasoline consumption data of Qinghai Province, Shandong
Province, Jiangsu Province, and Henan Province are used. Moreover, the data is originated
from the National Bureau of Statistics of China. The time of each sample data is from the
first quarter of 2010 to the fourth quarter of 2018, and there are a total of 36 observations in
each province, as shown in Figures 2–5. In the gasoline consumption data of each province,
the ratio of training dataset to testing dataset is 28:8.
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Figure 2. Gasoline consumption data of Qinghai Province.

Figure 3. Gasoline consumption data of Shandong Province.

Figure 4. Gasoline consumption data of Jiangsu Province.

Figure 5. Gasoline consumption data of Henan Province.
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In order to compare the forecasting performance of different models, horizontal
prediction accuracy and directional prediction accuracy are selected as the evaluation
criteria for forecasting performance. Accordingly, mean absolute percentage error (MAPE)
and root mean squared error (RMSE) are used as the horizontal prediction accuracy.
Meantime, the directional statistics (Dstat) is selected as the directional prediction accuracy.
MAPE and RMSE can be represented by:

MAPE =
1
N

N

∑
t=1

∣∣∣∣ xt − x̂t

xt

∣∣∣∣ (5)

RMSE =

√√√√ 1
N

N

∑
t=1

(x̂t − xt)
2 (6)

where xt is obserbed value, x̂t is forecasting value, N is the length of testing dataset. The
smaller the values of MAPE and RMSE, the better the horizontal prediction accuracy.

Dstat is expressed by:

Dstat =
1
N

N

∑
t=1

at × 100% (7)

where at = 1 i f (xt+1 − xt)(x̂t+1 − xt) ≥ 0, and at = 0 otherwise. The larger the values of
Dstat, the better the directional prediction accuracy.

Moreover, in order to prove the superiority of the proposed model in this paper,
we also used some single models to predict gasoline consumption. Specifically, as a
representative of the traditional statistical model, ARIMA was used. As a single model
with seasonal factors, SARIMA was used. As a representative of artificial intelligence
models, SVR, BPNN and RVFL were used.

In addition, in order to select the decomposition model suitable for each province,
the SVR is used as a prediction model to build the decomposition-ensemble model due to
its good prediction performance. Based on the above descriptions, four decomposition-
ensemble models were constructed. They are A-X12-ARIMA-SVR-A, M-X12-ARIMA-
SVR-M, A-X12-ARIMA-SVR-A-R, M-X12-ARIMA-SVR-M-R. Besides, there are models
proposed in this paper, namely A-X12-ARIMA-DTD-A-R, M-X12-ARIMA-DTD-M-R. In
these models, the first ‘A’ represents additive decomposition, and the second ‘A’ represents
additive ensemble. The first ‘M’ represents multiplicative decomposition, and the second
‘M’ represents multiplicative ensemble. ‘R’ means it has the rolling decomposition and
prediction mechanism. ‘DTD’ represents data-trait-driven modeling.

3.2. Experimental Results Analysis

This section mainly analyzes the empirical results. Specifically, Section 3.2.1 analyzes
the results of the original time series data trait test. Section 3.2.2 analyzes the differ-
ent decomposition forms of the four provinces in order to determine the decomposition
model. Section 3.2.3 illustrates the analysis results of the different traits of each compo-
nent. Section 3.2.4 analyzes the prediction performance of different models and verifies
the effectiveness of the proposed model.

3.2.1. Data Trait Test

In this section, the cyclicity trait of the original time series data was tested. Accordingly,
autocorrelation (AC) analysis was performed on the quarterly gasoline consumption data
to determine whether there is a cyclicity pattern in the observed time series data. The
cyclicity trait test results of the 4 time series data are shown in Table 1.

As shown in Table 1, when the lag period of four provinces is four quarters, the
correlation coefficient of the time series data is the largest. The test results show that the
four time series data in Table 1 have a cyclicity trait with a period of one year (four quarters).
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Table 1. Cyclicity test results of original time series data.

Time Series Lag Period Correlation Coefficient Statistics Prob. Time Series

Qinghai 4 0.738 70.728 0.000 Qinghai
Henan 4 0.812 39.229 0.000 Henan

Shandong 4 0.735 68.684 0.000 Shandong
Jiangsu 4 0.736 61.159 0.000 Jiangsu

3.2.2. Data Decomposition Analysis

As introduced in Section 2.2.2, X-12-ARIMA has two forms of decomposition. There-
fore, this section uses the four decomposition-ensemble models mentioned in Section 3.1 to
find the decomposition method suitable for different provinces. These models are A-X12-
ARIMA-SVR-A, M-X12-ARIMA-SVR-M, A-X12-ARIMA-SVR-A-R, M-X12-ARIMA-SVR-M-
R. Moreover, in terms of the evaluation criteria of horizontal and directional prediction,
Tables 2–5 show the prediction performance of these four prediction models for Qinghai,
Shandong, Henan, and Jiangsu respectively.

Table 2. The prediction performance of gasoline consumption in Qinghai.

Forecasting Models MAPE RMSE Dstat

A-X12-ARIMA-SVR-A 0.23269 5.48188 0.42857
M-X12-ARIMA-SVR-M 0.30811 6.72903 0.42857

A-X12-ARIMA-SVR-A-R 0.05063 1.20584 1.00000
M-X12-ARIMA-SVR-M-R 0.05323 1.30603 1.00000

Table 3. The prediction performance of gasoline consumption in Shandong.

Forecasting Models MAPE RMSE Dstat

A-X12-ARIMA-SVR-A 0.01350 4.32930 0.57143
M-X12-ARIMA-SVR-M 0.01393 4.40868 0.42857

A-X12-ARIMA-SVR-A-R 0.00832 2.64259 1.00000
M-X12-ARIMA-SVR-M-R 0.00873 2.73930 1.00000

Table 4. The prediction performance of gasoline consumption in Henan.

Forecasting Models MAPE RMSE Dstat

A-X12-ARIMA-SVR-A 0.48476 138.39043 0.71429
M-X12-ARIMA-SVR-M 0.48202 150.08664 0.57143

A-X12-ARIMA-SVR-A-R 0.17552 34.80237 1.00000
M-X12-ARIMA-SVR-M-R 0.07182 21.38547 1.00000

Table 5. The prediction performance of gasoline consumption in Jiangsu.

Forecasting Models MAPE RMSE Dstat

A-X12-ARIMA-SVR-A 0.15223 44.59431 0.42857
M-X12-ARIMA-SVR-M 0.15893 47.27334 0.42857

A-X12-ARIMA-SVR-A-R 0.08419 22.41964 0.85714
M-X12-ARIMA-SVR-M-R 0.07750 20.53079 1.00000

From the evaluation criteria of horizontal and directional prediction in Tables 2–5, two
important results can be found below.

(1) Generally, the prediction performance of decomposition-ensemble model with
rolling mechanism is better than that of decomposition-ensemble model without rolling
mechanism for all four provinces. This implies that the introduction of the rolling decompo-
sition and prediction mechanism is very effective in improving the prediction performance.
This result is consistent with the previous finding in Yu et al. [65].
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(2) For the decomposition forms, there are some distinct differences between the
former two provinces (i.e., Qinghai and Shandong in Tables 2 and 3) and the latter two ones
(i.e., Henan and Jiangsu in Tables 4 and 5). For the former two provinces, the prediction
performance of additive decomposition is better than that of multiplicative decomposition,
while the result is somewhat different for the latter two provinces. That is, the prediction
performance of multiplicative decomposition is better than that of additive decomposition
under the condition of rolling mechanism for the latter two provinces, indicating the
effectiveness of rolling mechanism again. The possible reason leading to the differences is
that the data of the former two provinces has less fluctuation than the latter two ones.

In summary, if the proposed decomposition-ensemble model does not apply the rolling
mechanism, the additive decomposition is more suitable for gasoline consumption forecast-
ing than the multiplicative decomposition. If the proposed decomposition-ensemble model
adopts the rolling mechanism, the prediction performance of the additive decomposition
is better than that of the multiplicative decomposition for the data with small fluctuation,
while the multiplicative decomposition is better than the additive decomposition for the
data with high volatility.

3.2.3. Component Trait Analysis

In this section, in order to find the suitable prediction model corresponding to each
component, the data traits of these three components (i.e., TC, SF and IR) will be analyzed,
as illustrated below.

The trend cycle (TC)
For the training dataset (i.e., the data from the first quarter of 2010 to the fourth quarter

of 2016), TC terms of the four provincial administrative units are shown in Figures 6–9.
For TC terms, the ADF test is first used to test the stationarity trait. The corresponding

results of ADF test are presented in Table 6.

Table 6. Stationarity trait test results for TC.

Qinghai Shandong Henan Jiangsu

Prob. 0.2277 0.2597 0.9995 0.9217

It can be seen from Table 6 that the TC terms of these four provinces is non-stationary.
Therefore, their complexity trait is tested. The results of permutation entropy (PE) test are
given in Table 7.

Figure 6. TC terms data of Qinghai Province.
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Figure 7. TC terms data of Shandong Province.

Figure 8. TC terms data of Jiangsu Province.

Figure 9. TC terms data of Henan Province.

Table 7. Complexity trait test results for TC.

Qinghai Shandong Henan Jiangsu

PE values 0.0720 0.3694 0.0000 0.3636
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In terms of the previous studies, the threshold h is set to 0.5. In Table 7, all the PE
values of the TC terms in four provinces are lower than h and the PE value of Henan’s TC
is even 0. Therefore, the TC terms decomposed by X-12-ARIMA in Qinghai, Shandong,
and Jiangsu have low complexity and Henan does not have complexity trait.

In general, the TC term is used to find the long-term trend of the original time series
data. After the permutation entropy test, it was found that the TC in Qinghai, Shandong,
and Jiangsu was accompanied by lower complexity, and the TC in Henan had no complexity.
As a whole, the trend of TC term rises steadily, as shown in Figure 3. Accordingly, the
adaptive, stable and flexible SVR can be used as the prediction model of TC term.

The seasonal factor (SF)
For the training dataset (i.e., the data from the first quarter of 2010 to the fourth quarter

of 2016), SF terms of the 4 provincial administrative units are shown in Figures 10–13.
According to Section 2.3 the autocorrelation analysis is used to test whether it has

seasonality trait. Table 8 shows the results of the seasonality trait test.

Table 8. Seasonality trait test results for SF.

Time Series Lag Period Correlation
Coefficient Statistics Prob.

Qinghai 2 −0.871 24.590 0.000
Henan 4 0.859 49.274 0.000

Shandong 4 0.803 32.427 0.000
Jiangsu 2 −0.929 27.877 0.000

Figure 10. SF terms data of Qinghai Province.

Figure 11. SF terms data of Shandong Province.
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Figure 12. SF terms data of Jiangsu Province.

Figure 13. SF terms data of Henan Province.

In Table 8, when the lag period in Qinghai and Jiangsu is 2 quarters, the correlation
coefficient of the SF term is the largest. The results show that the SF terms in Qinghai
and Jiangsu decomposed by X-12-ARIMA has seasonality trait with a period scale of
2 quarters. Similarly, the SF terms in Henan and Shandong decomposed by X-12-ARIMA
has seasonality trait with a period scale of 4 quarters. Therefore, all the seasonal factors of
these four provinces repeat the sequence with the different peaks and valleys respectively.
As SARIMA is a single model with seasonal factors, it can model economic time series for
any period. Therefore, SARIMA is selected as the prediction model of seasonal factor in
this paper.

The irregular component (IR)
For the training dataset (i.e., the data from the first quarter of 2010 to the fourth quarter

of 2016), IR terms of the 4 provincial administrative units are shown in Figures 14–17.
In this paper, the PE test is used as the method of complexity trait test. Accordingly

the PE values of IR terms are listed in Table 9.

Table 9. Complexity trait test results for IR.

Qinghai Shandong Henan Jiangsu

PE values 0.6035 0.5823 0.6276 0.6156

In Table 9, all the PE values of the IR in four provinces are higher than h (h = 0.5).
Therefore, all the IR terms of these four provinces have complexity trait. For this reason, the
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iterative cumulative sum of squares (ICSS) is used to find the suspect points, and the Chow
test is adopted to test mutability trait at the suspect points. The corresponding results of
ICSS test and Chow test are listed in Table 10.

Figure 14. IR terms data of Qinghai Province.

Figure 15. IR terms data of Shandong Province.

Figure 16. IR terms data of Jiangsu Province.
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Figure 17. IR terms data of Henan Province.

Table 10. Mutability trait test results for IR.

Province Suspect Points ICSS Test Chow Test Mutability

Qinghai 2015Q2 2.546 (0.005) 2.788 (0.003)
√

Shandong 2012Q3 1.803 (0.036) 2.527 (0.006)
√

Henan - - - ×
Jiangsu - - - ×

It can be seen from Table 10 that the suspect points of the IR terms in Qinghai and
Shandong are the second quarter of 2015 and the third quarter of 2012 in terms of ICSS test
results. The further Chow test results show that the IR terms of Qinghai and Shandong
have a mutability trait. In addition, the empirical test results show that the IR terms of
Henan and Jiangsu do not have mutability trait.

In summary, all the IR terms of Qinghai, Shandong, Henan, and Jiangsu have complex-
ity trait. In addition, the IR terms of Qinghai and Shandong have mutability trait. Therefore,
an adaptive, stable and flexible SVR is selected as the prediction model for IR terms.

Based on the optimal decomposition method of each province drawn from the above
conclusions, we can construct different models for 4 provinces in China.

(1) Overall, the X-12-ARIMA decomposition-ensemble model with the rolling mecha-
nism is used by four provinces.

(2) X-12-ARIMA additive decomposition is adopted to decompose the data of Qing-
hai and Shandong, and X-12-ARIMA multiplicative decomposition is adopted in Henan
and Jiangsu.

(3) Based on the analysis and description in this section, for the component prediction
models in the four provinces, SVR model is selected for TC terms and IR terms forecasting
and SARIMA model is used to predict SF terms.

(4) Corresponding to different forms of the X-12-ARIMA decomposition method, the
additive ensemble is adopted in Qinghai and Shandong, and the multiplicative ensemble
is adopted in Henan and Jiangsu.

From the above descriptions, this paper will use the A-X12-ARIMA-DTD-A-R model to
predict gasoline consumption in Qinghai and Shandong, and use the M-X12-ARIMA-DTD-
M-R model to predict gasoline consumption in Henan and Jiangsu. The corresponding
prediction results and prediction performance analysis will be elaborated in Section 3.2.4.

3.2.4. Prediction Performance Analysis

This section mainly shows the prediction performance of 10 prediction models in
4 provinces in terms of the evaluation criteria of horizontal and directional prediction.
These 10 models include ARIMA, BPNN, SVR, RVFL, SARIMA, A-X12-ARIMA-SVR-A, M-
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X12-ARIMA-SVR-M, A-X12-ARIMA-SVR-A-R, M-X12-ARIMA-SVR-M-R, and A(M)-X12-
ARIMA-DTD-A(M)-R. Accordingly Tables 11–14 show the prediction performance of these
models for gasoline consumption in Qinghai, Shandong, Henan, and Jiangsu, respectively.

Table 11. Performance comparison of different models in Qinghai.

Forecasting Models MAPE RMSE Dstat

ARIMA 0.0931 1.9145 0.8571
BPNN 0.0538 1.2299 0.8571
SVR 0.1321 3.5025 0.5714

RVFL 0.2249 4.8609 0.8571
SARIMA 0.0714 1.8084 1.0000

A-X12-ARIMA-SVR-A 0.2327 5.4819 0.4286
M-X12-ARIMA-SVR-M 0.3081 6.7290 0.4286

A-X12-ARIMA-SVR-A-R 0.0506 1.2058 1.0000
M-X12-ARIMA-SVR-M-R 0.0532 1.3060 1.0000
A-X12-ARIMA-DTD-A-R 0.0461 1.1035 1.0000

Table 12. Performance comparison of different models in Shandong.

Forecasting Models MAPE RMSE Dstat

ARIMA 0.0118 3.7188 0.5714
BPNN 0.0087 2.9310 0.7143
SVR 0.0083 3.0276 1.0000

RVFL 0.0260 9.6263 0.7143
SARIMA 0.0220 7.2544 0.5714

A-X12-ARIMA-SVR-A 0.0135 4.3293 0.5714
M-X12-ARIMA-SVR-M 0.0139 4.4087 0.4286

A-X12-ARIMA-SVR-A-R 0.0083 2.6426 1.0000
M-X12-ARIMA-SVR-M-R 0.0087 2.7393 1.0000
A-X12-ARIMA-DTD-A-R 0.0078 2.6302 1.0000

Table 13. Performance comparison of different models in Henan.

Forecasting Models MAPE RMSE Dstat

ARIMA 0.1827 32.6324 1.0000
BPNN 0.1239 25.6547 1.0000
SVR 0.2470 60.3990 0.8571

RVFL 0.4914 125.4011 0.8571
SARIMA 0.1916 43.4215 1.0000

A-X12-ARIMA-SVR-A 0.4848 138.3904 0.7143
M-X12-ARIMA-SVR-M 0.4820 150.0866 0.5714

A-X12-ARIMA-SVR-A-R 0.1755 34.8024 1.0000
M-X12-ARIMA-SVR-M-R 0.0718 21.3855 1.0000
M-X12-ARIMA-DTD-M-R 0.0601 15.2771 1.0000

Table 14. Performance comparison of different models in Jiangsu.

Forecasting Models MAPE RMSE Dstat

ARIMA 0.1602 46.3598 0.8571
BPNN 0.0969 32.4150 1.0000
SVR 0.1136 32.7750 0.4286

RVFL 0.4933 167.9224 0.7143
SARIMA 0.1109 32.5558 0.8571

A-X12-ARIMA-SVR-A 0.1522 44.5943 0.4286
M-X12-ARIMA-SVR-M 0.1589 47.2733 0.4286

A-X12-ARIMA-SVR-A-R 0.0842 22.4196 0.8571
M-X12-ARIMA-SVR-M-R 0.0775 20.5308 1.0000
M-X12-ARIMA-DTD-M-R 0.0621 16.9129 1.0000
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From the results shown in Tables 11–14, five main findings can be summarized.
Firstly, in terms of three evaluation criteria, the data-trait-driven rolling decomposition-

ensemble model proposed in this paper can obtain the best prediction performance for
all four provinces. Specifically, for Qinghai and Shandong with small fluctuations, A-X12-
ARIMA-DTD-A-R is the best forecasting model. In Tables 11 and 12, for the prediction
performance of gasoline consumption in Qinghai and Shandong, the MAPE values of A-
X12-ARIMA-DTD-A-R are 0.0461 and 0.0078 respectively, the RMSE values are 1.1035 and
2.6302 respectively, and the Dstat values are 1 and 1 respectively, which are better than those
of other listed models. Meantime, for Qinghai and Shandong with large fluctuations, M-
X12-ARIMA-DTD-M-R is the best forecasting model. In Tables 13 and 14, for the prediction
performance of gasoline consumption in Henan and Jiangsu, the MAPE values of M-X12-
ARIMA-DTD-M-R are 0.0601 and 0.0621 respectively, the RMSE values are 15.2771 and
16.9129 respectively, and the Dstat values are 1 and 1 respectively, which are better than
those of other listed models. Therefore, the above empirical results prove the superiority of
the A(M)-X12-ARIMA-DTD-A(M)-R model proposed in this paper.

Secondly, for the single models of 4 provinces, BPNN has the best prediction perfor-
mance in most circumstances. Specifically, in Table 11, for the prediction performance of
gasoline consumption in Qinghai, the MAPE value of BPNN is 0.0538, the RMSE value is
1.2299, which are better than those of other listed models. Specially, the Dstat value is 0.8571,
which is slightly smaller than that of SARIMA. In Table 12, for the prediction performance
of gasoline consumption in Shandong, the RMSE value of BPNN is 2.9310, which is better
than those of other listed models. In detail, the MAPE value of BPNN is 0.0087, which is
only 0.0004 larger than that of SVR. The Dstat value of BPNN is 0.7143, which is slightly
smaller than that of SVR. In Tables 13 and 14, for the prediction performance of gasoline
consumption in Henan and Jiangsu, the MAPE values of BPNN are 0.1239 and 0.0969
respectively, the RMSE values are 25.6547 and 32.4150 respectively, the Dstat values are 1
and 1 respectively, which are better than those of other listed models. Therefore, the above
empirical results prove the superiority of BPNN compared with other single models.

Thirdly, for the decomposition ensemble models without rolling decomposition and
prediction mechanism, A-X12-ARIMA-SVR-A has the best prediction performance. Specifi-
cally, in Tables 11–14, for the prediction performance of gasoline consumption in Qinghai,
Shandong, Henan and Jiangsu, the MAPE values of A-X12-ARIMA-SVR-A are 0.2327,
0.0135, 0.4848 and 0.1522 respectively, which are lower than those of M-X12-ARIMA-
SVR-M. Those are 0.3081, 0.0139, 0.4820 and 0.1589 respectively. The RMSE values of
A-X12-ARIMA-SVR-A are 5.4819, 4.3293, 138.3904 and 44.5943 respectively, which are
lower than those of M-X12-ARIMA-SVR-M. Those are 6.7290, 4.4087, 150.0866 and 47.2733
respectively. The Dstat values of A-X12-ARIMA-SVR-A are 0.4286, 0.5714, 0.7143 and 0.4286
respectively, which are higher than those of M-X12-ARIMA-SVR-M. Those are 0.4286,
0.4286, 0.5714 and 0.4286 respectively. Therefore, the above empirical results prove the
superiority of A-X12-ARIMA-SVR-A compared with M-X12-ARIMA-SVR-M.

Fourthly, for the decomposition ensemble models with rolling decomposition and pre-
diction mechanism, there are some distinct differences between the former two provinces
(i.e., Qinghai and Shandong in Tables 11 and 12) and the latter two ones (i.e., Henan and
Jiangsu in Tables 13 and 14). For the former two provinces, the prediction performance
of A-X12-ARIMA-SVR-A-R is better than that of M-X12-ARIMA-SVR-M-R, while the re-
sult is somewhat different for the latter two provinces. Specifically, in Tables 11 and 12,
for the prediction performance of gasoline consumption in Qinghai and Shandong, the
MAPE values of A-X12-ARIMA-SVR-A-R are 0.0506 and 0.0083 respectively, the RMSE
values are 1.2058 and 2.6426, the Dstat values are 1 and 1, which are better than those of
M-X12-ARIMA-SVR-M-R. However, in Tables 13 and 14), for the prediction performance
of gasoline consumption in Henan and Jiangsu, the MAPE values of M-X12-ARIMA-SVR-
M-R are 0.0718 and 0.0775 respectively, the RMSE values are 21.3855 and 20.5308, the
Dstat values are 1 and 1, which are better than those of A-X12-ARIMA-SVR-A-R. There-
fore, for the data with different fluctuation sizes, the above empirical results prove the
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better choice of different decomposition ensemble models with rolling decomposition and
prediction mechanism.

Finally, compared with the single models, the decomposition ensemble models with
rolling decomposition and prediction mechanism have better prediction performance.
Specifically, in Tables 11 and 12 for the prediction performance of gasoline consumption in
Qinghai and Shandong, the MAPE values of A-X12-ARIMA-SVR-A-R are 0.0506 and 0.0083
respectively, the RMSE values are 1.2058 and 2.6426 respectively, and the Dstat values are
1 and 1, which are superior than those of the listed single models. In in Tables 13 and 14,
for the prediction performance of gasoline consumption in Henan and Jiangsu, the MAPE
values of M-X12-ARIMA-SVR-M-R are 0.0718 and 0.0775 respectively, the RMSE values are
21.3855 and 20.5308, and the Dstat values are 1 and 1, which are superior than those of the
listed single models. Therefore, the above empirical results prove the superiority of the
rolling decomposition ensemble models compared with the single models.

3.3. Further Discussions

In this section, in order to verify the superiority and robustness of the proposed model,
the Diebold–Mariano (DM) test is performed, which compares the prediction performance
between proposed model and benchmark models from the statistical perspective. In the
DM test, 9 models were selected as benchmark models. Moreover, the corresponding
statistics and p-values (in brackets) in Qinghai, Shandong, Henan and Jiangsu are listed in
Tables 15–18. In Tables 15–18, the first column is the tested model, and the first row is the
benchmark model. In addition, the results shown in bold indicate that the proposed model
is better than the benchmark model at a 90% confidence level.

From the results shown in Tables 15–18, four interesting findings can be summarized.
Firstly, from a statistical point of view, in most cases, the model proposed in this paper

is obviously superior to 9 benchmark models at a 90% confidence level. Specifically, in
Tables 15–18, when the model proposed in this paper is the tested model (i.e., the first row
of each table), in most cases, the p-values are less than 10%.

Secondly, from the DM test results of 4 provinces, BPNN is statistically superior to
other single models. Specifically, in Tables 15–18, when BPNN is the tested model (i.e., the
first row of each table), the p-values almost are less than 10%. It is not difficult to find that
at a 90% confidence level, BPNN is better than other single models.

Thirdly, from a statistical point of view, for the decomposition ensemble models
without rolling decomposition and prediction mechanism of 4 provinces, A-X12-ARIMA-
SVR-A has the superior prediction performance. Specifically, in Tables 15–18, it is found
that the prediction performance of A-X12-ARIMA-SVR-A is better than that of M-X12-
ARIMA-SVR-M at a 90% confidence level. But in Table 16, the result is not obvious.

Fourthly, from a statistical point of view, for the rolling decomposition ensemble
models of 4 provinces, if the data has less fluctuation, A-X12-ARIMA-SVR-A is superior to
M-X12-ARIMA-SVR-M. Otherwise, M-X12-ARIMA-SVR-M is superior to A-X12-ARIMA-
SVR-A. Specifically, in Table 16, the prediction performance of A-X12-ARIMA-SVR-A is
better than that of M-X12-ARIMA-SVR-M at a 90% confidence level. In Tables 17 and 18, it
is found that the prediction performance of M-X12-ARIMA-SVR-M is better than that of
A-X12-ARIMA-SVR-A at a 90% confidence level. But in Table 15, the result is not obvious.

In these test provinces, almost all meet the above findings. Although there are still
individual results that are not obvious, the above conclusions can still be drawn according to
the evaluation criteria of horizontal and directional prediction of each model. In summary,
the DM test results show that the proposed model has superior performance in predicting
gasoline consumption. Therefore, it can be used as a superior tool for predicting gasoline
consumption data.
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Table 15. DM test results across different models for gasoline consumption data in Qinghai.

Tested Models
Benchmark Models

A-X12-ARIMA-SVR-A-R M-X12-ARIMA-SVR-M-R A-X12-ARIMA-SVR-A M-X12-ARIMA-SVR-M SARIMA SVR BPNN RVFL ARIMA

A-X12-ARIMA-DTD-A-R −0.795
(0.212)

−0.554
(0.291)

−2.723
(0.003)

−3.587
(0.000)

−1.142
(0.127)

−2.232
(0.013)

−0.296
(0.382)

−2.636
(0.004)

−1.643
(0.051)

A-X12-ARIMA-SVR-A-R −0.234
(0.409)

−2.763
(0.003)

−3.641
(0.000)

−0.956
(0.169)

−2.304
(0.011)

−0.053
(0.480)

−2.571
(0.005)

−1.390
(0.082)

M-X12-ARIMA-SVR-M-R −2.571
(0.005)

−3.412
(0.000)

−0.696
(0.242)

−1.955
(0.025)

0.133
(0.448)

−2.699
(0.004)

−1.077
(0.140)

A-X12-ARIMA-SVR-A −6.743
(0.000)

2.403
(0.008)

2.528
(0.006)

2.579
(0.005)

0.397
(0.345)

2.312
(0.010)

M-X12-ARIMA-SVR-M 3.264
(0.001)

3.948
(0.000)

3.426
(0.000)

1.204
(0.115)

3.168
(0.000)

SARIMA −1.513
(0.066)

1.044
(0.149)

−2.392
(0.008)

−0.259
(0.397)

SVR 1.948
(0.026)

−1.068
(0.142)

1.451
(0.074)

BPNN −2.617
(0.004)

−3.018
(0.001)

RVFL 2.414
(0.008)

Notes: The corresponding data in the table are the DM values and the p-values (in brackets).

Table 16. DM test results across different models for gasoline consumption data in Shandong.

Tested Models
Benchmark Models

A-X12-ARIMA-SVR-A-R M-X12-ARIMA-SVR-M-R A-X12-ARIMA-SVR-A M-X12-ARIMA-SVR-M SARIMA SVR BPNN RVFL ARIMA

A-X12-ARIMA-DTD-A-R −0.046
(0.480)

−0.474
(0.319)

−3.074
(0.001)

−3.022
(0.001)

−2.337
(0.010)

−0.386
(0.348)

−0.265
(0.394)

−1.749
(0.040)

−1.295
(0.097)

A-X12-ARIMA-SVR-A-R −2.131
(0.017)

−2.751
(0.003)

−2.660
(0.004)

−2.395
(0.008)

−0.481
(0.316)

−0.277
(0.390)

−1.747
(0.040)

−1.282
(0.100)

M-X12-ARIMA-SVR-M-R −2.647
(0.004)

−2.572
(0.005)

−2.366
(0.009)

−0.352
(0.363)

−0.185
(0.425)

−1.738
(0.041)

−1.161
(0.123)

A-X12-ARIMA-SVR-A −0.929
(0.176)

−1.780
(0.038)

1.283
(0.100)

1.252
(0.106)

−1.462
(0.072)

0.805
(0.209)

M-X12-ARIMA-SVR-M −1.729
(0.042)

1.285
(0.099)

1.315
(0.093)

−1.449
(0.074)

0.919
(0.179)

SARIMA 2.358
(0.009)

2.286
(0.011)

−0.690
(0.245)

1.826
(0.034)

SVR 0.101
(0.156)

−1.731
(0.042)

−0.651
(0.258)

BPNN −1.853
(0.032)

−0.991
(0.161)

RVFL 1.618
(0.053)

Notes: The corresponding data in the table are the DM values and the p-values (in brackets).
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Table 17. DM test results across different models for gasoline consumption data in Henan.

Tested Models
Benchmark Models

A-X12-ARIMA-SVR-A-R M-X12-ARIMA-SVR-M-R A-X12-ARIMA-SVR-A M-X12-ARIMA-SVR-M SARIMA SVR BPNN RVFL ARIMA

M-X12-ARIMA-DTD-M-R −3.174
(0.001)

−2.079
(0.017)

−2.471
(0.006)

−2.606
(0.005)

−2.396
(0.008)

−2.235
(0.009)

−1.286
(0.096)

−1.454
(0.061)

−4.010
(0.000)

A-X12-ARIMA-SVR-A-R 3.475
(0.000)

−2.400
(0.008)

−2.549
(0.004)

−1.273
(0.092)

−1.918
(0.019)

1.134
(0.129)

−1.366
(0.076)

0.344
(0.367)

M-X12-ARIMA-SVR-M-R −2.470
(0.006)

−2.607
(0.003)

−2.347
(0.007)

−2.214
(0.008)

−0.592
(0.271)

−1.436
(0.059)

−2.531
(0.004)

A-X12-ARIMA-SVR-A −2.689
(0.003)

2.466
(0.007)

2.358
(0.009)

2.449
(0.007)

0.244
(0.405)

2.372
(0.009)

M-X12-ARIMA-SVR-M 2.612
(0.005)

2.558
(0.005)

2.578
(0.005)

0.473
(0.319)

2.515
(0.006)

SARIMA −1.733
(0.031)

1.789
(0.037)

−1.274
(0.092)

1.135
(0.127)

SVR 1.811
(0.035)

−1.124
(0.100)

1.594
(0.056)

BPNN −1.396
(0.081)

−1.669
(0.042)

RVFL 1.366
(0.085)

Notes: The corresponding data in the table are the DM values and the p-values (in brackets).

Table 18. DM test results across different models for gasoline consumption data in Jiangsu.

Tested Models
Benchmark Models

A-X12-ARIMA-SVR-A-R M-X12-ARIMA-SVR-M-R A-X12-ARIMA-SVR-A M-X12-ARIMA-SVR-M SARIMA SVR BPNN RVFL ARIMA

M-X12-ARIMA-DTD-M-R −1.976
(0.022)

−1.939
(0.020)

−3.079
(0.001)

−3.002
(0.001)

−1.590
(0.054)

−2.452
(0.005)

−1.775
(0.034)

−1.393
(0.079)

−1.637
(0.039)

A-X12-ARIMA-SVR-A-R 1.701
(0.045)

−2.534
(0.004)

−2.512
(0.004)

−1.420
(0.057)

−1.629
(0.038)

−1.287
(0.095)

−1.388
(0.079)

−1.561
(0.051)

M-X12-ARIMA-SVR-M-R −2.761
(0.002)

−2.712
(0.002)

−1.494
(0.066)

−1.907
(0.029)

−1.448
(0.061)

−1.390
(0.079)

−1.596
(0.055)

A-X12-ARIMA-SVR-A −2.010
(0.014)

1.041
(0.149)

1.988
(0.023)

1.747
(0.040)

−1.298
(0.097)

−0.105
(0.386)

M-X12-ARIMA-SVR-M 1.173
(0.121)

2.189
(0.014)

1.970
(0.024)

−1.281
(0.093)

0.053
(0.480)

SARIMA −0.021
(0.429)

0.013
(0.496)

−1.373
(0.076)

−1.603
(0.055)

SVR 0.113
(0.456)

−1.351
(0.073)

−0.801
(0.212)

BPNN −1.358
(0.075)

−0.824
(0.164)

RVFL 1.331
(0.092)

Notes: The corresponding data in the table are the DM values and the p-values (in brackets).
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3.4. Summary

From the experimental analysis in Sections 3.2 and 3.3, some important findings can
be summarized as follows.

Firstly, in terms of three evaluation criteria, the proposed data-trait-driven rolling
decomposition-ensemble model is significantly better than the single prediction models
and decomposition-ensemble model without rolling mechanism.

Secondly, the prediction performance of decomposition-ensemble model with rolling
mechanism is better than that of decomposition-ensemble model without rolling mecha-
nism for all four provinces.

Thirdly, for the decomposition form of X-12-ARIMA, when the original time series
data with the cyclicity trait fluctuates greatly, the multiplicative decomposition form is
better. When the fluctuation change is small, the additive decomposition form is preferable.

Fourthly, for the ensemble form of X-12-ARIMA, when the original time series data
with the cyclicity trait fluctuates greatly, the multiplicative ensemble form is better. When
the fluctuation change is small, the additive ensemble form is preferable.

Finally, based on the above results, it can be found that the proposed data-trait-driven
rolling decomposition-ensemble model provides a feasible solution to the prediction of
gasoline consumption with the cyclicity trait.

4. Conclusions and Future Directions

Effective forecasting of gasoline consumption can provide important measurement
standards for the country, related industries, sales companies and individuals, which is
of great significance. Accordingly, a data-trait-driven rolling decomposition-ensemble
model is proposed to predict the gasoline consumption. Five steps, i.e., data trait test, data
decomposition, component trait analysis, component prediction and ensemble output, are
involved in this model. In particular, this methodology introduces the rolling mechanism
to solve the misuse of future information problem. In order to verify the effectiveness of
the model, the quarterly gasoline consumption data from four provinces in China are used.

In terms of the evaluation criteria of horizontal and directional prediction, the experi-
mental results show that the proposed data-trait-driven rolling decomposition-ensemble
model is significantly better than the single prediction models and the decomposition-
ensemble models without rolling mechanism. In addition, for the decomposition and
ensemble forms of X-12-ARIMA, when the original time series data with the cyclicity trait
fluctuates greatly, the multiplicative decomposition and ensemble form may be better
than the additive form. When the fluctuation change is small, the additive decomposi-
tion and ensemble form is preferable. Therefore, the proposed data-trait-driven rolling
decomposition-ensemble model is effective and robust in predicting gasoline consumption
with the cyclicity trait.

However, there are still some issues in the proposed model. Firstly, the proposed
model is more suitable for time series data with high volatility than those with small
fluctuations. Therefore, we will continue to explore the forecast of time series data with
small fluctuations in the future. Secondly, because gasoline consumption is affected by
multiple factors, it usually shows the coexistence of multiple traits. This paper has not yet
discussed such situations, which is also the direction to be studied in the future. Thirdly,
the data-trait-driven rolling decomposition-ensemble forecasting model can also be applied
to other markets, such as financial markets, agricultural products markets, other energy
markets, etc. We will continue these research issues in the future.
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