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Abstract: Electric Vehicles (EV) and Hybrid EV (HEV) use Lithium (Li) ion battery packs to drive
them. These battery packs possess high specific density and low discharge rates. However, some of
the limitations of such Li ion batteries are sensitivity to high temperature and health degradation
over long usage. The Battery Management System (BMS) protects the battery against overvoltage,
overcurrent etc., and monitors the State of Charge (SOC) and the State of Health (SOH). SOH is a
complex phenomenon dealing with the effects related to aging of the battery such as the increase in
the internal resistance and decrease in the capacity due to unwanted side reactions. The battery life
can be extended by estimating the SOH accurately. In this paper, an extensive review on the effects of
aging of the battery on the electrodes, effects of Solid Electrolyte Interface (SEI) deposition layer on
the battery and the various techniques used for estimation of SOH are presented. This would enable
prospective researchers to address the estimation of SOH with greater accuracy and reliability.

Keywords: Battery Management System; data driven techniques; hybrid electric vehicles; Li ion; SEI
layer; SOH

1. Introduction

Traditional Vehicles use fossil fuels to drive them. These vehicles emit Green House
Gases (GHG) and pollute the atmosphere. Hence, electrification of the current transporta-
tion is necessary to prevent air pollution. In this regard, various energy storage devices
are used in Electric Vehicles (EV) namely 1. Battery, 2. Ultra Capacitor, 3. Fuel Cell and 4.
Ultra- Capacitor [1].

The classification of energy storage devices is based on their functionality and the type
of energy stored. Figure 1 shows the classification of various energy storage devices [1,2].
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Among the various energy storage devices, Li ion batteries are preferred due to the
following reasons namely (1) High Power Density, (2) High Energy Density (3) Light
Weight and (4) High Terminal Voltage. Table 1 shows a comparative analysis of various
energy storage devices.

Table 1. Comparative analysis of various energy storage devices.

Energy Storage
Device

Power Range
(MW)

Energy Density
(Wh/I)

Power Density
(Wh/I) Efficiency

Pumped Hydro
Storage 10–5000 0.5–1.5 0.5–1.5 75–85

SMES 0.1–10 0.2–2.5 1000–4000 95–98

Li-ion 0–100 200–500 500–2000 90–97

Figure 2 depicts the block diagram of a Plug-In Hybrid EV (PHEV) wherein the battery
present in PHEV can draw and store energy from the electric grid or renewable sources [3].
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Figure 2. Block Diagram of a PHEV.

An Internal Combustion Engine (ICE) is powered by the fossil fuel stored in the fuel
tank. ICE powers the motor and torque is generated which is fed to the transmission system.
Meanwhile, the power to the motor can also be fed from the grid or other renewable source
of energy. The BMS controls the charging current voltage and provides protection to the
battery. Figure 3 shows the functionality of BMS in EV application. The BMS takes input
from the battery pack and provides control signals to turn ON/OFF the contactor, thermal
management and protects the battery pack [4].
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indictors for aging phenomena and involves estimating the series internal resistance (Power
Fade) and the nominal capacity (Capacity Fade) of the battery or a cell. Power and Capacity
fading are complicated features as they do not occur simultaneously [5]. These occur due
to the unwanted side reactions and result in structural deterioration. Li moves to and fro
from the positive and negative electrodes. Ideally, no Li ion is lost during this movement.
However, in practice Li ion is carried away while moving between the electrodes in the side
reaction. This phenomenon is called Loss of Li inventory (LLI) and this occurs charging.
Hence, the amount of Li stored in a cell/battery decreases. This is referred to as Loss of
Active Material (LAM).

S + 2e− + 2LiPF6 → SLi2 + 2PF6

The solvent S at the anode consumes two Li ions and forms partially soluble Dilithium
Sulphide and causes the SEI formation [6].

Measuring the capacity of the battery cell is extremely important as for calculating
the total energy that can be held in the battery cell as SOC computation requires capacity
measurement. The internal resistance plays a vital role during power calculation and SOC
estimation based on voltage-based methods [5,7].

To estimate the SOH, cell modeling is extremely important. A cell is considered as
the fundamental unit in a battery and can be modeled as a pair of Resistor—Capacitor
(RC) pair by providing a pulse discharge using Pulse Characterization Test [7,8]. Figure 4
shows the voltage profile used for estimating the battery parameters. Lesser computation
effort is required to estimate 1 RC parameter value for a cell model. To perform the pulse
characterization test, a discharge current is applied initially. Hence, the voltage drops due
to the discharge current. The procedure to estimate the battery parameters were shown
in [7].
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The internal series resistance in addition to the parallel RC pair constitutes 1-RC pair
model of a cell. The best battery model consists of 5-RC pairs and is termed as Enhanced
Self Correcting Model [9,10] which provides accurate results. The battery parameters
showed dependence on SOC but not on the magnitude of discharge current and ambient
temperature. The empirical formula based on 2-RC pairs for Randles circuit was presented
in [11]. The Open Circuit Voltage (OCV) based SOC model was presented for Li Iron
Phosphate chemistry (LiFePO4). A comparative analysis on different methodologies
involved in SOH estimation is presented. In Direct method, the internal resistance is
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directly measured as a function of temperature. However, in Degradation model the active
material present in the battery is measured. This method provides highly accurate result
and requires intense computation. Hence, high cost is involved.

Due to the increase in the temperature, SOH degradation takes place. The core or
the internal temperature (Tc) of a cell can reach to dangerously large values under fast
current discharge. For 2C discharge current, Tc increased 6–7 times than that of the surface
temperature, Ts [12]. Since, Li ion cells are very sensitive to high temperature; they catch
fire leading to thermal run-away. Hence, thermal management is essential part of BMS. Tc
was estimated using Kalman Filter for different chemistries and the difference between
Ts and Tc were shown in [13–15]. The internal resistance showed low value for high
temperatures. When the SOC varied from 0–100%, the internal resistance value was low.
However, the value was negligible for SOC between 20–80% [16].

Some of the typical DC - DC converters used for charging applications in EV industry
are Cuk and SEPIC as they possess series inductor with the input voltage supply [17,18]
providing continuous input current. In [19], SOH of battery coupled to a Bi-directional
DC-DC converter is estimated based on temperature, C rate and Depth of Discharge (DOD).
One of major drawback from this system is that error is found to increase in SOC estimation
due to battery aging. Hence, the proposed SOH technique is specific to the system and
needs information on battery pack capacity and capacity at various C rates.

In [20], SOH balancing for two cells is performed by connecting series DC–DC con-
verters. The reference signals of current are generated by the controller for discharging and
charging currents. Due to efficient balancing, the cells reduce to the lowest SOH enabling
safely and timely replacement. This scheme can be used for estimating the second life of
the battery.

A comparative analysis on different methodologies involved in SOH estimation is
presented in [21]. In Direct method, the internal resistance is directly measured as a function
of temperature. However, in Degradation model the active material present in the battery is
measured. This method provides highly accurate result and requires intense computation.
Hence, high cost is involved. Table 2 shows a comparison between direct methods and
degradation models used for estimating SOH.

Table 2. Direct methods Vs. Degradation Models.

SL.NO Method Overview Technique Merit Demerit

1 Direct
Uses voltage,
current and
temperature

Offline Easy and
Efficient Difficult to measure

2 Degradation
Requires

knowledge of
electrochemistry

Offline High Accuracy Complex

3 Impedance
Spectroscopy Estimates SOH Offline Accurate

Specified instruments
required and time

consuming

Estimation of 2nd life is a popular technique to predict how quickly the battery can
degrade considering the current conditions of the battery as shown in Figure 5. Few ad-
vantages of estimating the 2nd life are (a) Lesser price for EV (b) Material and Energy
savings [22]. This was due to the fewer side reactions at the graphite anode electrode. Due
to this, a thicker and stronger SEI is formed during the aging process. Tests were conducted
on three batteries for full cycle each month after which they were subjected to calendar
aging. The cells did not exhibit major aging even up to 50% of capacity degradation,
indicating a long battery life in the second life application. Lower capacity fade was seen
in cells with SOC = 90% than in case of cells having SOC = 50%. This can be extremely
useful for Uninterruptible Power Supply (UPS) application.
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Figure 5. Estimation of Second Life of Batteries [22].

The remaining capacity/power in a cell can be estimated using 1st and 2nd Life Aging.
Li ion cell is considered to be in its EOL stage when operating at 80–85% of nominal
capacity. Using the technique of impedance spectroscopy, second life of a 20Ah Li NMC
battery is estimated after EOL at various rated capacities. Randles circuit was used for
analyzing the experimental impedance data. It was found that R1 and R2 (RSEL and RCT)
varied with SOC. These variations were majorly observed during higher SOC range. It was
noted this technique cannot be useful while estimating SOC for Li ion cells.

To achieve high efficiency and increased power output smart BMS is proposed. Cloud
based BMS using Cyber Hierarchy and International Network (CHAIN) enables provision
to realize advance algorithms such as SOH estimation, thermal management and fault
diagnosis. The battery monitoring system helps in visualizing the battery data and supports
development of new control strategies [23].

The different materials used in the current collectors are shown in [24].
Data-driven methods such as Machine learning (ML) and Artificial Intelligence (AI)

contribute primarily in SOH estimation. Some of the most common estimation models
that can be considered under ML are Recurrent Neural Network (RNN), Support Vector
Machines (SVM), Feed-Forward Neural Network (FNN), Regression Model, Clustering
Models and many more [25–42].

An attempt is made to provide an exhaustive overview on the existing and upcoming
technological advancements in SOH estimation for BMS application. The main reason
for health degradation, effects on negative and positive electrodes, effects of SEI on the
capacity, traditional and data driven methods for estimating SOH are addressed. The
work is organized as follows: Sections 1 and 2 gives an insight on aging effects on the
negative and positive electrodes, respectively. Section 3 addresses the different methods
of estimating SOH using traditional methods and their limitations. Section 4 provides an
insight on SOH estimation using data driven techniques.

2. Aging Effects at Negative Electrode

Graphite and Silicon are used material for the negative electrode. At the negative
electrode, aging happens in three different scales at three different locations namely,
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(a) On the surface of the electrode
(b) Within the electrode particles and
(c) Within the electrode structure

The graphite negative electrode operates at potentials outside the electrochemical
stability window of the electrolyte components used in Li ion cells. Hence, when the
electrolyte which are typically organic in nature, comes in contact with graphite and
specifically when the graphite is in a charged state, electrolyte decomposes and undergoes
a chemical reaction. This creates a thin film layer on the surface of the electrolyte. This layer
is referred to as Solid Electrolyte Interface (SEI). This formation layer is primarily created
when the cell is charged initially. This layer covers up all the surfaces of the particles. The
cell is fully discharged when it is dissembled and later charged so as to move Li from
positive to negative electrode.

Some of the properties of SEI are:

a. It is an unwanted layer which consumes Li in the process of being generated. This in
turn reduces the cell capacity.

b. This layer is not reactive but forms insulation between the graphite material and the
electrolyte. However, without the layer formation charging cannot be performed.

c. Complex layer and not uniform—Different materials are formed during the reaction
and these are deposited on the surface of the electrode. However, the layer itself can
decompose and create more stable products than the previously formed.

d. SEI layer has large porous allowing the mixing of materials. However, it creates
opposition to the motion of Li ions. Hence, resistance of the cell increases.

e. The breakdown of the SEI layer can occur due to high temperature. The SEI layer is
removed and free layer of graphite is made available to the solvent, creating new SEI
layers when temperature is induced. Hence, the net change results in lowering of
cell capacity.

f. While manufacturing the cell, maximum effort is made to ensure that no moisture
content is in the air. However, it is impossible to eliminate moisture in a cost-effective
way and there would be traces of water (H20) in the electrolyte. This combines with
Ionized Fluorine salt (LiPF6) in the electrolyte. Hydrogen and Fluorine combines to
form Hydrofluoric acid. This acid again decomposes the SEI layer creating a decrease
in battery capacity. Hence, breakdown of SEI layer is undesirable.

At low temperatures, the diffusion of particles inside the electrode and the electrolyte
decreases. During forced charging, there is a possibility of Li metal formation instead of
Li ion. This is termed as Li plating. This causes the capacity to lose irreversibly and is
very rapid. A tree-like structure is formed when this occurs repeatedly called ‘Dendrites’.
These protrude through the separator. This forms a bridge through the separator from the
negative electrode to the positive electrode. This in turn creates local heating and finally
results in thermal runaway. Hence, it is not recommended to perform charging of the
battery under cold conditions. Table 3 shows the surface effects on the negative electrode
of the battery.

Table 3. Surface Effect on the Negative Electrode.

Reason Effect Leading to Enhanced by

Continuous low-rate
electrolyte decomposition

build SEI
Loss of Li Capacity Fade High Temperature

and SOC

Li plating and electrolyte
decomposition

Rise in
Impedance Power Fade High Temperature

and SOC

Changes in Volume and
SEI growth Loss of Li Capacity Fade Low temperature and

high C rates
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Positive electrode degradation leads to chemical products of the positive electrode
dissolved in the electrolyte in general metals. These products migrate from the positive
electrode of the cell through the separator and reach the negative electrode. They can
become a part of SEI layer formed on the negative electrode and not electrically conductive.
This is called as Anode Poisoning. Therefore, this effect increases the overall resistance of
the cell. This creates a clogging effect and prevents the flow of Li, increasing the resistance.

The volume of particles in the electrode changes due to charging and discharging.
The change in the volume is said to be anisotropic (different directions). This change in
volume is about 10%. When the particle is cracked, it becomes exposed to fresh graphite
surface with the solvent which has not yet been covered by SEI film. The cracking of the
particle occurs due to the change in the volume. This co-intercalation causes surplus SEI
layer to grow inside the particle and causes additional particles to crack due to additional
forces. This leads to exfoliation (layers flaking off) of graphite due to which it loses its
ability to store Li, reducing the capacity of the cell. In addition, gases are released when
graphite interacts with the solvent. These gases expand and cause additional cracking of the
material. The negative electrode itself consists of various non-active elements that include
conductive additives to achieve conductivity and binders for binding the electrode particles
together. Figure 6 shows particles of active materials placed below a current collector.
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The stress on the electrode during charging and discharging the cell causes the particles
to expand and contract. This causes fatigue to the non-active materials used at different
locations. This reduces the current pathways through the electrode. This can happen
between the particles or between the current collector and the particles or between binder
and current collector. In a nutshell, the overall impedance increases as the particles are
disconnected from each other.

When the cell is over discharged (below 1.5 V), Cu current collector corrodes release
Cu2+ ions to the electrolyte. Cu material reacts with the electrolyte electrochemically.
This reduces the contact between the current collector and the particles, leading to higher
resistance. The Cu ions can deposit on the electrode and integrate with SEI, creating high
resistance. However, the corrosion occurs at specific places creating non-uniform current
and potential distribution internal to the cell. This can lead to accelerating Li plating at
some parts of the cell. Table 4 shows the aging of the cell due to composite electrode
materials used.
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Table 4. Aging due to composite electrode materials.

Reason Effect Leading to Enhanced by

Current Collector
Corrosion Rise in Impedance Power Fade Over discharge and

low cell SOC

Binder decomposition Loss of Li Capacity Fade High SOC and
temperature

Contact between particles
due to change in volume Loss of Li Capacity Fade Overcharge

3. Aging Effects at Positive Electrode

The degradation process in a positive electrode can occur in:

(a) At the electrode surface
(b) Within the bulk of the active material
(c) Inside the electrode

Most of Li ion cells use electrolyte containing LiPF6 as its salt. The oxidation of the
electrolyte and the decomposition of the salt set to form a surface layer which is similar to
the SEI layer discussed above. However, this severity is considered to be lesser than that
of SEI on negative layer. The metals from the electrode dissolve in the electrolyte creating
breakdown in the overall structure, as a result of which dissolved metal ions are left behind.
These precipitate on the surface of the materials creating high resistance path. Electrodes of
Manganese and Cobalt usually suffer from this problem. This effect is accelerated during
high temperatures.

When Li intercalates with the crystalline structure of the positive electrode, structural
defects are created and a change in volume is observed. This process is referred to Phase
transitions and can lead to cracking. Some transitions are normal and can be reversed. The
structure formed may not be capable of holding Li in it. However, others can destroy the
shape of the structure.

When positive electrode of different composites is used, effects similar to that of
negative electrode are observed. This leads to capacity fade. Table 5 shows the effects on
positive electrode.

Table 5. Effects on positive electrode.

Reason Effect Leading to Enhanced by

Phase transitions Cracking of active
particles Capacity Fade High C rate, High

and Low SOC

Structural Disorder Loss of Li Capacity Fade High C rate, High
and Low SOC

Metal dissolution and
electrolyte decomposition

Migration of
soluble species Capacity Fade High and low SOC,

temperatute

The effect of aging on the electrodes are not independent effects as reaction products
formed on one side can diffuse to the other electrode and result in additional reactions.
The electrolyte decomposition in batteries occurs at the end of charge at high potentials.

The main degradation process which occurs at the positive electrode is due to (1) Tran-
sition metal dissolution–migration and (2) Catalytic reduction. Initially, loss of Li ions
from the positive electrode occurs due to the acid attack in Li ion cells. This effect becomes
accelerated due to high temperature. This reaction occurs simultaneously and is termed as
‘Dissolution Migration Catalytic Reaction’. This reaction is seen in all transition metal ions
and majorly observed in Manganese.

Some of the major issues in Lithium Sulphur Batteries (LSB) are high self-discharge
rate and aging are discussed. These issues are due to the dissolution of active materials
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in the electrolyte. In LSB, self-discharge occurred due to (a) direct chemical interaction of
Sulphur and Li Polysulfides with the electrolyte and (b) Corrosion at the positive electrode.
The batteries in which stainless steel is used as current collector (shown in Table 6), suffer
from this problem.

Table 6. Shows different current collectors used in Li ion batteries [24].

Material Electrode

Aluminum Foil (Al)

Anode
Al Mesh
Al Foam

Etched Al
Coated Al

Cu Foil

Cathode
Cu Mesh
Cu Foam

Etched Cu
Coated Cu

It was found that the self-discharging during storage was caused due to the interactiv-
ity of the metallic Li electrode with Sulphur dissolved in the electrolyte. It was observed
that capacity fade in LSB batteries occurred due to storage. Sulphur and Li compound
(Li2Sn) dissolved in the electrolyte, interact with the electrode material and forms Li Sul-
phide Li2S compound, which is insoluble. The deposition of Li2S on the negative electrode
and the unbreakable bond between Sulpher and Li2S in the micro pores of the positive
carbon electrode are the major reasons for capacity fade.

3.1. Estimation of SOH Using Various Methods

SOH is an indication of health of the battery and is a measure of long-term capability
of the battery. It takes into account the effect of change in the internal resistance, capacity
and effect of fast discharge leading to high temperature and self-discharge. During the
lifetime of a battery, the performance deteriorates due to the irreversible physical and
chemical reactions inside the battery. SOH is a relative term which is an estimate but not
measurement. When the batteries are fresh, SOH would be 100%. The SOH decreases
if the battery is either left unused or entered service. Since, SOH is a relative term; the
measurement system should keep a track of the initial condition or standard conditions.

Estimating SOH involves internal resistance and nominal capacity. Estimating the
internal resistance is relatively simpler as it is can be measured by performing experiments.
A 5-RC model is used to estimate R0:

vk = OCV + Mhk −∑
i

RiiRi,k − ikR0 (1)

where vk represents the terminal voltage (V), OCV is Open Circuit Voltage (V), Mhk
represents the hysteresis component, ∑

i
RiiRi,k represents diffusion voltage (V) and ikR0

represents the voltage drop due to internal resistance.
The sensitivity of the voltage measurement due to change in resistance can be termed as:

SR0
vk = (R0/vk) ∗ dvk/dR0 = −R0ik/vk (2)

To ensure high order of sensitivity few assumptions are made as shown below:

1. High R0
2. High ik or
3. Low vk
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High value of R0 is not recommended. Similarly, high Vk is not recommended as over
discharging is not preferred. Hence, high ik is recommended.

To account for the change in R0 due to step change in current, the present sample of
current is subtracted from the previous sample:

vk = OCV(k) + Mhk −∑
i

RiiRi,k − ikR0 (3)

vk−1 = OCV(k−1) + Mhk−i −∑
i

RiiRi,k−1 − ik−1R0 (4)

vk − vk−1
∼= R0(ik−1 − ik) (5)

Term 1—SOC changes with OCV is minimal and the curve is almost flat for almost all
the chemistries. Hence, it is ignored.

Term 2—Change in hysteresis for one step change is minimal. Hence, can be ignored.
Term 3—Change in diffusion voltages for one step change is minimal. Hence, can

be ignored.
Term 4—Since, ik can change its value in one step time interval, term has to be considered.
Hence,

R̂0,k = (vk − vk−1)/(ik−1 − ik) (6)

LHS of Equation (6) represents the estimated value of resistance.
Some of the issues associated with this method are illustrated.

3.1.1. Case 1. Issue with Divided by 0

Since, change in current exits in the denominator the resistance estimate is calculated
only when the change in current is a non-zero number. Practically, this value of current is
ignored when it falls below the threshold value defined by the user. The Enhanced Self
Correcting (ESC) model parameters vary for different chemistries of the battery. Since,
some of the terms in Equation (3) are ignored, R̂0,k estimate can be noisy. Hence, a filter
is employed to remove the noise considering the total least square approach based on
Equation (7):

R̂ f ilter
0,k = αR̂ f ilter

0,(k−1) + (1− α)R̂0,k (7)

where α (tuning factor) is between 0 and 1. This equation is called as One Pole digital filter.

3.1.2. Case 2. R0 Is a Function of SOC

If the variation of R0 with respect to SOC is known, different values of resistances are
assumed and by adapting resistance vectors an estimate of R0 is found out.

3.1.3. Case 3. ESR Dependence on Temperature

Arrhenius equation shows that R0 is dependent on temperature:

R0 = R0,re f exp(ER0,re f (
1

Tre f
− 1

T
)) (8)

Equation (8) is known as Arrhenius equation Where R0,re f is the reference resistance
at Tref (K) and Tuning factor is activation energy and Tref and T in K.

An innovative method for the balancing the SOH is seen in Figure 7. Battery power is
fed to Bi-directional DC-DC converter feeding a common load. One of the main advantages
of using this method is that the proposed scheme increases the life time of the battery and
reduces the replacement cost. Simulations were performed using MATLAB/Simulink for a
two-battery system having the chemistry as Lithium Cobalt Oxide (LiCoO2).
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SOH can be defined as:

SOH = SOH0 − Cle f t/Ctotal (9)

where Cleft = number of cycles left over for the battery life to end Ctotal = Total number of
life cycles and SOH0 is defined as the initial SOH.

The relationship between Depth of Discharge (DOD) and total life cycle is defined as:

Ctotal = aDOD−b (10)

where a, b depend of the type of battery and DOD = 1− SOC. To determine the number
of charge and discharge cycles, (11) was used.

Q(t) =
∫

I(t)dt (11)

The PI controller checks for the current demand from the healthy cell and tries to keep
up the SOH level, feeding continuous power to the load.

Figure 8 shows the block diagram representation to balance SOH level in a two-level
battery scheme. Two batteries having different SOH levels are chosen. The output current
from each cell is compared with the SOH levels and on SOC levels provided by the main
controller. The cell possessing higher SOiH had undergone more charging-discharging
cycle till a point where the difference in SOH was zero. DC source fed the batteries during
charging. After numerous charge-discharge cycles, battery having higher SOH matched
with that of lower SOH. The main controller provides the current reference signals during
charging and discharging scenarios.
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Figure 8. Balancing of SOH in two cell configuration.

The controller sets the command to discharge or charge the battery. The voltage for
discharging and charging is 4.4 V and 3.6 V, respectively, and the corresponding currents
are −2.2 A and +2.2 A, respectively. The SOC was varied from 50% to 100%. Since, the SOC
of cell −2 was much smaller and more aged than cell-1, it was varied from 100% to 80%.
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An online estimation of SOH of battery combined with a PV cell based modified
coulomb counting method simulated using MATLAB/Simulink. For SOH estimation, 2RC
pair model of a RC was used in which empirical equations for Lithium Iron Phosphate
cells were derived. Figure 9 shows a scheme for which SOH was estimated.
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A half bridge bi-directional converter was used to charge and discharge the battery
of 48 V and 4 Ah. Voltage and current sensors were used to measure SOC and capacity.
Figure 10 shows the flowchart employed for estimating SOH.
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Figure 10. Flowchart for SOH estimation.

This algorithm was tested for two different scenarios (a) Complete Discharge and (b)
Partial Discharge. In (a), simulation and experiment were performed for 450 cycles. The
battery was discharged at 1C rate. The controller computed the capacity after 100% DOD
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and SOH was found to be 90.875%. The testing was performed at ambient temperature
of 35 ◦C. Estimated SOH was found to be 84.15% for 1021st cycle. During (b) conditions
similar (a) were considered. The partial discharge process was stopped when the SOC was
66.3%. The remaining capacity was 1.2Ah at the end of 450 cycles.

4. Data Driven Approaches for SOH Estimation

Some of the most common estimation models considered under ML are recurrent neu-
ral network (RNN), support vector machines (SVM), feed-forward neural network (FNN),
regression model, clustering models and many more [25]. A few latest developments
and estimation models under data-driven approaches for SOH estimation are reviewed in
this section.

In [26], Healthy Features (H.F.) and Long-Short-Term-Memory (LSTM) methods are
used to estimate the SOH of the Li-ion battery. The authors divided their process into
three phases. During phase-1, battery testing and degradation analysis are performed. The
battery test has been experimented on five cylindrical Li-ion batteries belonging to 21,700
and 18,650 types. The degradation data analysis was performed using Hybrid Power Pulse
Characterization (HPPC) test. The second phase extracted the healthy features using Grey
Relation Analysis (GRA) and Entropy Weight Method (EWM). Through GRA, extraction
of five healthy factors that affect the SOH of a battery is performed. Further, with the
correlation analysis with EMW, the extracted H.F. strongly correlates with the SOH of the
Li-ion battery. Finally, in the third phase, LSTM (Long Short-Term Memory) network is
applied to estimate the SOH. The LSTM gates use historical information and long-term
dependency of time series data. Figure 11 shows the network architecture followed by
LSTM. It can be observed that LSTM has input layers, hidden layers and output layers.
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Figure 11. Network architecture of LSTM.
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The inner layer of LSTM uses a memory mechanism rather than the traditional neuron
method. In LSTM, the input signals are mapped by a non-linear transformation into
the output of the forgetting gate to generate a new cell and simultaneously controls
the output gate. For training the LSTM parameters, Adam’s optimal algorithm is used.
Further, to evaluate the SOH prediction, Maximum Absolute Error (MAE), Mean Square
Error (MSE), Root Mean Square (RMSE) and goodness-of-fit R2 are considered shown in
Equations (12)–(15).

MAE = max|yi − ŷi| (12)

MSE =
1
m

m

∑
i=1

(yi − ŷi)
2 (13)

RMSE =

√
1
m

m

∑
i=1

(yi − ŷi)
2 (14)

R2 = 1−
m

∑
i=1

(yi − ŷi)
2/

m

∑
i=1

(yi −
−
yi)

2
(15)

During the prediction analysis, the training data size is varied as 30% to 70% of the test
data. When 30% of total data was taken as the training set, the maximum prediction error
was 6.70%. However, as the training data increased to 60% of cycle data, the error lowered to
2%. Even though the performance of LSTM outperformed from single Elman NN, SVM and
GPR algorithms, it lacked the same understanding on a multi-cell experiment. In addition,
they were able to obtain results only based on partial charging and discharging condition.

The authors in [27] introduced a hybrid data-driven method to predict SOH and
remaining useful life (RUL) for Li ion batteries. The hybrid method includes Complete
Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN), Auto Re-
gressive Integration Moving Average model (ARIMA) and Least Square Support Vector
Machine (LSSVM). Initially, the performance of data analysis is carried out to extract the
Health Indicators (HI) using CS2 series batteries dataset published by the CALCE Battery
Research Group. Through dataset analysis, it was found that the charging and discharg-
ing voltage range was between 3.7 V–4.0 V and 4 V–3 V, respectively. To establish the
correlation between data series based on HI and capacity degradation, Pearson’s linear
coefficient, Spearman’s rank and Kendall’s tau correlation functions were used. Once the
health indicators are extracted, a signal decomposition experiment is performed using
CEEDMAN. The output of CEEDMAN was the trend and non-trend items. Further, the
ARIMA was applied on-trend items to predict the SOH. Finally, the LSSVM was applied to
the non-trend items to obtain the RUL. Through various experiments, it was observed that
LSSVM predicted for a shorter period of time but had a large error when considered for
a long term. Thus, ARIMA prediction on-trend and non-trend items improved the SOH
prediction. Totally, 13 experiments were conducted on three batteries to obtain the trend
and non-trend items. Hence, the implementation of CEEDMAN, ARIMA and LSSVM
together on the trending and non-trending items displayed better prediction with less error.
They lack in providing similar results for a full-life model of various batteries type.

XGBoost algorithm is used in [28] to estimate the SOH of Li ion battery. As this method
was observer based, the computation and the complexity were high. Thus, to improve the
prediction of SOH, a data-driven model called XGBoost with Markova chain is used.

The experiments were performed on four Li ion batteries and the dataset was chosen
from the NASA research center [29]. Two different kinds of experiments were conducted to
obtain charging, discharging and impedance under a stable discharge experiment. In the
first experiment, discharge data of #5, #7 and #18 batteries were collected for the training
set of the MC-XGBoost model. Battery#6 battery discharge data was used to estimate the
accuracy of the model. In the second experiment, the discharge data of #5, #6 and #18 were
considered for training the model. The discharge data of #7 was used for the precision
estimation model. Figure 12 displays the overall flow chart of MC-XGBoost. During the
feature extraction phase, the voltage difference (∆u), temperature difference (∆T) and
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average voltage (u_avg) were selected as potential features affecting the aging factor of
the batteries. These factors were then fed to the MC-XGBoost model. Later, to compare
the MC-XGBoost accuracy, the model was compared with other data-driven models such
as the random forest method, the linear regression, KNN, SVM on the data set of #6 and
#7 batteries. The study observed that the prediction accuracy of MC-KGBoost and the
random forest was higher than other methods and the prediction error of MC-XGBoost
was close to real values. On further analysis, it was found that the average voltage gas
greater influence on the accuracy of SOH prediction.
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Using SVM on indirect health indicators, authors in [30] proposed a SOH estimation
method. Three dynamic health indicators in the feature extraction phase depending
on the charging and discharging curve were identified. Using a differential evolution
algorithm, a Hybrid Differential Evolution Support Vector Regression algorithm (DE-SVR)
was proposed to estimate accurate SOH. In this case, 500 cycles of experiments on a dataset
obtained by the Prognostics Center of Excellence, NASA Ames [31] was used. The dataset
consisted of three 18,650 LIBS numbered #5, #6 and #7 batteries from Idaho National
Laboratory. Each battery had a 2.2 Ah and 3.7 V of capacity and voltage, respectively. Each
battery was made to run through three operations at 24 ◦C. In the first operation, batteries
were charged at a constant current of 1.5 A until the voltage reached 4.2V. Later, they were
discharged to a constant voltage until the current dropped to 20 mA. Finally, the batteries
were discharged at a constant current of 2 A until the voltage reached the discharge cut-off
voltage. The SOH estimation was evaluated by choosing the first 90 cycles as a training
set, 91–120th cycle as a verification set and remaining as a test set. By comparing the
proposed model with other existing models, the hybrid model realized a satisfactory
performance in fitting the battery capacity degradation curve with an error of <0.02. Thus,
DE-SVR demonstrated a higher accuracy using enhanced HI than original HI. However,
the computation of DE-SVR was found to be higher than other models with the Gaussian
regression model and partial method.

Root-mean-squared error-based machine learning was developed by the authors
in [32]. By choosing the Gray/Black-box battery model, an electric equivalent circuit
model was developed. This model took resistors; capacitor and inductor information into
consideration and the experiment was performed on six Li ion batteries with different
current and temperature levels. The first three batteries were modeled for the current
level of 1.0 A and temperature 297.15 K followed by the next three batteries were modeled
for 2.0 A current level and 277.15 K temperature. Knee Points were calculated on the
dataset collected from NASA Ames prognostic [33]. By considering the Euclidean distance
between the knee points, it was inferred that the relative health of batteries decreased with
a decrease in the distance between the two points. The line between the two points is
termed a pseudo-linear region. The input parameters for the ML model are chosen within
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the pseudo-linear region. Later, using the polynomial regression model of third degree
under RMSE was derived. During the prediction phase, 30% of discharge curve data was
dedicated as a testing set and the remaining 70% of data was taken as the training set. The
SOC percentage was derived using the voltage as a reference point on the pseudo-linear
region and arm length. Further, by performing reverse engineering, the SOH estimation
was derived. The entire experiment was limited to smaller data which may not be feasible
for a larger dataset.

For an application that uses hybrid or fully electric vehicles, [34] proposed an ANN-
based data-driven method to estimate SOC and SOH together. SOC estimation relied on
the identification of aging factors and SOH estimation showed dependence on the behavior
of SOC in a recursive closed-loop. From Figure 13, it can be observed that the system is
divided into two subsystems. The first subsystem estimates the SOC using four regression
ANNs and the second subsystem estimates SOH. The output of the SOC subsystem is fed as
input for the SOH subsystem as they were correlated on aging factors. Such setup is termed
recursive loop architecture. The experiment was performed on a battery pack consisting
of 168 cells (cell model—Kokam SLPB 11543140H5). The pack possessed nominal voltage
and current of 48 V and 60 Ah, respectively, with 7C rate of discharge. The experiment was
conducted for duration of 5000 s with 42 consecutive buffers and time length of 120 s for a
mean capacity of 12 Mh.
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During the verification of SOH, a confusion matrix tool is used to estimate the accuracy.
Figure 14 displays the classified and reported factors under rows and columns. The
diagonal cell values are classified as correct classification and the off-diagonal values were
misclassified. Through matrix analysis, it is found that the accuracy was equal to 2.4% of
the misclassification (178 buffers) over the total number of test occurrences (75,000). Finally,
during the verification of SOC, a time series-based ANN regression is implemented. The
ANN provides four outputs and each corresponds to the correct aging level of the battery.
These selected values are input to the SOH classification as in Figure 14. The throughput
error was found to be limited to 3%.

In [35], a novel SOH estimation method is proposed based on the battery Ts. HI
are extracted from the sample Ts by applying qualitative analysis on the Differential
Temperature (DT) curve. HI vector containing 21 differential temperature values are
extracted. With these HI vector values, MI and SVR are considered to establish the relation
between DT and SOH. The experiment evaluated two different sets of battery degradation
datasets namely the Oxford dataset and the NASA dataset. The Oxford dataset consisted
of battery aging of eight Kokam pouch cells with a nominal capacity of 740 mAh and the
NASA dataset contained battery degradation data from three 18,650 cells with cathode as
LiNi0.8Co0.15Al0.05O2 and graphite anode with a little cell capacity of 2 Ah. The developed
HI is validated against the Oxford and NASA datasets. Further, the results are compared
with Incremental Capacity Analysis (ICA) for SOH. From the comparison, it was concluded
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the proposed SVR model showed overall better accuracy than the ICA model. In the future,
a thermal image-based investigation would be performed.
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A real-time SOH estimation is proposed in [36] using Equivalent Internal Resistance
(EIR) of Li ion batteries. The work is divided into three stages. In the first stage, the
co-relation between EIR and battery degradation is extracted. In the second stage, the
EIR vector is derived using a fast extraction method and compared with SOC. In the last
stage, SVR model is applied to estimate the real-time SOH. Under 40 ◦C, the aging cycle
experiment on three 15 Ah lithium iron phosphate batteries for every 20 cycles. The internal
resistance test was conducted after 7200 s. 20–90% of the EIR spectrum was collected and
provided as input to the SVR model. Then the first set of EIR correspondent to 0.6 of SOC
is selected as input for the SVR model. The results of regression and prediction were barely
satisfying. To improve the results, a set of training data at 0.6 and 0.7 EIR vectors were
added. This created a good amount of influence on the accuracy and prediction of SOH. To
further analyze, 0.8 EIR vector is used as input to SVR and was observed to have minimal
error. Through these variations and analysis, they provided a high robust SOH estimation
for simple battery degradation using EIR values. However, the robustness and accuracy of
SOH for a complex working condition is yet an open challenge.

An adaptive ANN-based hybrid power estimation model is proposed in [37]. By
considering variables including SOH, current, ambient temperature and SOC, two data-
driven methods are proposed. Firstly, a model based on FFNN was used and the second
model on OCV-SOC lookup table integrated with the voltage drop estimation. Before
evaluating the proposed models, two EV tests were performed. In the first test, the Urban
Dynamometer Driving Scheduling test (UDDS) [38] is used and in the second test Dynamic
Stress Test (DST) [39] is performed. For the UDDS test, Li-ion batteries with 3.6 V, 16.5 Ah
and 0.8 initial SOC were considered. The experiment was performed till SOC dropped
to 0.76 (after 22 min). The DST test was performed on 12.8 V, 150 Ah Li-ion batteries
with initial SOC = 1. The DST test was executed for 115 DST cycles, till the battery was
completely discharged, i.e., SOC = 0 (after 690 min). Figure 15 shows the experimental
setup performing UDDS and DST test.
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The obtained results were compared with linear, RC, ANN algorithms. From the
comparison, it was observed that the results of the ANN and hybrid enhanced model were
similar. Even though the accuracy of the proposed hybrid model was more for 15 and
above hidden layers, the model accuracy decreased with less than five hidden layers.

In [40], a Prior Knowledge-based Neural Network (PKNN) and Markova chain are
used to estimate the SOH of the Li-ion battery. The work is divided into three processes.
In the first process, the features influencing the battery aging process are extracted using
average voltage, voltage increments and the d(SOC)/dV (d stands for differential). In the
second process, the battery utilization is estimated using PKNN. Finally, in the last process,
the error is predicted using the Markova correction formula on the PKNN prediction. The
experiment was conducted on the NASA battery dataset [41] and the commercial battery
dataset containing an IFP1865140 type LiFePO4 battery. Three batteries were charged and
discharged for 168 cycles, random 135 cycles data were chosen as a training dataset for
PKNN, and the rest of the cycle data were used for testing. PKNN used two hidden layers
of 19 nodes in each layer. The result of PKNN was compared with the state-of-the-art
methods and found to achieve maximum accuracy of SOH estimation. PKNN showed an
error rate of 2.5%, but by applying Markova correcting on PKNN, the accuracy improved
drastically and demonstrated a robust SOH prediction model.

A dual Gaussian Process Regression (GPR) model is used to estimate the SOH and
RUL of Li-ion batteries back in [42]. HI are extracted using a partial charging curve
obtained by the battery packaging test. Pearson correlation analysis is performed on factors
influencing HI. Further GPR model is trained on a smaller dataset. The SOH threshold is
used to evaluate if the battery pack is close to the End-Of-Life (EOF) of the battery. The
experiment is performed on a battery pack consisting of four cells in series.

Figure 16 displays a flow chart of the dual GPR model. It can be observed that the HI
is extracted based on the partial charging, voltage output, voltage drop and peak voltage.
These HI are passed into RUL and SOH prediction models to obtain the threshold values.
Finally, the prediction error is calculated for CI, MeAE, MaAE and RMSE. MaAE and RMSE
were less than 1.3%, 0.4% for 10% of the training set. Ts and inconsistent charge/discharge
data were not considered during the prediction phase. To provide a reliable solution for a
real-time environment requires larger training data.
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5. Conclusions

SOH is one of the most fundamental algorithms in BMS. This estimation can be used
either to estimate the increase in internal resistance or to estimate the reduction in the
capacity of the battery. Direct estimation or Degradation models are used to estimate the
aging. SOH degradation can also be due to increase in temperature and fast discharge
from cell having low SOC etc. Conventional methods used to estimate SOH and their
disadvantages are discussed in this paper. Recently, ML techniques are used for SOH
estimation. The use of RNN, SVM, LSTM and ANN has improved the estimation of
the SOH and RUL with reduced error rate. Even though the dataset size and various
parameters matter in obtaining a precise accuracy, the researchers have found the use
of ML and AI algorithm helps is predicting the SOH and RUL of the Li-ion batteries.
The various experiments have shown that the finding the optimal HI benefits to the
RUL and SOH estimation algorithms. Hence, it can be observed that the HI voltage and
current values greatly influence the data-driven based estimation algorithms. With the
advent of cloud computing, efficient BMS algorithms can be modeled and tested on an
integrated platform. However, the current challenges in this regard are namely (1) effects
on multi-scale integrated modeling methods and (2) Ability of the BMS controller to
upgrade remotely (3) Variable atmospheric conditions and (4) Cell-Cell variations. Even
though LiFePO4 cells did not exhibit major aging even up to 50% of capacity degradation,
the effect of low temperature on this phenomenon has to be investigated. In the future
papers, we will be incorporating the SOH degradation due to increase in temperature using
machine-learning techniques.
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Nomenclature

EV Electric Vehicle
HEV Hybrid Electric Vehicle
BMS Battery Management System
SOC State of Charge
SOH State of Health
SEI Solid Electrolyte Interface
LAM Loss of Active Material
RC Resistor Capacitor
OCV Open Circuit Voltage
Tc Core Temperature
Ts Surface Temperature
Tamb Ambient Temperature
DOD Depth of Discharge
ML Machine Learning
AI Artificial Intelligence
RNN Recurrent Neural Network
SVM Support Vector Machine
FNN Feed Forward Neural Network
Cleft Number of cycles left over for the battery life to end
CTotal Total number of life cycles
DOD Depth of Discharge
Q Capacity of the battery
I Current
HF Healthy Feature
LSTM Long Short Term Memory
HPPC Hybrid Power Pulse Characterization
GRA Grey Relation Analysis
MAE Maximum Absolute Error
MSE Mean Square Error
RMSE Root Mean Square Error
CEEMDAN Complete Ensemble Empirical Mode Decomposition with Adaptive Noise
ARIMA Auto Regressive Integration Moving Average
LSSVM Least Square Support Vector Machine
HI Health Indicator
DE-SVR Hybrid Differential Evolution Support Vector Regression
ICA Incremental Capacity Analysis
EIR Equivalent Internal Resistance
UDDS Urban Dynamometer Driving Scheduling
DST Dynamic Stress Test
PKNN Prior Knowledge-based Neural Network
GPR Gaussian Process Regression
EOL End Of Life
UPS Uninterruptible Power Supply
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