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Abstract: The power system network topology influences the system frequency response to power
imbalance disturbances. Here, the objective is to find the network metric(s) contributing to frequency
transient stability. The graph Laplacians of six 4-node network topologies are analysed using
Spectral Graph Theory. For homogeneous network connections, we show that the node degree
measure indicates node robustness. Based on these analytical results, the investigation expands
to a 10-node network topology consisting of two clusters, which provide further insight into the
spectral results. The research then involves a simulation of a power imbalance disturbance on
three 20-node networks with different topologies based on node degree, where we link the node
degree measure to imbalance disturbance propagation through Wave Theory. The results provide an
intuitive understanding of the impact of network topology on power system frequency stability. The
analytical and simulation results indicate that a node’s sensitivity to disturbances is partially due to
its node degree, reactance from disturbance location, and the link it has to other higher degree nodes
(hierarchical position in network topology). Testing of the analytical and simulation results takes
place on the nonhomogeneous IEEE-14 bus and IEEE-39 bus networks. These results provide insights
into optimal inertia placement to improve the frequency robustness of low-inertia power systems.
The network topology, considering node degrees, influences the speed at which the disturbance
impact propagates from the disturbance location and how fast-standing waves form. The topology
thus contributes to how fast the energy in a disturbance dissipates to zero.

Keywords: power system; disturbance; network topology; frequency stability; graph laplacian

1. Introduction

Frequency stability is critical for power system operation [1]. The inertia of syn-
chronous generators provides the power system with frequency transient stability [2–4].
However, the large-scale transition from fossil fuel power stations (which primarily use syn-
chronous generators) to variable renewable energy source (RES) power plants—like wind
and solar photovoltaic (PV)—means there is a shift from synchronous generators to inverter-
based generation [5–7]. The higher dispatch priority for RES generation above conventional
fossil fuel generation results in reduced and time-varying system inertia. The inertia quan-
tity’s time-varying component is due to the residual load becoming more intermittent as
a result of the stochasticity and variability introduced by large-scale inverter-based RES
generation [8,9]. The inertia of synchronous generators is essential for system frequency
stability during a generation/load imbalance disturbance event and prior to governor
action. Thus, a consequence of large-scale RES integration is the decline in synchronous
generator inertia, which degrades the power system’s frequency transient stability [10–13].
A high rate of change of frequency (RoCoF) can lead to the activation of distance protection,
network splitting, and in the worst case, a system-wide blackout [14–16]. To accommodate
large-scale inertia-less generation integration necessitates deeper insight into the power
system dynamics to improve and ensure system frequency transient stability.
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The ongoing integration of distributed RES increases the complexity of the network
structure. It becomes thus necessary to perform the N-1 contingency and stability assess-
ments over larger and more complex networks [17]. The increase in nonlinear differential
equations increases the computational load to complete N-1 assessments.

For power system networks with long transmission lines, i.e., high impedance, the
frequency dynamics are less coherent between buses. The frequency transient response
and robustness are not uniform across a synchronised network. Therefore, the location of a
network disturbance is of importance in the assessment of frequency stability.

A system norm is helpful to assess a system’s stability performance to a specific dis-
turbance vector. The system norm indicates the system’s sensitivity to a given disturbance
input [18]. For assessing, comparing, or optimising a network’s stability, it is best to use
a system norm such as the H2 or the H∞ norm [18], which indicates the amplification
in system energy due to the disturbance input. Despite the advantages of the norms, an
investigation by M. Pirani et al. [18] found that the H2 and H∞ are, in general, not consistent
and produce contradictory results in some instances.

There is thus a need for improved modelling, analysing methods, and insight to
understand robust network design and analysis [6,19]. The current theoretical analysis,
underlying assumptions and models need to be questioned in the context of low and
variable inertia [9] to improve and update our understanding and representation of the
power system. The transition from traditional and centralised to variable and spatially
distributed generation (inverter-based RES) necessitates new methods/approaches for
faster stability assessments.

A transmission network is a medium for disturbance propagation. The network topol-
ogy, therefore, has a role in frequency transient stability. S. Bhela et al. [20] points out that
the impact of network topology on frequency stability is still unknown. E. Tegling et al. [21],
and M. Pirani et al. [18], indicate for low-inertia power systems that the ability to main-
tain frequency transient stability depends on network topology, nodal dynamics, and
coupling strength.

In network structure and topology analysis, it might be valuable to identify the most
influential nodes in the network, such as the work by G. Murić et al. [22] in epidemic
spreading dynamics. There are various definitions for node importance depending on
the context and spreading process. Node importance or criticality is typically in terms of
centrality measures. G. Murić et al. [22] view node importance from the perspective of
epidemic dynamics where, for example, the expected force metric quantifies the spreading
power of a node. T. Coletta et al. [7] conclude that the resistive closeness centrality is
relevant to identify the crucial nodes. M. Tyloo and T. Coletta et al. [23], furthermore, state
that a network’s synchronisation depends on a family of topological indices, which they
encapsulate in the Kirchhoff index, which serve as a network metric and not as a node
topological metric.

U. Markovic et al. [19] found that reducing network connectivity increases the depen-
dence on synchronous generation for system frequency stability. The same authors state
that network connectivity contributes to the maximum allowable inverter penetration in a
power system network. The authors, furthermore, suggest research on the impact of unit
placement on transient dynamics and stability considering high inverter penetration.

J. S. Thorp et al. [24] postulate that the location and trajectory of the eigenvalues near
the instability region could provide important information about the effect of variation in
system parameters on stability or where the highest potential for problems in a network is.

Through Spectral Graph Theory, L. Pagnier and Ph. Jacquod [25] have shown that the
location of a disturbance in a network contributes significantly to the network’s transient
response. The authors found that the eigenvector belonging to the smallest non-zero
eigenvalue of the network Laplacian indicates the robustness of the node mapped to the
eigenvector component. The smaller the eigenvector component is, the more robust the
corresponding node. The topological metrics defining this local-area robustness in a power
system network is, however, still unknown.
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H. Ronellenfitsch et al. [26] proposed and investigated the concept of noise-cancelling
networks. The objective was to minimise the impact of noise input using the network
topology. The results of H. Ronellenfitsch et al. points to sparse network architectures
with a sense of hierarchical structures, which resemble the vascular in plants and animals.
This finding aligns with the results from S. Bhela et al. [20], who found that the tree
topology is the optimal design to reduce the amplitude of the generator rotor swings.
S. Bhela et al. [20] found that desynchronisation through the network topology is valuable
for minimising the impact of noise input (fluctuating power imbalance disturbances).
There are, however, no insights into how the topology operates/functions to minimise the
disturbance impact globally.

In summary, power systems transition to less stable and more complex versions.
Ensuring a smooth transition process requires insights into network topology dynamics and
optimal unit placement. There is thus a need for robust network design to accommodate
the transition in generation type, i.e., from synchronous generators to inverter-based RES.
A valuable component for a frequency-stable network topology design is the identification
of critical nodes or buses. Identification and obtaining insight into the node topology
structure for a given power system network is the premise of this research.

Instead of searching for a network topology metric, like the Kirchhoff index, this
research focuses on the individual node/bus topological metric to identify frequency-stable
areas within a network. Unlike G. Murić et al. [22], we are not interested in spreading
power or most influential but in robustness. This research expands on the work in the
literature. The work in this paper provides insight into how network topology impacts
frequency stability by understanding the spectrum of the network Laplacian based on the
spectral analysis of [25]. The focus is on the nodal topology measure determining relative
robustness in a network.

The contributions of this research to the literature are as follows: Identify the topologi-
cal metrics that determine the magnitude of the eigenvector component (from the graph
Laplacian) for the corresponding network bus. The second part presents how a localised
disturbance propagates in a wave-like nature, impacting the rest of the power system
network. We link the node degree measure to imbalance disturbance propagation through
Wave Theory. The propagation velocity result aligns with the results of J. S. Thorp et al. [24],
and M. Parashar et al. [27]. The two contributions show how the node topology measure
responsible for distinguishing different stabilities/sensitivities between nodes dissolves the
impact of a power imbalance disturbance on a network. The insights obtained are valuable
for the identification of stable and vulnerable areas in a power system network, as well as
for robust network design. However, it is necessary to recognise that the intention of the
topology measure in this context is not to compare different networks but nodes within a
given network.

The rest of the paper outline is as follows: Section 2 presents the analytical graph
spectral analysis. Section 3 focuses on disturbance propagation based on the results of
Section 2. Section 4 evaluates the analytical findings using the IEEE-14 bus and IEEE-39
bus systems. Section 5 summarises and discusses the findings. Finally, Section 6 presents
the conclusion of this work.

2. Network Topology Analysis

The intention is to find the network topology metric(s), which largely determines
the component sizes of the eigenvectors of the network Laplacian, to understand and
classify a node’s relative stability in a network. In this section, we analyse six different
topologies of 4-node graphs/networks using Spectral Graph Theory. The objective is to
find the network topology metric(s), which determines the magnitude of the eigenvector
elements (corresponding to the smallest non-zero eigenvalue). Figure 1 presents the six
different topologies.
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Figure 1. Six topologies of a 4-node network.

The transmission line susceptance (b) is considered, for analytical simplicity, to be
uniform through the networks. A graph size of four nodes is selected based on the trade-off
between calculation simplicity and enough nodes to investigate various topologies. The
spectrum of the networks, i.e., the eigenvalues and eigenvectors of the Laplacians’ were
analytically derived to obtain insight into the connection between the network topology
and the Laplacian’s spectrum.

For a connected graph, the Laplacian matrix is real and symmetric. The Laplacian
has a complete set of orthogonal eigenvectors {~u1, ..., ~uN}, with corresponding eigenvalues
{λN ≥ ... ≥ λ2 > 0}. The smallest non-zero eigenvalue (λ2) is known as the algebraic
connectivity. The algebraic connectivity indicates how well a graph is connected. The
larger the algebraic connectivity, the more connected the network, i.e., the network is
more meshed [17,20,21,25]. Table 1 summarises the calculated eigenvalues (in terms of
b) for graphs G1 to G6. The algebraic connectivity values are under the λ2 column. The
graph with the least connectivity is G1 (λ2 = 0.589b) since it is a bus-topology, where the
maximum node degree is two. Graph G5 is the most meshed network, and therefore, has
the largest algebraic connectivity value (λ2 = 4b).

Table 1. Eigenvalues of the six different topologies.

Eigenvalues λ1 λ2 λ3 λ4

G1 0 0.586b 2b 3.414b

G2 0 b b 4b

G3 0 b 3b 4b

G4 0 2b 4b 4b

G5 0 4b 4b 4b

G6 0 2b 2b 4b

Equations (1)–(6) presents the Laplacians of networks G1 to G6 with the eigenvector
~u2 corresponding to the smallest non-zero eigenvalue. For G2, G5, and G6, the algebraic
connectivity has a multiplicity of more than one. Therefore, depicting the average vector
~u2 of the corresponding vectors. The purpose is not to compare network topologies but
to identify the most vulnerable areas inside a network of interest. The eigenvectors are
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normalised, thus not absolute quantities. The magnitude of the vector component indicates
relative robustness to the rest of the nodes in the network. In G5 and G6, all the nodes have
the same node degree and magnitudes on their respective eigenvector. Therefore, relative
to each other, all the nodes in the same network have the same robustness.

For the six different topologies, the observation is that the nodes with the highest
node degrees (number of directly connected neighbours) have the lowest sensitivity to
disturbances, based on the eigenvector component magnitudes.

LG1 :=


1 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 1

 ~u2 =


0.653
0.271
−0.271
−0.653

 (1)

LG2 :=


1 −1 0 0
−1 3 −1 −1
0 −1 1 0
0 −1 0 1

 ~u2 =


0.333
0.0

0.333
0.333

 (2)

LG3 :=


1 −1 0 0
−1 3 −1 −1
0 −1 2 −1
0 −1 −1 2

 ~u2 =


0.816
0.0
−0.408
−0.408

 (3)

LG4 :=


2 −1 −1 0
−1 3 −1 −1
−1 −1 3 −1
0 −1 −1 2

 ~u2 =


0.707
0.0
0.0
−0.707

 (4)

LG5 :=


3 −1 −1 −1
−1 3 −1 −1
−1 −1 3 −1
−1 −1 −1 3

 ~u2 =


0.25
0.25
0.25
0.25

 (5)

LG6 :=


2 −1 0 −1
−1 2 −1 0
0 −1 2 −1
−1 0 −1 2

 ~u2 =


0.25
0.25
0.25
0.25

 (6)

Based on the node degree observation from the Spectral Graph Theory approach, we
seek more support for the node degree and stability observation. An analytical approach,
based on power flow and the Swing Equation, is taken to find an expression for the role of
node degree in a node’s frequency stability.

In an alternating current (AC) network, active power flows from the larger voltage
angle bus to the bus with a lower voltage angle. The power flow across a transmission line
is related to the voltage phase angle difference between the ends. For a given network, its
incidence matrix U describes the relationship between nodes and edges. Let the vector ~δ
depict the voltage phase angle distribution. The operation U~δ = ∆~δ computes the voltage
phase angle difference between the network buses.

Active power flow is a sinusoidal function of the phase angle difference. However,
for small-angle differences, the difference approximates the sine function. Considering
that power only flows between connected buses and suppose the transmission capacity
between bus i and j is (Adj)ij, then the power flow through bus i with any node degree is:
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Pi u ∑
j
(Adj)ij ·

(
δi − δj

)
(7)

u δi ∑
j
(Adj)ij −∑

j
(Adj)ijδj (8)

u
(
∆δij + δj

)
degree(busi)−∑

j
(Adj)ijδj (9)

u ∑
j

[
degree(busi)− (Adj)ij

]
δj. (10)

The above takes the following matrix and vector form:

~P =
(
D−Adj)

)
~δ = UTU~δ = L~δ. (11)

The discrete Laplacian is analogous to the divergence of the gradient of a function
∇2 f (·). In the discrete graph space, U takes the role of ∇. Thus, where ∇2 = ∇ · ∇, the
graph Laplacian is L = UTU = D−Adj.

The node degree matrix D is a diagonal matrix containing the degrees. Consider a
power imbalance disturbance at a bus, then the higher the node degree capacity of that
bus, the better the node’s ability to disperse the disturbance impact energy. The adjacency
matrix Adj describes the transmission capacity of the edges. The larger the edge capacity
from the perturbed bus to a neighbouring bus, the easier the flow along that path.

The graph Laplacian of a given power system network describes the relationship
(sensitivity) between the power flow and voltage phase angle for each network bus. A
property of the Laplacian matrix is the row-sum, and the column-sum equals zero, and thus
the Laplacian implies the sum of power flow is zero in a lossless network. The Laplacian
matrix is also known as the Kirchhoff matrix. An expansion of L~δ into its summation terms
per row reveals the product of the dispersion strength and the voltage phase angle at that
bus, minus the sum-of-products, of the transmission line capacity and voltage phase angles
of neighbouring buses.

Consider the frequency dynamics at a node using the Swing Equation:

M
d
dt

ω + D ·ω =
(

P(m) + ∆P(m)
)
−
(

P(e) + ∆P(e)
)

. (12)

The equation is in the zero-reference frame. The rotor inertia (M) is the product of the
moment of inertia (J in kg·m2) and the angular velocity (ω in rad/s), i.e., M = J · ω. The
damping coefficient D represents the damping sources. The terms P(m) and P(e) denote
the generator’s mechanical input power and the electrical output power, respectively. The
terms ∆P(m) and ∆P(e) represent the deviation in the respective powers. The electrical
dynamics is faster than the mechanical dynamics of the synchronous generator. Therefore,
on the transient stability time scale, the deviation in mechanical power is negligible. Making
the assumptions: P(m) ≈ P(e) and ∆P(m) ≈ 0, then (12) is re-written as follows:

M
d
dt

ω + D ·ω = −∆P(e). (13)

For a lossless and homogeneous network, consider a node degree equal to N, then
from Kirchhoff’s current law, the electrical power flowing out of the node should equal the
sum flowing to the adjacent connected nodes:

P(e) =
N

∑
i=1

P(e)
i . (14)

For homogeneous connections P(e)
i = Pn ; ∀ i. Then,
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P(e) = N · Pn. (15)

For a disturbance input which causes a deviation in P(e), the following is assumed for
a homogeneous network:

∆P(e) = N · ∆Pn. (16)

Then, during a power imbalance disturbance at a node, the frequency dynamics at an
adjacent node with degree N is as follows:

M
d
dt

ω + D ·ω = −∆P(e)

N
= −∆Pn. (17)

Considering a lossless, homogeneous connection and uniform network, then (17) is
based on Kirchhoff’s current law to describe the disturbance impact dispersion. The impact
of a generation/load imbalance disturbance, with a magnitude of ∆P(e), will be shared
with the N directly connected adjacent nodes if an equal power transfer to all these adjacent
nodes is assumed (only for homogeneous connections). Therefore, the more neighbours a
node has (larger node degree capacity for nonhomogeneous networks), the more support
there is to endure the disturbance, which decreases a node’s sensitivity to disturbances.

Deferring from the homogeneous susceptance assumption for G1, G2, and G3, the
eigenvector components belonging to the algebraic connectivity, are presented in (18)–(29).
The analytic derivation results show that the relative stability of a node expands beyond
just node degree. The node stability in terms of network topology has a hierarchical form.
Node stability also depends on the stability of the connected neighbours. The eigenvector
components map to the nodes, then the smaller the eigenvector component magnitude
is (compared to the other nodes), the more stable the node of interest. The u0 component
maps to node 0. The vector component magnitude of u0 is dependent on the u1 (node 1)
vector component magnitude and the susceptance between nodes 0 and 1.

G1:

u0 =
b01u1

b01 − λ2
(18)

u1 =
b01u0 + b12u2

b01 + b02 − λ2
(19)

u2 =
b23u3 + b12u1

b23 + b12 − λ2
(20)

u3 =
b23u2

b23 − λ2
. (21)

G2:

u0 =
b01u1

b01 − λ2
(22)

u1 =
b01u0 + b12u2 + b13u4

b01 + b12 + b13 − λ2
(23)

u2 =
b12u1

b12 − λ2
(24)

u3 =
b12u1

b13 − λ2
. (25)
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G3:

u0 =
b01u1

b01 − λ2
(26)

u1 =
b01u0 + b12u2 + b13u3

b01 + b12 + b13 − λ2
(27)

u2 =
b12u1 + b23u3

b12 + b23 − λ2
(28)

u3 =
b13u1 + b23u2

b31 + b23 − λ2
. (29)

Since the eigenvalues of the Laplacian are non-negative, the following is valid for u0:

bij

bij − λ2
> 1. (30)

Thus, the magnitude of u0 is higher than u1, which indicates that node 1 is more
robust than node 0 in terms of network topology. This result also applies for u3 in G1 and
G2 (node 3) and u2 in G2 (node 2).

Consider u1 and u2 in G1, which map to nodes 1 and 2, respectively. These nodes
“inherit” robustness from their two neighbouring nodes (higher node degree than nodes 0
and 3 in G1). The following is true for u1 and u2:

bij

bij + bjk − λ2
< 1 (31)

bjk

bij + bjk − λ2
< 1. (32)

Thus, the factor of the contributing vector component is smaller than one. Since the
λ2-eigenvector is orthogonal to the constant vector

(
λ1 = 0→ 1 ∈ RN×1), the dot product

requires that the sum of the elements for the non-constant eigenvectors equal zero. Hence
the positive and negative components in the eigenvectors. Therefore, in terms of topology,
nodes 1 and 2 are more robust than the boundary nodes in G1. In G2 and G3, the increase
in node degree for node 1 further enhances the relative stability of node 1. So far, the results
point to node degree and the node’s hierarchical position contributing to its robustness.

2.1. Impact of Adding a One-Degree Node.

The next step is to analyse a node’s robustness when introduced to a new node. The
node assessment uses the spectral method introduced by [25]. The intention is to evaluate
the magnitude of the eigenvector components of the smallest non-zero eigenvalue of the
network Laplacian. Every network node maps to the λ2-eigenvector. The size of the vector
component indicates the relative robustness of the corresponding node. Small eigenvector
elements map to nodes that are less sensitive to network disturbances. These nodes are
thus relatively more robust in the network.

The procedure involves evaluating the eigenvector components when adding a node
with a single degree to a network with two distinct clusters of different node degree sizes.
The network used for the analysis contains 10 nodes (see Figure 2a for network topology).
The network graph consists of two clusters, a small cluster centred around node 0 and a
larger one centred around node 4. A new node (with a node degree of one) connects to
nodes 0, 3, 4, and 9, respectively. An analysis of the eigenvector components for the four
cases led to the following observations:
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• Considering the base case (see Figure 2b), before a node addition to the 10-node
network, it is noted that the least sensitive nodes contain the higher node degrees
(node 0 and 4) in each cluster. These nodes have node degrees equal to four and
six, respectively;

• The integration of the new node at node 3 (an already present one-degree node in
the network) increased the intermediate node’s (node 3) sensitivity to network distur-
bances, see Figure 2c. Although the intermediate node has an increased connection, it
has also increased sensitivity. Note that for node 3, its gate-way node to the rest of the
network (node 0) and the immediate neighbours of (node 0) has reduced sensitivity;

• The integration of the new node at node 9 (an already present one-degree node)
increased the intermediate node’s (node 9) sensitivity to network disturbances, see
Figure 2d. Although the intermediate node has an increased connection, it also
increased sensitivity. Note that for node 9, its gate-way node (node 4) to the rest of the
network and the immediate neighbours of the gate-way node has reduced sensitivity.
Since node 9’s gate-way node (node 4) has a higher degree than node 0, and since node
9 facilitates the connection of the new node (with node degree of one), the increased
sensitivity for node 9 is still lower than nodes 1, 2, and 3 due to the robustness of
node 4;

• Adding a node via a hub node (nodes 0 or 4) reduces the sensitivity of all the neigh-
bours of that hub node, see Figure 2e,f. For the case where node 10 connects to node 0,
the amplitude of the eigenvector components associated with the neighbouring nodes
decreases from 0.416 to 0.348 (see Figure 2e). The observation is like the case where
node 10 connects to node 4. The eigenvector element amplitudes reduce from 0.27 to
0.236, for the neighbours of node 4 (see Figure 2f). These observations agree with the
expression in (17).

From this spectral analysis, the results show that a node’s degree and connection to
other high-degree nodes determines its relative robustness to disturbances in a network.
The robustness of the nodes impacts a network’s overall frequency response. It is now
simple to identify the stable, and less stable areas in homogeneous-like networks, through
the node degree metric. However, for large and complex networks, a node’s hierarchical
position also has a significant contribution to its robustness. Along with resistance distance
(effective impedance between any two nodes/buses), a node’s degree and its link to other
high-degree nodes influence its sensitivity to network disturbances. This sensitivity to
network disturbances indication is on the λ2-eigenvector of the graph Laplacian.

(a) A 10-node network with two clusters. (b) Eigenvector component magnitudes before
adding a one-degree node.

Figure 2. Cont.
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(c) Eigenvector component magnitudes when
adding a one-degree node to node 3.

(d) Eigenvector component magnitudes when
adding a one-degree node to node 9.

(e) Eigenvector component magnitudes when
adding a one-degree node to node 0.

(f) Eigenvector component magnitudes when
adding a one-degree node to node 4.

Figure 2. A 10-node network and the spectral analysis plots. Nodes 0 to 9 maps to u0 to u9, with u10

mapping to the newly-added node.

3. Disturbance Impact Propagation

To obtain further insight into how node degree influences the stability of different
areas in a network led to investigating electromechanical disturbance propagation in a
power system network to find the influence of node degree on the impact flow of a power
imbalance disturbance.

3.1. Simulation Setup

For the disturbance propagation analysis in this section, we implement three 20-
node network topologies, where each node represents a distributed generation unit. The
topologies selection is such that the influence of node degree is observable where the
network splits into multiple branches. Figure 3 illustrates the three network topology
graphs. Graph G1 is a bus-topology network, which means all the nodes have a node
degree equal to two, except for the boundary nodes, which have a node degree of one.
Graph G2 splits into three branches at node 5. Therefore, node 5 has a node degree equal
to three. Lastly, graph G3 splits into four branches at node 5, which means node 5 has a
node degree of four. In the Digsilent PowerFactory simulation software, the transmission
line voltages are 110 kV with 6 Ω reactance between buses. Since the reactance between all
adjacent nodes is the same, the term node distance refers to the number of nodes between
the disturbed node (node 0) and the node of interest. The disturbance location in all three
networks is at node 0. An analysis of the RoCoF in the time and space domains follows the
triggering of a low-frequency disturbance event (a relatively small load step input to create
a generation/load imbalance disturbance to trigger the small-signal dynamics).
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Figure 3. Three network/graph topologies with the network consisting of 20 nodes.

3.2. Disturbance Behaviour Analysis

Analysing the low-frequency event for G1, the observation is that the disturbance
(RoCoF) propagates as a wave, see simulation output in Figure 4a. As the disturbed
generator swings, the generator injects oscillatory disturbances into the network, as shown
in Figure 4a. The disturbance propagates to the boundaries of the network. At a boundary
node, the wave phase shifts 180◦ and propagate backwards, i.e., wave reflection, as seen in
Figure 4b. The counter-propagating waves undergo interference which results in partial
standing waves, see Figure 4c.

There is a zero net energy transfer in a pure standing wave, but since our network is
not a lossless medium, the result is a partial standing wave, i.e., a combination of a standing
wave and a travelling wave. The travelling (transverse) wave component supplies the
network losses until all the disturbance energy dissipates to zero. The longer a network
branch is, the longer the disturbance wave propagates before it reflects from a boundary
node. The longer a network branch is, the further the disturbance wave propagates before
it reflects from a boundary. The longer it takes for a standing wave to form, the more time
is available for the disturbance energy to dissipate. Thus, the faster the RoCoF magnitude
decays in time.

(a) RoCoF (Hz/s) propagation (transverse wave).

Figure 4. Cont.
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(b) RoCoF (Hz/s) wave reflecting (wave reflection).

(c) RoCoF (Hz/s) standing wave (partial).

Figure 4. Disturbance propagation in a wave-like manner, in network G1, following a disturbance at
node 0 (boundary node). (a) Transverse wave, (b) wave reflection, and (c) standing (partial) wave.

The time trajectory of the maximum RoCoF magnitude in G1, G2, and G3, are plotted
in Figure 5. Observing the trend for G1, the disturbance amplitude decays as it propagates
to node 19. At 0.525 seconds after the disturbance, the wave reaches the boundary and
reflects. For both G2 and G3, node 5 splits the network into multiple branches. When
the disturbance propagation arrives at node 5 (after 0.2 seconds), a share of the wave
energy reflects, and the remainder propagates in the other branches. The disturbance
energy propagates forwards and backwards until all the disturbance energy dissipates in
the network.

Since the initial disturbance propagation stage for G1 occurs longer than for G2 and
G3, the RoCoF magnitude decays on average faster for G1. The disturbance wave in G1
takes longer to reach a boundary node compared to G2 and G3. Thus, more energy gets
dissipated before the formation of partial standing waves. Figure 5 shows that G1 has the
lowest RoCoF magnitude from 0.525 seconds and onwards. Comparing G2 and G3, graph
G2 splits into fewer branches than G3, and the branch lengths in G2 are slightly longer
than in G3. Thus, comparing G2 to G3, the slight delay in wave reflection for G2 results in
an average faster RoCoF decay.
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Figure 5. Maximum RoCoF over time for each network in Figure 3.

3.3. Impact of Node Degree on Disturbance Wave Propagation.

Understanding the wave-like nature of disturbance impact propagation in a power
system network allows for further insight into how a network topology feature, like node
degree, influences the propagation of a disturbance in a network. Figure 3 presents the
three network graphs simulated to investigate the influence of node degree on disturbance
propagation. The only topological difference between the three networks is the node degree
of node 5. The three different network graphs split after the fifth node, from the disturbance
location, into a different number of branches. Thus, node 5 in G1, G2, and G3 have node
degrees of 2, 3, and 4, respectively. Figure 6 shows the RoCoF wave peak position over
time for the three networks. The RoCoF peak trajectory is similar for the first four nodes.
However, after the network split, i.e., from the fifth node, the wave trajectory significantly
differs. It is noticeable from Figure 6 that the RoCoF wave velocities for G2 and G3 are
higher post node 5, compared to the RoCoF peak trajectory for G1.

The propagation rate of the RoCoF wave remains consistent for the regions post
network split (node 5). However, towards the end of the networks’ branches, the wave
propagation rate increases again. Based on the simulations, the observation is that the node
degree impacts the disturbance propagation. The next step was to analyse the disturbance
wave propagation speed for the three topologies.

Figure 7 shows the RoCoF propagation speeds across the spatial dimension of the
network. The velocity-over-space plot shows that at node 5, the RoCoF propagation speed
temporarily increases. This temporary speed increase is not identical for the three networks.
For node 5 in G1, the node degree is the same as the surrounding nodes’ degree, and this
corresponds with no increase in the RoCoF propagation speed. Node 5 in G2 has a higher
node degree than its surrounding nodes. This location is where the RoCoF’s propagation
speed increases. In G3, node 5 has a higher node degree than the same nodes in G1 and G2,
and this corresponds to a significantly higher wave propagation speed in G3.

For mechanical waves, such as a vibrating string, the speed of a transverse wave is:

υ =

√
Ttsn

µmass
. (33)

where Ttsn denotes the tension in a string, and µmass represents the linear mass density.
Considering any medium for mechanical wave propagation, then in general, the terms Ttsn
and µmass represents the restoring and inertial properties of the medium, respectively. Thus,

wave speed (υ) =

√
restoring property
inertial property

. (34)
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Figure 6. RoCoF wave position with respect to time.

Figure 7. RoCoF wave velocity over space.

The general wave equation is:

∂2ξ

∂t2 = υ
∂2ξ

∂x2 . (35)

The variables t and x denote the time and spatial coordinates, respectively. The general
solution of ξ is in the form:

ξ(x, t) = F(x− υt) + G(x + υt). (36)

where F and G are two wave components travelling in opposite directions. For a distur-
bance wave in a power system network, (37) is analogues to (34), see Appendix A for
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the derivation of (37). The square of the RoCoF propagation speed is proportional to the
transmission capacity between nodes (i, j) and inversely proportional to the inertia at
the nodes:

υ =

√
Kij

Mii
. (37)

For nodes with higher degrees (connection capacity), like node 5 in G2 and G3, the
ratio between transmission capacity Kij and inertia Mii is more significant. Therefore,
there is a higher propagation speed (υ). Nodes with a higher node degree capacity have a
better ability to disperse the disturbance impact. The node has thus a higher “restoring
property”. The simulation results presented in Figure 7 supports this interpretation of the
different propagation speeds. The wave propagation rate increases as it moves towards
the periphery of the network branches. As the disturbance wave propagates and passes,
the generator rotors swing back and oscillate relative to the synchronous reference frame.
At the network boundary, the wave experiences a 180◦ phase shift and propagates in
the opposite direction. When the RoCoF wave reflects and its propagation aligns with
the backward rotor swing, the resistance to propagation (inertia) becomes effectively less.
With the transmission capacity unchanged and less inertial effort, the propagation speed
increases at the boundary or reflection point. The increase in wave propagation speed is
observable in Figure 7 at the peripheral buses.

For mechanical waves, the rate of energy transfer (power) is as follows [28,29]:

Pwave =
1
2

µmass A2ω2
wave

λwave

T
=

1
2

µmass A2ω2
waveυ. (38)

The parameter µmass is called the mass density. In this context, µmass refers to the
inertia at each node in a homogeneous inertia network. Let A represent the amplitude of
the RoCoF wave. The amplitude and angular frequency ωwave of the wave depends on the
disturbance input [29]. The wavelength and its period are λwave and T, respectively. The
relationship between wave velocity υ, wavelength, and the wave period is as follows [30]:

ωwave = 2π
υ

λwave
. (39)

From (38), the power carried by the transverse RoCoF wave is proportional to the
propagation speed and the square of the amplitude and angular frequency [31]. Based
on the simulation results, the observation is that a higher node degree enables faster
propagation speeds due to the higher transmission capacity (Kij). A node whose degree is
more than two is a branch intersection. When a wave enters the branch split node, the wave
splits to propagate along the different paths. The disturbance propagation wavelength
is shorter in networks with branch intersections than in a bus-topology network of the
same network size. Thus, the impact of a power imbalance disturbance is more suppressed
in networks with a higher average node degree. This conclusion explains why the tree
topology is optimal for noise reduction [26].

The maximum RoCoF wave amplitudes for G1 to G3 are plotted and compared over
the spatial and time domains in Figure 8a,b, respectively. The observation for the spatial
dimension is that the maximum RoCoF magnitudes at the boundary node for graphs G1 to
G3 are approximately the same. However, there is a significant difference for the nodes
located between boundary nodes. The RoCoF wave amplitude reaches a minimum at the
central location of the networks. Comparing the networks with branch splits at node 5 (G2
and G3) with G1 (which is a single branch), then the observation is that the RoCoF wave
amplitude significantly decreases at node 5 (higher degree node). Thus, based on (38), the
impact of the disturbance is comparably less at node 5 (and the surrounding nodes) than at
the boundary nodes (and their closest neighbours) and these results support (17) and the
findings from Section 2.
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(a) Maximum RoCoF wave magnitude over space.

(b) Maximum RoCoF wave magnitude over time.

(c) The power transferred by the RoCoF wave proportional to the
wave speed (υ) and magnitude squared

(
A2).

Figure 8. Disturbance wave parameter plots. (a) RoCoF magnitude versus space (position), (b)
RoCoF magnitude versus time, and (c) Rate of energy (power) transfer of the wave.
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The wave power is proportional to the square of the amplitude and angular frequency
(38). The wave power is also proportional to the wave speed, however, to a lesser extent
than amplitude and angular frequency:

P ∝ A2 (40)

P ∝ ω2
wave (41)

P ∝ υ. (42)

The scale of the influence that node degree has on wave speed is larger (Figure 7) than
the RoCoF amplitude decay (Figure 8a). Figure 8c presents the power transfer profile for
graphs G1 to G3 to illustrate the impact of node degree on the rate of disturbance energy
dissipation. Note that the plot does not indicate the absolute value of power transfer but
only indicates the dominating impact of wave speed on the power transfer due to the
node degree.

From Figure 8c, the following observations are made:

• The disturbance starts at node 0. The disturbance amplitude is the highest at node 0,
as indicated in Figure 8a. However, initially, the impact of the disturbance is only
felt locally, and the impact flow is approximately stationary, as shown in Figure 7.
Therefore, the power transfer is close to zero;

• The impact of the disturbance starts to propagate from node 0 to node 1. As the
amplitude is still relatively high but rapidly decreasing, the power transfer increases
significantly between nodes 1 and 2;

• From node 5, the topology of the graphs starts to differ. The increase in propagation
speed is due to the higher node degree. Note that the propagation speed dominates the
change in amplitude. The increased propagation speed increases the energy transfer
of the RoCoF wave, which results in a lower disturbance impact at node 5, and its
neighbouring nodes. Thus, the disturbance impact is shared with the neighbour nodes,
as stated by (17) in Section 2;

• As the wave approaches the far end of the network (boundary), the wave experiences
a 180◦ phase shift before it reflects and propagates in the opposite direction, which re-
sults in partial standing waves. Thus, energy transfer becomes significantly inhibited,
and the rest of the disturbance energy gets dissipated through electromechanical and
network transmission losses.

4. Testing on IEEE-14 and IEEE-39 Bus Power Systems.

The investigation of power system network topology through spectral analysis mainly
involved homogeneous networks. Although homogeneous networks do not represent
realistic power systems, it provides analytical simplicity and insight into complex structures.
In this section, the focus changes from a homogeneous network to a practical power system
network. In this section, the IEEE-14 bus and IEEE-39 bus networks (see Figures 9 and 10)
serve as test networks for our analytical findings.

The main differences between homogeneous networks and a realistic power system
network are the transmission line reactance and the inertia distribution. Node degree is a
few orders of magnitude smaller than transmission line reactance, which is typically 0.3 to
0.5 Ohm per kilometre. Therefore, instead of using just the simple node degree metric, the
graph Laplacian’s diagonal elements are used since the diagonal contains the sum of the
connection capacities. This “node degree capacity” serves as a weighted node degree.

Two load step disturbances were simulated on the IEEE-14 bus network at buses 14
and 12, respectively. In realistic transmission networks, the reactance is more significant
than the resistance. Therefore, in this context, resistance distance refers to the effective
reactance between any pair of buses. Figure 11 presents the resistance distances from each
bus to the disturbance bus, the node degree capacities, and the maximum RoCoFs.
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(a) Plot of the resistance distances to bus 12. (b) Plot of the resistance distances to bus 14.

(c) Node degree capacity of each bus. (d) Node degree capacity of each bus.

(e) RoCoF magnitudes due to imbalance dis-
turbance at bus 12.

(f) RoCoF magnitudes due to imbalance dis-
turbance at bus 14.

Figure 11. IEEE-14 bus: The resistance distances, node degree, and RoCoF plots for disturbances at
bus 12 (left-side) and bus 14 (right-side), respectively.

Figure 11a,b show the resistance distances (in per-unit [p.u.]) for each bus to the
disturbed bus. Some buses with similar resistance distances are colour coded, e.g., for the
disturbance at bus 14 scenario, the bus pair (2, 12)-red, (5, 11)-blue have similar resistance
distances but are at different locations. The node degree capacity of each bus is plotted in
Figure 11c,d, respectively. The node pair colour codes link to those in Figure 11a,b. Finally,
the maximum RoCoF magnitude recorded at each bus is in Figure 11e,f for the respective
disturbance locations.

Following the colour-coded pairs from the resistance distances, the node degree
capacities, and comparing the node degree to the RoCoF plots reveals a trend. Comparing
the buses with identical resistance distances shows that the buses with the greater node
degree capacities experience a smaller RoCoF.

In the case of the IEEE-39 bus simulations, the same observations are made from the
simulation results and analysis as shown in Figure 12.
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(a) Plot of the resistance distances to bus 20. (b) Plot of the resistance distances to bus 29.

(c) Node degree capacity of each bus. (d) Node degree capacity of each bus.

(e) RoCoF magnitudes due to imbalance dis-
turbance at bus 20.

(f) RoCoF magnitudes due to imbalance dis-
turbance at bus 29.

Figure 12. IEEE-39 bus: The resistance distances, node degree, and RoCoF plots for disturbances at
bus 20 (left) and bus 29 (right), respectively.

The IEEE-14 bus is smaller than the IEEE-39 bus network, and for the larger of the
two networks (IEEE-39 bus network), the impact of the resistance distance becomes more
significant than the node degree capacity measure, and thus, the difference in RoCoFs are
less between buses with similar resistance distances from the disturbance location. The
simulation results are, however, consistent and in agreement with the theoretical findings.
Therefore, the practical network simulations confirm the analytical findings, based on the
graph spectral analysis, on node stability.

5. Discussion

A generation/load imbalance disturbance triggers the transient dynamics of the
synchronous generators’ rotors and network buses’ voltage phase angle. The result is a
deviation from the steady-state power flow, which leads to an excursion in the power
system frequency. For a given power system network, an imbalance disturbance of a
sufficient size can lead to the system dynamics leaving the basin of attraction of the syn-
chronous state [32]. In [32], the authors define a 1-solitary state as the loss of synchronism
of a single generator in a power system network. The formation of a solitary state tends
to create a chain reaction by desynchronising the neighbouring buses [32]. Frequency
transients of sufficient magnitude result in the activation of distance protection leading to
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network splitting, further promoting the chain reaction of instability, ultimately leading to
a system-wide blackout [14]. Since the influence of changing network topology on distance
protection settings was not the focus of this study, the reader is encouraged to read the
more detailed work of M. Tasdighi and M. Kezunovic [15,16] on distance protection for
changes in network topology due to a disturbance.

Recent literature on low-inertia power systems indicates that frequency stability depends
on the power system network topology, node dynamics, and coupling strength [9,18,21].

Analysing the graph’s spectrum of small and homogeneous network structures reveals
the following: A node’s degree, and its link to other high degree nodes, influences its ro-
bustness. The node degree determines the magnitude of the corresponding λ2-eigenvector
component. Nodes with a higher degree have a small λ2-eigenvector component associated
with them and thus is relatively more robust. Since the node dynamics (bus frequency)
couples through the power flow, we show that the node robustness depends on the stabil-
ity of the power flow through the node/bus. The power flowing through a bus is more
diverse for a higher number of branches (edges) entering or leaving that bus. Therefore,
the power flow is more robust, and the frequency response follows a more stable trajectory.
The stability of higher degree nodes is from the steady power flow due to numerous and
diverse paths (edge connections) and the support (inertial response) from neighbouring
nodes. Connectivity also enhances the dispersion of the disturbance energy.

It is now simple with the node degree measure to identify the stable and less stable
areas in homogeneous networks. However, for larger and more complex network systems,
a node’s hierarchical position—i.e., its connection to other high degree nodes—also deter-
mines its sensitivity. The eigenvector belonging to the smallest non-zero eigenvalue, which
maps to the network nodes, indicates the relative robustness through the vector element’s
magnitude [25].

When considering network expansion for a low-inertia power system, the investiga-
tion in Section 2.1 shows that the integration of a one-degree node destabilises the node
facilitating the integration if the node is not relatively robust. However, when the new node
integrates through a high degree hub (node with a relatively high degree), the stability
increases. An alternative is to integrate through a node with a connection to a high degree
node. Thus, receiving stability through a hierarchical position.

To obtain further insight into how node degree influences the stability of different
areas in a network led to investigating electromechanical disturbance propagation in a
power system network. The simulation of three network topologies with a different num-
ber of branches (a different node degree at intersection node), but the same network size
(20 nodes), allowed us to observe the power imbalance impact flow. The observation is
that the disturbance propagates through the network in a wave-like manner, carrying the
disturbance energy across the entire network. Similar findings of disturbance propagation
are found by J. S. Thorp et al. [24,27] using a continuum model. The disturbance prop-
agation has the same characteristics as mechanical waves. The disturbance propagates
until it reaches a boundary node, reflects, and creates partial standing waves due to the
continuous oscillation feed-in from the perturbed node. Standing waves do not transmit
energy. Therefore, the realisation of partial standing waves slows down the decay of the
RoCoF magnitude. Another similarity with mechanical waves is that the disturbance wave
speed is proportional to the electromechanical medium’s restoring property (transmission
capacity—the force internally transmitting the wave [29]) and inversely proportional to
inertial property (rotational inertia). The derivations in [24,27,33] agree with our result on
the propagation velocity (37)—see Appendix A for the derivation. The derivation and sim-
ulation results indicate that the RoCoF propagation speed increases at branch intersections
(nodes with higher degree capacity) due to the higher transmission capacity (restoring
property). The robustness of a high degree node is due to the diverse power flow paths
and being better able to disperse the disturbance energy. The results led to further insight
into the role of network topology in frequency transient stability.
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Wave Theory provides a framework for understanding the behaviour of disturbance
propagation and the influence of the network topology on a global level, like the continuum
models in [24,27,34].

The velocity (37) of the disturbance propagation shows that the propagation rate is
faster in low-inertia systems when compared to high-inertia power systems. This con-
clusion agrees with [27]. The disturbance propagation rate is also higher for centralised
synchronous generation networks compared to distributed synchronous generation net-
works. In terms of low-inertia power systems, mitigations include increasing the local
inertia using real or virtual inertia and an optimal inertia placement strategy. Therefore,
the optimal use of inertial support units in a low-inertia power system is to distribute the
inertia throughout the network to slow down the disturbance propagation. The distribution
of inertia units in low-inertia power systems can be advantageous to frequency transient
stability as shown in [35].

In attempts to find the critical nodes in a network, the authors of [7] conclude that
the resistive closeness centrality (closeness centrality) is relevant. In [36], the conclusion is
that the further the distance from the disturbance location is, the later in time and weaker
the impact is. The authors of [17] found that the peripheral nodes (typical nodes with low
resistive centrality) generate the furthest transient excursion when perturbed, which agrees
with this research work.

Based on the literature, the combination of resistance distance and centrality is perti-
nent to identify critical nodes. Since resistance distance is the effective impedance between
a pair of nodes in a network [17,37,38], the resistance distance decreases with the number
of paths between nodes. Hence, there is a connection between resistance distance and node
degree. There is also a link between node degree and resistance centrality due to the higher
connectivity. Therefore, it is reasonable to state that the resistive centrality benefits from
a higher node degree. However, in practical systems like the IEEE-14 bus network, the
order of magnitude for resistance distance is higher compared to the node degree. Thus,
the lower order of magnitude for node degree under-represents its contribution to node
stability in the family of topological indices. Therefore, in nonhomogeneous power system
networks, the node degree capacity is rightly applicable.

For nonhomogeneous transmission line impedances, the spectral analysis results,
(18)–(29), indicate that the influence of a neighbouring node-on-node robustness increases
for higher susceptance between the node pair (the fraction coefficient approaching one). The
opposite is true for transmission line susceptance tending towards zero, with the fraction
coefficient approaching zero.

The IEEE-14 and IEEE-39 bus networks served as test cases for the impact of node
degree on frequency stability. Although the resistance distance significantly contributes
to the frequency stability (also seen from analytical results), it does not carry all the
explanatory power. Analysing the RoCoF from nodes with similar resistance distances to
the disturbance, the observation is that the nodes with a higher degree capacity indicate a
smaller RoCoF. Hence, they are more stable nodes. The bus with the larger node degree
capacity shows to be the more frequency-stable bus.

Research on whether noise filtering can be hard-wired in the network architecture
found that the optimal network topology is the tree topology [20]. For spatially uncorrelated
noise, the noise input is specific and unique to a local area or node. The results of [26]
suggest that the optimal noise-cancelling network strives for dense connections with similar
strength to provide many alternative paths/routes to and from a given node. The dense
connections allow the fluctuations to be smoothed away by averaging the flow across many
connections and inputs [26]. These suggestions are in line with the findings of this research.

The results of [20,26] agree in terms of the impact of network topology on disturbance
propagation. The research work in [19,39] supports the finding of this work on node
degree and node stability. U. Markovic et al. [19] saw that the reduction in network
connectivity increases the dependence on synchronous generators for transient stability.
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Direct connections also improve the synchronisation between generators. D. Barmpoutis
and R. M. Murray [39] also state that the nodes with large edge densities are robust.

The authors of [25,40,41] have illustrated that the location of inertia is important, and
if not spatially distributed correctly, the frequency stability could degrade [42]. In [25], the
conclusion is that removing system inertia from the areas (nodes) mapped to the higher
magnitude components of the eigenvector belonging to the smallest non-zero eigenvalue
of the network Laplacian results in significantly higher RoCoFs compared to the inertia
removal from the nodes related to the smaller eigenvector components. A disturbance on
the network propagate to remote areas in the system [33], and generally, the larger size
eigenvector components belong to the peripheral nodes of a network. Since high degree
nodes are the more robust nodes, and due to their high connectivity, these research findings
suggest that the optimal placement of inertia involves using the peripheral nodes in a
network. An alternative to combat low inertia is to increase the connection of the less
robust/stable nodes. This increase in connectivity reduces the sensitivity to disturbances
and increases the network’s frequency stability.

These research results imply that flow is more regular/stable for highly connected
nodes following a disturbance event. Therefore, the inertial response is low compared to a
node where the change in power flow is more significant (lower node degree or peripheral
nodes). A more substantial deviation in power flow will trigger an equivalent inertial
response. Therefore, higher utilisation of the inertia occurs at a lower degree node, typically
peripheral nodes in a power system network.

The findings here complements and contributes to the literature mentioned in the
introduction [17,24–27]. For passive noise-cancelling network topologies (H. Ronellen-
fitsch et al. [26]), node degree and reactance distance are the key ingredients for sparse
and hierarchical structures. The finding of S. Bhela et al. [20] on the tree topology as a
good candidate for noise reduction is a prime example of an optimal mix between network
connectivity and desynchronisation through the optimal use of node degree and reactance
distance. Regarding increasing network complexity [17], as well as robust network design
and stability analysis [6,19], the node degree serves as a rough preliminary and quick
identification of relative robustness of network locations. Optimal placement/distribution
of inertial response units are thus intuitively approximated based on the least robust
network locations. This research also provides further intuitive insight behind the findings
in [25] by identifying the topology measures responsible for the eigenvector component
magnitudes.

6. Conclusions

Along with resistance distance, a node’s degree and its link to other high degree nodes
influence its sensitivity to network disturbances. A network’s overall frequency robustness
stems from the sub-areas in a network. It is now simple to identify frequency stable and less
stable areas in simple homogeneous network structures. However, for large and complex
network topologies, the hierarchical position (its connection to other robust nodes) also
plays a role in its sensitivity to network disturbances. From the graph/network Laplacian,
the eigenvector of the smallest non-zero eigenvalue indicates a node’s sensitivity. From a
network topology perspective, we show that the node degree and the resistance distance
determine local robustness. We link node degree to how network topology impacts the
frequency stability in a power system through Wave Theory. The node degree metric
influences the propagation velocity of a network disturbance and thus the RoCoF, of the
frequency response, in the time and space domains. The disturbance impact propagation
velocity and network path length determine how soon standing waves manifest. Thus, the
topology contributes to how fast the energy induced by a network disturbance dissipates
to zero.
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Appendix A. Wave Equation for Rocof Propagation.

In this section, the disturbance/RoCoF propagation speed (37) is derived. Consider a
bus-topology network with N nodes. The frequency dynamics at node/bus i is described
by the Swing Equation:

Mi
d
dt

ωi + Diωi =
(

P(m)
i + ∆P(m)

i

)
−
(

P(e)
i + ∆P(e)

i

)
. (A1)

In the synchronously rotating reference frame, ωi denotes the angular frequency
deviation at node i in radians per second [rad/s]. The inertia and damping are denoted by
Mi and Di, respectively. The right side depicts the power balance with the superscript (m)
denoting the input power, and (e) denotes the electrical output power. The power balance is
split into two components, the average power P(m)

i and P(e)
i and a fluctuating components

∆P(m)
i and ∆P(e)

i . For analytical simplicity, the following assumptions are made:

• E
{

P(m)
i

}
= E

{
P(e)

i

}
;

• The mechanical dynamics of a synchronous generator is slower than the electrical
dynamics of the network. Thus, considering the inertial response time window
∆P(m)

i ≈ 0;

• E
{

∆P(e)
i

}
= 0, however, the variation of ∆P(e)

i is not zero (σ2 6= 0);

• Lastly, since the maximum RoCoF occurs immediately after the disturbance and the
frequency deviation is small, the term Diωi ≈ 0 for all i.

Thus, (A1) is re-written as:

Mi
d
dt

ωi = −∆P(e)
i . (A2)

Equation (A2) states that for a positive deviation in electrical power the RoCoF is
negative. Thus, the frequency decreases for a positive load step input and the frequency
increases for a negative load step input.

Using the power versus phase angle curve as shown in Figure A1 gives an expression
for the electrical power deviation (A3). The transmission capacity is Kij =

∨i∨j
Xij

, where the
transmission line voltage and reactance are ∨ and Xij, respectively. The electrical power
deviation ∆P(e) expression is as follows:

∆P(e)
ij = Kij sin

(
δi + ∆δi − δj − ∆δj

)
. (A3)

• ∆δij = δi − δj;

• κij = ∆δi − ∆δj.
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[rad]

[MW]

K

Figure A1. Power angle diagram.

∆P(e)
ij = Kij sin

(
∆δij + κij

)
(A4)

For large reactance (Xij), ∆δi � ∆δj:

∴ κij ≈ ∆δi

Then (A4) becomes,

∆P(e)
ij = Kij sin

(
∆δij + ∆δi

)
. (A5)

Substituting (A5) back into (A2), the phase angle dynamics for bus i becomes:

Mi
d2

dt2 ∆δi = −Kij sin
(
∆δij + ∆δi

)
. (A6)

The following approximation is helpful to find δi, assuming small-angle deviation:

sin
(
∆δij + ∆δi

)
≈
(
∆δij + ∆δi

)
.

The approximation leads to the following second-order nonhomogeneous differen-
tial equation:

Mi
d2

dt2 ∆δi + Kij∆δi = −Kij∆δij (A7)

The roots of of the homogeneous part of the characteristic equation are complex
(λroot

1,2 = Re ± jIm); the real part is equal to zero (Re = 0), and the imaginary part is

Im =
√

Kij/Mi.
The solution for this case equates to the negative of the initial disturbance input, i.e.,

yp = −∆δij. The general solution for the phase angle dynamics is thus:

∆δi(n, t) = C1 cos
(

n +
Kij

Mi
t
)
+ C2 sin

(
n +

Kij

Mi
t
)
− ∆δij. (A8)

The RoCoF is the second time derivative of (A8). Thus,

∂2

∂t2 ∆δi(n, t) = ω̇n,
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ω̇n =

[Kij

Mi

]2[
−C1 cos

(
n +

Kij

Mi
t
)
−C2 sin

(
n +

Kij

Mi
t
)]

. (A9)

The general wave equation is:

∂2ξ

∂t2 = υ
∂2ξ

∂x2 (A10)

while the general solution is of the form:

ξ(x, t) = F(x− υt) + G(x + υt). (A11)

Equation (A9) is partially in the form of (A10). Thus, the next step is to find if:

[
−C1 cos

(
n +

Kij

Mi
t
)
− C2 sin

(
n +

Kij

Mi
t
)]

=
∂2

∂n2 ∆δi(n, t). (A12)

For the spatial domain derivation, consider a bus-topology consisting of N nodes/buses.
The Swing Equation describes the frequency dynamics of each node. Consider a distur-
bance at node n = 1. The difference in frequency dynamics between node 1 and N is
as follows:

M1ω̇1 −MNω̇N = P(m)
1 − P(m)

N +
N

∑
n=2

∨n−1∨n

Xn−1,n
sin(δn−1 − δn)− Pζ,1 (A13)

where Pζ,1 denotes an imbalance disturbance at node n = 1. For analytical simplicity, the
following assumptions and approximations are relevant:

• Assume homogeneous edge parameters, Kn = ∨n−1∨n
Xn−1,n

,

• E
{

P(m)
1

}
≈ E

{
P(m)

N

}
, thus P(m)

1 − P(m)
N ≈ 0,

• sin(δn−1 − δn) ≈ ∆δn(n),

• ∂2

∂t2 ∆δn(n) = ω̇n − ω̇1,

• Mn = M ; ∀ n.

Thus, (A13) becomes:

∂2

∂t2 ∆δn(n) +
Kn

Mn

∂

∂t
∆δn(n) =

Pζ,1

Mn
. (A14)

Like (A7), a second-order nonhomogeneous differential equation is obtained. The
roots of the homogeneous part are complex, and the solution of this part is Pζ,1/Kn. This
means the solution is:

∆δi(n, t) = C1 cos
(

n +
Kn

Mn
t
)
+ C2 sin

(
n +

Kn

Mn
t
)
−

Pζ,1

Kn
. (A15)

The second time derivative gives the RoCoF as follows:

∂2

∂t2 ∆δi(n, t) = ω̇n
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ω̇n = −C1 cos
(

n +
Kn

Mn
t
)
− C2 sin

(
n +

Kn

Mn
t
)

. (A16)

Thus, (A16) does indeed satisfy (A12). The solution meets the criteria for the wave
equation, and the propagation speed of the RoCoF wave is:

υ =

√
K
M

. (A17)
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