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Abstract: The primary purpose of this research is to assess the long-range energy demand assump-
tion made in relevant Roadmaps for the transformation to a low-carbon energy system. A novel
interdisciplinary approach is then implemented: a new model is estimated for the aggregated world
primary energy demand with long historical time series for world energy, income, and population for
the years 1900–2017. The model is used to forecast energy demand in 2050 and assess the uncertainty-
derived risk based on the variances of the series and parameters analysed. The results show that
large efficiency savings—up to 50% in some cases and never observed before—are assumed in the
main Roadmaps. This discrepancy becomes significantly higher when even moderate uncertainty
assumptions are taken into account. A discussion on possible future sources of breaks in current
patterns of energy supply and demand is also presented, leading to a new conclusion requiring
an active political stance to accelerate efficiency savings and lifestyle changes that reduce energy
demand, even if energy consumption may be reduced significantly. This will likely include replacing
the income-growth paradigm with other criteria based on prosperity or related measures.

Keywords: energy demand projections; statistical estimation; long historical time series; intervals of
uncertainty; future demand and supply breaks

1. Introduction

Forecasting long-range energy demand at the aggregated world level is the starting
point for building general Roadmaps for the transformation to a low carbon energy system.
Specifically, the forecasts are required to design an investment path on renewable energies
and the required speed of deployment, balancing the costs and the implied demands on
the volume of financial resources. Currently, the available long-range demand forecasts
employed in Roadmaps are frequently based on ad hoc assumptions, mainly on population
and GDP growth, and savings and efficiency. This procedure is usually pondered by a
scenario analysis based on a few modified global assumptions, described in the literature
review and discussion presented in Section 2.

In this paper, a further new contribution on the modelling of energy demand is pro-
posed and implemented, based on a statistical analysis of the long-term historical time
series that covers that gap. The results allow for comparing and assessing currently avail-
able future demand forecasts found in some relevant published Roadmaps [1–3]. A proper
statistical risk assessment, beyond the standard scenario analysis, is also implemented.
The research implements an interdisciplinary approach, applying statistical techniques to
analyse a relevant energy issue, and discussing the evaluation of probability forecasting, as
suggested in [4]. Finally, a discussion on possible sources of future breaks in energy supply
and demand is presented.

Section 2 provides some background on the research topics; Section 3 presents the
methodology briefly, explained in detail in Appendix A. Section 4 reports the main results
and describes an assessment of the projections in some Roadmaps, and Section 5 discusses
sources of future energy supply and demand breaks. Section 6 concludes with a summary
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of the main results and a brief comment on the next steps in this research line. Finally, two
appendices detail the theoretical model employed and the specific statistical results.

2. Literature Background

Most simulation models used in the design of low carbon energy Roadmaps are
based on a detailed analysis of individual behaviour, disaggregated in continents, coun-
tries, regions, and main economic sectors—industry, transport, buildings, agriculture, etc.,
e.g., [1,5–8]. The criteria used to disaggregate may vary, but generally they tend to be quite
detailed, reaching the smallest possible decision units and from several points of view. This
is what is frequently referred to as the ‘bottom-up’ modelling approach. This approach has
much to recommend, but it also suffers from some drawbacks. Indeed, there are usually
few available data, which are frequently somewhat unreliable for assigning values for the
required parameters. What is more, beyond some straightforward identities, the functions
purporting to describe individual behaviours are, at best, educated guesses. The resulting
aggregated long-range estimates can be better understood as plausible simulations, rather
than proper forecasts, as underlined, e.g., in [9].

Another implied drawback is that the sheer size and complexity of the final models
prevent solving them quickly and efficiently under various assumptions. Then, uncer-
tainty is dealt with by including a few selected and more-or-less sensibly crafted scenario
alternatives, i.e., sensitivity changes. As the ability of statistical institutes to gather data at
increasingly faster rates grows, this approach will likely become more realistic. Still, for the
time being, perhaps its main implication would be that it is indeed possible to conduct a
quite significant transformation of the energy system in the specified or similar ways.

An alternative approach, by contrast, starts from the global perspective and disaggre-
gates the analysis as long as there are data and well-established behavioural parameterisa-
tions available. This could be characterised as a ‘top-down’ approach, as opposed to the
‘bottom-up’ disaggregated approach discussed previously. The advantages are that it only
relies on available data and that the models are easily solved, therefore understandable and
easily modified if required; see, e.g., [10] for a review, covering traditional statistical models
and other models more loosely based on information theory such as ‘grey forecasting’, as
the authors put it. In addition, simulation and uncertainty analysis can be conducted in a
much more complete and statistically sound way. Precisely, the vast array of approaches
and models available that follow the disaggregated approach make systematic analysis of
uncertainty all the more necessary (e.g., [5,11]), which is a clear advantage of this approach.

The drawback of this ‘top-down’ approach is the lack of a solid microfoundation,
implying that the aggregated relationships, reasonable as they may be, are only loosely
backed by theory. Nevertheless, this approach has been widely implemented in statistical
analysis of the economy, although mainly for short-term analysis. Its usefulness for long-
term forecasting, regardless, has been supported by [12–14], arguing that it is possible to
make long-range predictions to some extent, as seen in the pioneering analysis of [15].
However, according to these authors [12–14], unexpected breaks may derail forecasts,
and that is what should be carefully scrutinised when assessing long-range forecasts and
simulations, as discussed in Section 5.2.

This approach has not enjoyed widespread support in the energy field, although it can
offer useful complementary insights. The accuracy of the forecasts following this approach,
as opposed to the detailed micromodelling of the models [1,5–8] discussed previously,
has been shown, e.g., in [14]. More specifically, [16] note that straightforward simple time
series models are often better at forecasting than complex, detailed, and theoretically based
models. Ultimately, the reason is that the lack of data prevents a proper estimation of the
equations and parameters describing such a detailed disaggregated behaviour. This, in the
end, causes more errors than a more ad hoc global model, even if it is mildly misspecified
and lacks a sound theoretical justification. This result can be explained theoretically and
has been repeatedly corroborated by practical experience, notably by [17].
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This approach, besides, allows a systematic analysis of uncertainty properly embedded
in statistics that allows, among other things, accounting for the variability of the driving
variables of the model, i.e., the standard deviations of the input variables in the model
(e.g., [18–20]) for an early implementation of this approach simulating long-range GDP
values as a function of population. The early work of [19] is especially remarkable, which
addressed the lack of data building a proper statistical distribution by weighting judiciously
the answers elicited from a range of experts in the field. The research presented here follows
this second aggregated approach, yielding valuable insights.

There is a wealth of literature dealing with energy forecasting, mainly focused in
the short- and medium-term, up to 20 years ahead, at several levels of disaggregation,
as reviewed, e.g., in [21]. Attempts at forecasting future energy demand, even at high
frequencies like hourly and for the long-range, i.e., 2050, have been implemented as well,
although [22] assess them instead as exploratory exercises. The research presented here is
related but does not belong to the same category, and is based on an aggregate behavioural
model estimated statistically with a long-term data set of historical series, intended to serve
as a yardstick to assess current projections made commonly in published Roadmaps. The
results reported in Section 4 show that this approach yields valuable insights.

3. Methodology

This study is based on the statistical estimation of an aggregated world demand
energy model. The advantage of this approach is that there are long-term historical
data series for the relevant variables available. This allows implementation of a new
approach based on the estimation of a model based on actual data, as opposed to the many
assumptions required in more disaggregated models, where the values for most parameters
are ultimately guessed, however reasonable or justified the reasoning supporting the guess
may be. Three series were analysed in a joint model for Total Primary Energy Supply
(TPES) [23], world Gross Domestic Product (GDP) [24,25], and world population [26,27],
an analysis that is missing in the literature. The frequency of the data analysed is annual,
spanning the period 1900–2017.

The sources for the series, notably for TPES and GDP, are based on academic research
rather than direct data gathering and observation, but are generally considered the most
reliable in their respective fields. One potential drawback of this type of analysis is that
the sample may be somewhat unstable since it covers such a long time period, i.e., almost
120 years. As it will be seen in the empirical results reported, nevertheless, dealing
appropriately with some statistical issues allows for the estimation of a reasonably accurate
and stable model for the whole period (Appendix B).

With the main estimated model, and after deriving the long-run dynamic equilibrium
solution, simulations were run for the year 2050, the most common horizon date analysed
in published Roadmaps for the low carbon energy transformation. Thus, the simulations
are a new approach that replaces the usual sensitivity analysis. Besides forecasting specific
values for energy demand, this solution allows a proper statistical risk analysis to be
conducted; i.e., the reliability of that estimate for given probabilities can and has been
calculated (Appendix A). This new risk analysis complements the simulation results in
novel ways beyond the standard restricted set of scenario analysis. The risk analysis
conducted is based on [28], where the value-at-risk methodology customarily applied
in finance was introduced in the energy field. This methodology has been subsequently
implemented in related problems in this literature, e.g., [29,30].

Finally, the results obtained were compared to selected relevant projected low carbon
Roadmaps (Section 5.1). The comparison allowed an independent assessment of some of
the Roadmaps’ assumptions, particularly the forecasted world energy demand.

4. Results

The simulation and risk analysis were conducted with the estimated models reported
in column III, Table A1 in Appendix B, and are gathered in Table 1. Four scenarios were
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considered, covering a reasonably wide array of realistic cases, according to most Roadmaps
proposed by the leading organisations in the field. The model has been fitted to TPES
actual values, provided in [23]. The final TFEC reported values are obtained assuming a 0.7
ratio of actual consumption to supply values—this coefficient has been remarkably stable
over a long historical period [31].

Table 1. Main simulation results.

Pop. Gr., 0.5% Pop. Gr., 1.0%

GDP Gr., 2%
I

GDP Gr., 3%
II

GDP Gr., 2%
III

GDP Gr., 3%
IV

TFEC 530.0 576.6 616.6 670.7

TFEC (90%) 916.6 997.0 1066.2 1159.7

TFEC (80%) 783.9 852.7 911.9 991.9

GDP 154.2 212.7 154.2 212.7

contr. GDP 590.6 731.4 590.6 731.4

contr. dyn. −60.6 −154.8 26.0 −60.7

TFEC (2050/2017) 1.372 1.49 1.59 1.73

GDP (2050/2017) 1.922 2.65 1.922 2.65

TFEC/GDP (2050) 3.44 2.7 4.0 3.15
Notes: (1) Source: own calculations. (2) TFEC, final consumption exajoules (EJ). (3) TFEC (90%), maximum
energy demand with 90% probability. (4) GDP, gross domestic product (trillions of USD 2010). (5) contr. GDP,
contribution of GDP growth to final energy demand in 2050. (6) contr. dyn, contribution of dynamic adjustments
to final energy demand in 2050. (7) TFEC (2050/2017), ratio of energy demand in the years specified. (8) GDP
(2050/2017), ratio of GDP in the years specified. (9) TFEC/GDP (2050), energy intensity (EJ per trillion USD 2010).
(10) Energy 2017, 386.8 EJ; GDP 2017, 80.2 tr.; energy intensity, 4.82 EJ per tr. USD 2010.

The most salient results follow: (a) Energy intensity decreases with higher GDP
growth rates, as seen by comparing the last line of columns I vs. II and III vs. IV: this is an
encouraging result, derived from the fact that the elasticity of energy demand to GDP is
lower than one—0.67, see Table A1 in Appendix B. (b) Contrarily, energy intensity increases
with higher population growth rates, and in a nonnegligible measure—see columns I vs. III
and II vs. IV; whether the current declining population growth rates will be sustained in the
coming years, as is generally forecast, or not, remains to be seen; it must be remarked in this
connection that over a long historical period, the variability of the population growth rate
has been significant—0.5% from 1900 to 2017, and this is a matter of concern. (c) Simulated
values are commonly projected straightforwardly with a given elasticity. However, this
procedure does not account for dynamic adjustments, clearly detected in the empirical
estimations; see the results in Table A1 in the Appendix B. Fortunately, this omission does
not cause a significant bias, as can be seen by comparing the value in the lines ‘contr.
GDP’ and ‘contr. dyn.’. Worth remarking, nevertheless, is that the dynamic contribution is
negative for low population growth rates, implying that the usual Roadmaps projections
would be slightly overestimated and the opposite for higher growth rates. (d) Possibly the
most worrying result concerns the variance of the projected values; if a 90% probability
confidence is to be guaranteed, the projected energy demand values increase by 60% to
80%; ensuring an 80% probability does not decrease this range by much. This may have
far-reaching implications for the general design of Roadmaps, ranging from the assessment
of investment and financial requirements to the sheer availability of some rare earth and
other metals required for wind turbines and solar panels.

These results were obtained with the best available data produced in academic re-
search. Eventual future improvements in the data may improve the accuracy of the results
to some extent, although the potential impact on the global qualitative implications is
less likely.
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5. Discussion
5.1. Assessment of Roadmaps Projections

The previous results may be a useful yardstick to assess commonly published values
for global world energy demand in transition Roadmaps to a low carbon economy. The
number of these Roadmaps is in the range of several hundred, as analysed in the IPCC
report [5,11]. Here, only a few will be considered, deemed to be among the most relevant:
two by the leading international nonacademic institutions in the field of energy analysis—
the International Energy Agency (IEA) [2,32] and the International Renewable Energy
Agency (Irena) [3,33], and the Energy [R]evolution series [34,35], updated by its leading
author [1]. The GDP and population growth rate assumptions, and the forecast final
energy demand in the three Roadmaps, are gathered in Table 2. All make very close
assumptions regarding both driving variables, i.e., population and GDP; the GDP growth
rate is generally taken from the OECD and the population from the UN population research
department. The significantly remarkable results are reported in the last two columns. First,
and regarding the efficiency conversion ratio from primary to final supply, the IEA [1,2,32]
kept the historical rate of 0.7, whereas Irena [3,33] assumed a significant improvement, 0.6.
The most outstanding result, however, is the final assumed consumption, shown in the last
column for all three cases, is far lower than the smallest value reported in the simulations
of Table A1. Accounting for uncertainty, the comparison is even more striking. What these
assumptions imply, therefore, is a high savings rate that has not been observed historically
and is fraught by several sources of uncertainty, as discussed in Section 5.

Table 2. Main scenario parameters.

2015–2050 2050 2050 2050

GDP (%) Pop. (b.) TPES TFEC

IEA (2017) 3.1 9.8 14,204 Mtoe 9741 Mtoe

Irena (2017) 2.8 9.7 635 EJ/yr 370 EJ/yr

Teske (2019) 3.2 9.8 439 EJ/yr 310 EJ/yr
Notes: (1) 2 ◦C, 66% scenario (all). (2) 1 Mtoe = 11.63 TWh = 0.041868 EJ/yr.

5.2. Future Demand Uncertainties

As emphasised by the Nobel prize winner C. Granger [12,13], it is feasible to achieve
reasonably good long-run forecasting and simulation accuracy. However, the unexpected
breaks tend to cause the failure of those forecasts. The uncertainty shown and discussed in
Section 4 should not be viewed inside this category since it is somehow derived inside the
model estimation procedure that was implemented. There are, nevertheless, at least some
features that can be broadly identified as possible causes for future breaks, affecting both
the supply and the demand. These breaks would possibly imply significant changes in the
model-estimated parameters.

As for the future energy demand, a first possible source of future increases is the
proliferation of blockchain technology applications and cryptocurrencies, notably the
bitcoin, e.g., [36]. However, [37] argues that the problem just affects bitcoin, since blockchain
technology can be implemented much more efficiently than has been up to now. A second
possible source is an increase in telecommunications services and applications [38,39]. In
this respect, it is to be noted that overall energy demand has not decreased during the
recent pandemic precisely because of this, a trend that is expected to last [40]. A third
possibility is the rebound effect, i.e., demand increases precisely because the product or
service considered becomes increasingly cheaper [41,42]. This is what has happened with
the leading renewable energy technologies, i.e., wind and solar, for the past 50 years
and partially explains its accelerated expansion. Finally, other likely sources of increased
demand trends may arise from the increasing trend in urbanisation [43] and the increasing
GDP growth of underdeveloped countries [44].
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Possible reductions in future demand can also be identified already. First, straight-
forward demand reductions derived from lifestyle changes are not usually discussed, but
are nevertheless natural and feasible as underlined, e.g., in [45,46]. One brief example
would be dietary changes, which would simultaneously be more sustainable overall, e.g.,
reducing certain types of meat consumption. Another possibility, directly derived from
engineering analysis, is based on the claim that up to 70% reduction in some cases can be
achieved without compromising the services provided by energy, i.e., direct savings [47].
This claim has not been disputed in the literature, suggesting, therefore, that the world is
currently consuming far more energy resources than required to sustain the same welfare
levels. Finally, a third possibility is a replacement of the GDP growth as the main target
of wellbeing by a general prosperity target [48], or some other more specific criterion like
the human development index proposed by the UN [49], or other related measures as
reviewed in [50] (see [51], e.g., for a discussion).

Overall, it is to be concluded that, besides the many uncertainties derived from the
estimation procedures with available data, there are several possible causes of future
‘breaks’ in past demand and supply patterns. Finally, these breaks can mean demand
increases but also decreases, so that the final implication, for now, is a significant increase
in future uncertainty.

6. Conclusions

The relative merits of the disaggregated vs. the aggregated approaches for long-
range future energy demand forecasting and simulation were assessed. It was argued
that the second approach has been disregarded to a large extent, when in fact, it can offer
better forecasts and tools for risk analysis. Consequently, long historical data series for
energy, GDP, and population, covering the period 1900–2017, were gathered and analysed
by means of a statistical model. Thus, an interdisciplinary approach was implemented,
capable of yielding new insights into long-range energy demand forecasting, useful for the
design of Roadmaps, among other aspects.

With the resulting model, plausible energy demand projections for the year 2050
were made and used as a yardstick to compare them with published results from a few
selected relevant Roadmaps for a low carbon transformation. It was shown that the
energy-saving assumptions are quite large and have never been observed historically:
e.g., under mild growth assumptions for population (0.5%) and GDP growth rates (3%),
the results of this research yield a TFEC of 576 EJ/yr, whereas Irena assumes a value of
370 EJ/yr and the IEA 407 EJ/yr. A risk analysis was conducted, accounting for the future
variability of GDP and population; under a moderate probability assumption implying
that energy demand does not increase above 30% of its projected value, the model yielded
a maximum value of 852 EJ/yr, i.e., almost double the figures assumed by Irena and
the IEA. These results may have far-reaching implications, as long as they require an
accelerated implementation of the low-carbon Roadmaps to meet that future demand
without disruptions to economic activity.

The research was complemented by discussing possible future breakpoints in energy
demand and supply patterns. These breaks point to potential demand increases, but also
possible and feasible significant decreases that would nevertheless require active policy
measures to be realised. These results indicate considerable uncertainty that could lead to
even higher energy demand values. All these implications underline the need for an active
political stance if energy demand trends are to be reversed to fit the Roadmaps designs for
achieving a low carbon and sustainable energy system.

Some future research lines following the aggregated approach implemented in the
present research include at least the specification of an interrelated model for the three
variables considered, i.e., energy demand, GDP growth, and population, and a complemen-
tary simulation-based risk analysis. In particular, the dependence of GDP on population
and the age structure has been emphasised in the literature [18,20], as has been the inverse
relationship, i.e., the impact of GDP growth on population [52,53]. Some degree of geo-
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graphical and time disaggregation would also be worth pursuing, pending the availability
of data. Finally, the potential implications for implementing low-carbon Roadmaps, i.e.,
the deployment of renewable energy sources, are huge and should be researched further.
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Abbreviations

EJ Exajoules (1 EJ = 277.778 TWh).
EJ/yr Exajoules per year.
GDP Gross Domestic Product.
gr. Growth rate.
Mtoe Millions of tonnes of oil equivalent.
TFEC Total Final Energy Consumption.
TPES Total Primary Energy Supply.
Pop. Population.
s.d. standard deviation.

Appendix A. Theory and Methods

This appendix presents and discusses the statistical model implemented in the empiri-
cal estimations. The dynamic equilibrium solution and its variance, implemented to derive
the main results reported in Section 4, are also analysed.

The heteroskedasticity corrections applied in the estimation procedure, in particular,
deserve a detailed analysis presented next. Consider first the standard estimated linear
regression model written as follows:

ût = yt − x′t × β̂ (A1)

β̂ is the ordinary least squares estimate of β, i.e., the parameters associated with
the explanatory variables x′t = (1, log(Gdpt), log(Popt)), in the corresponding model,
and where yt = log(Et), is the dependent explained variable—note that for the sake of
notational saving, Et is used instead of TPES. The variance of ut, σ2

t is estimated through a
weighted moving average with declining weights as follows:

σ̂2
t =

s=5

∑
s=−5

(
ωs × û2

t−s

)
, t = (1900, . . . , 2017) (A2)

s=5

∑
s=−5

ωs = 1 (A3)

This is designed to tackle a variance that is not constant and has a changing pattern,
after an analysis of the first straightforward ordinary least squared residuals, û2

t . Then, the
heteroskedasticity weighted variables are defined from here as given by

yw,t = yt/σ̂t, xw,t = xt/σ̂t (A4)

The next step is to estimate the following model with the weighted variables,

∆yw,t = ∆x′w,t × α− δ× yw,t−1 + x′w,t−1 × γ + ut (A5)

where
ut = ρ× ut−1 + εt (A6)



Energies 2021, 14, 4657 8 of 13

E
(

ε2
t

)
= σ2

1 , t = (1900, . . . , 1970), (A7)

E
(

ε2
t

)
= σ2

2 , t = (1971, . . . , 2017) (A8)

σ2
1 6= σ2

2 (A9)

The purpose is to account for dynamics in a standard way [54] and simultaneously
introduce a further heteroskedasticity correction to account for a different error variance in
two sample periods split in 1970. Additionally, the errors follow an AR(1) process dealt
with the Prais–Winsten estimation procedure. The dynamic equilibrium solution that will
allow for simulating long-run values and estimate their variance can be worked out from
this model and is explicitly given by (e.g., [51]):

yt = x′t × (γ/δ) + ∆x′ × ((α− γ/δ)/δ) (A10)

where ∆x′ is the vector of constant equilibrium growth rates of the variables in xt, and
(γ/δ) is the vector of their long-run equilibrium impacts—elasticities if the variables are in
logs. as they usually are. It should be noted that while all three coefficients in the vector
α are significantly different from zero statistically, only the coefficient for log(Gdpt) is in
the vector γ, as reported in the estimation results in Table A1. Finally, the simulated value
for yt at a future horizon date H, i.e., yH , will be given straightforwardly from Expression
(A10), replacing the subindex t by H.

The next step is to work out the variance of Et = exp(yt) to allow for establishing
probability prediction intervals for its simulated values. First from (A5), the simulated
future value for Et is nonrandom. Second, the growth rates of the driving variables Gdpt
and Popt, are assumed as constant, but their variance must be accounted for, and their
respective historical values in the sample analysed are considered. Third, and follow-
ing [13,18], the variance of the estimated parameters is not accounted for. However, the
error variance of the fitted model, and although it turns out to be of a smaller order of
magnitude, is added. The variance of Et for short term forecasting purposes can be usefully
calculated as the variance σ2

ε of ε̂t, given by

ŷt = ŷt−1 + ∆x′w,t × α̂− δ̂× yw,t−1 + x′w,t−1 × γ̂ (A11)

ε̂t = Et − exp(ŷt) (A12)

The variance of yt, σ2
y , is finally given by

σ2
y =

(
σ2

2 × ((α2 − γ2/δ)/δ)
)2

+
(

σ2
3 × ((α3 − γ3/δ)/δ)

)2
+

(
σ2

u/δ2
)

(A13)

where σ2
2 , σ2

3 , are the variances of x2 = log(Gdp), x3 = log(Pop), respectively (see the
definition of x′t below (A1)); the sample covariance is omitted since it is not significantly
different from zero. Finally, the variance of Et = exp(yt) is given by the variance of a log
normal distribution [54], i.e.,

σ2
E = exp

(
2yt + 2σ2

y

)
− exp

(
2yt + σ2

y

)
(A14)

where yt is the mathematical expectation of yt, and is estimated by replacing the values of
the estimated parameters as given in (A11).

Finally, and given an expected simulated value at a future horizon date H for EH ,
EH = exp(yH)(see (A10), (A11), and (A12)), its variance (A14), and assuming Gaussianity,
a conventional probability interval for the actual EH value can be set up as follows:

P
(
EH ≤ EH + ϕ× σE

)
= α (A15)
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where ϕ = (1.645, 1.282, 0.842) for the corresponding values of α = (95%, 90%, 80%)—
note that in the current context, H is usually taken as the year 2050. The expression(

EH + ϕ× σE
)

was originally denoted as value-at-risk (VaR), and it means the maximum
value that can be expected for energy demand to attain with the stated probability. This
risk analysis methodology was first introduced in the energy literature in [28] and later
implemented, e.g., in [29,30]. It was applied in the main empirical results reported in
Section 4, Table 1.

Appendix B. Empirical Results

The main estimation results for the model in Equation (A5) are reported in Table A1.
The same equation is estimated under the same conditions, i.e., sample period, autore-
gressive procedure, and identical specification, but with a different treatment of the error
variance. The coefficients change somewhat, although the long-run equilibrium elasticity
l.r.ε(E, Gdp)—see (A10)—is remarkably stable. As implied by the t-ratios reported below
them, the variances of the estimated coefficients generally improve when account is taken of
the heteroskedasticity, as they should according to the theory. It should also be underlined
that the variance of the estimated long-run elasticity is remarkably low, which provides
reliability to the simulations reported.

An autoregressive error was also added to all estimated models, and the final DW
does not point to any unresolved dynamic issue, even if its validity is only descriptive.
As measured by R2, the fit is generally good, notably for the models that account for
heteroskedasticity explicitly—columns II and III. A correction for the number of parameters
estimated is accounted for by the adjusted R2, also reported. It can be seen that it is almost
the same as R2, because the number of estimated parameters related to the number of
observation data points is low—for columns II and III it only differs in the fifth digit, which
is not reported. Statistical standard deviations for the regression errors and the dependent
variable for every estimated model are reported as well. Note that in columns II and
III the heteroskedasticity weighting changes the scale, although the remaining measures
are invariant to this correction. Lastly, the two variables, Energy and the GDP, are also
cointegrated according to conventional tests, better when heteroskedasticity is adequately
dealt with.

It is also worth analysing the behaviour of the original variable graphically, Et, and
its fitted values Êt = exp(ŷt)—see (A11–12), and the fitting errors ε̂t = Et − Êt and their
variance σ2

ε . Figure A1 first displays the actual and fitted values, showing a tight fit
with a correlation coefficient of 0.999; standard cointegration tests also show that the
null hypothesis of cointegration cannot be rejected, and the forecasting error standard
deviation is 1.6% compared to the 23% of the actual demand over the last sample period.
Formal stability tests of the Chow-type were also conducted, rejecting the null hypothesis of
instability; for the last 5 (2013–2017) and 18 (2000–2017) years, the test yields 0.326 and 1.791,
respectively, accepting, therefore, the stability hypothesis according to the conventional 5%
significance values of the F distribution—F(5,41) = 2.44, F(5,41) = 1.86.

Figure A2 depicts the errors ε̂t of the fit, where the higher variance of the second
period after 1970 is clearly seen. This is because the series before 1960 is interpolated
from actual data every ten years period, and therefore is reasonably smooth. This also
underscores the nature of the heteroskedasticity in this context, i.e., a variance change at a
point in time. Nevertheless, time-dependent heteroskedasticity of the Arch–Garch-type
was also tested and rejected; the null test of joint nonsignificant lags up to the third-order
yields 1.75, with p-value 0.159 from and F(3,106) distribution.
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Table A1. Estimation results.

I II III

∆log(Gdpt)
0.105
(3.23)

0.033
(2.17)

0.023
(2.16)

∆log(Popt)
2.185
(3.38)

1.487
(41.65)

1.495
(48.85)

log(Et−1)
−0.085
(2.36)

−0.045
(3.18)

−0.049
(2.94)

log(Gdpt−1)
0.058
(2.24)

0.030
(3.19)

0.033
(2.96)

l.r.ε(E, Gdp) 0.68 0.67 0.67

rho 0.49 0.68 0.82

R2 0.496 0.999 0.999

R2
adj 0.467 0.999 0.999

S.E. 0.010 0.141 0.996

S.D. 0.014 34.53 340.1

DW 1.91 1.93 1.78
Notes: (1) Source: own calculations. (2) Dependent variable, ∆log(Et), E = TPES. (3) Estimation sample,
T = (1900, . . . , 2017). (4) R2, rho-differenced data. (5) rho, autoregressive coefficient. (6) A constant included in
all regressions—properly weighted where applicable, columns II and III. (7) I, no heteroskedasticity correction;
II, first heteroskedasticity correction (see (A4), (A5)); III, double heteroskedasticity correction (see (A7–9)).
(8) l.r.ε(E, Gdp), elasticity of Energy demand to GDP. (9) t-ratios in braces below every estimated coefficient. (10)
R2

adj, R2 adjusted for the number of parameters. (11) S.E., standard error of the regression. (12) S.D., standard
deviation of the dependent variable.
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All calculations were performed with programs written in the hansl language [55]
running in gretl. The calculations are straightforward and are described in detail in Ap-
pendix A. Since the software is open-source, and the data used are freely available in
public repositories, independent checking is guaranteed as required in [4]. The figures
were drawn with programs written in the open-source language gnuplot [56]. Details of the
specific econometric procedures can be found in [13,54,55].
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