Paleovegetational Reconstruction and Implications on Formation of Oil Shale and Coal in the Lower Cretaceous Laoheishan Basin (NE China): Evidence from Palynology and Terpenoid Biomarkers
Abstract
:1. Introduction
2. Geological Setting
3. Samples and Methods
4. Results
4.1. Ash Yield and Bulk Geochemistry
4.2. Maceral Composition and Vitrinite Reflectance (Ro)
4.3. Palynology
4.4. Terpenoid Biomarkers
5. Discussion
5.1. Maturity and Hydrocarbon Generation Potential
5.2. Paleovegetational Reconstruction
5.3. Paleovegetation Influences the Formation of Oil Shale and Coal
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Strobl, S.A.I.; Sachsenhofer, R.F.; Bechtel, A.; Meng, Q.; Sun, P. Deposition of coal and oil shale in NE China: The Eocene Huadian Basin compared to the coeval Fushun Basin. Mar. Pet. Geol. 2015, 64, 347–362. [Google Scholar] [CrossRef]
- Sun, P.; Sachsenhofer, R.F.; Liu, Z.; Strobl, S.A.I.; Meng, Q.; Liu, R.; Zhen, Z. Organic matter accumulation in the oil shale- and coal-bearing Huadian Basin (Eocene; NE China). Int. J. Coal Geol. 2013, 105, 1–15. [Google Scholar] [CrossRef]
- Bai, Y.; Liu, Z.; Sun, P.; Liu, R.; Hu, X.; Zhou, R.; Xu, Y.; Zhao, H.; Wang, J. Diverse sedimentary conditions during deposition of coal and oil shale from the Meihe Basin (Eocene, NE China). J. Sediment. Res. 2017, 87, 1100–1120. [Google Scholar] [CrossRef]
- Lv, D.; Wang, D.; Li, Z.; Liu, H.; Li, Y. Depositional environment, sequence stratigraphy and sedimentary mineralization mechanism in the coal bed- and oil shale-bearing succession: A case from the Paleogene Huangxian Basin of China. J. Pet. Sci. Eng. 2017, 148, 32–51. [Google Scholar] [CrossRef]
- Song, Y.; Liu, Z.; Bechtel, A.; Sachsenhofer, R.F.; Groß, D.; Meng, Q. Paleoenvironmental reconstruction of the coal- and oil shale-bearing interval in the lower Cretaceous Muling Formation, Laoheishan Basin, northeast China. Int. J. Coal Geol. 2017, 172, 1–18. [Google Scholar] [CrossRef]
- Wang, J.; Sun, P.; Liu, Z.; Li, Y. Characteristics and genesis of lacustrine laminar coal and oil shale: A case study in the Dachanggou Basin, Xinjiang, Northwest China. Mar. Pet. Geol. 2021, 126, 104924. [Google Scholar] [CrossRef]
- Gibling, M.R.; Ukakimaphan, Y.; Srisuk, S. Oil Shale and Coal in Intermontane Basins of Thailand. AAPG Bull. 1985, 69, 760–766. [Google Scholar]
- Wolela, A. Fossil fuel energy resources of Ethiopia: Oil shale deposits. J. Afr. Earth Sci. 2006, 46, 263–280. [Google Scholar] [CrossRef]
- Cameron, A.R.; Goodarzi, F.; Potter, J. Coal and oil shale of Early Carboniferous age in northern Canada: Significance for paleoenvironmental and paleoclimatic interpretations. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1994, 106, 135–155. [Google Scholar] [CrossRef]
- Şener, M.; Şengüler, I.; Kök, M.V. Geological considerations for the economic evaluation of oil shale deposits in Turkey. Fuel 1995, 74, 999–1003. [Google Scholar] [CrossRef]
- Kara-Gülbay, R.; Korkmaz, S. Element contents and organic matter-element relationship of the Tertiary oil shale deposits in northwest Anatolia, Turkey. Energy Fuels 2008, 22, 3164–3173. [Google Scholar] [CrossRef]
- Bechtel, A.; Karayiğit, A.I.; Sachsenhofer, R.F.; Inaner, H.; Christanis, K.; Gratzer, R. Spatial and temporal variability in vegetation and coal facies as reflected by organic petrological and geochemical data in the Middle Miocene Çayirhan coal field (Turkey). Int. J. Coal Geol. 2014, 134–135, 46–60. [Google Scholar] [CrossRef]
- Wang, S.; Jiang, X.; Han, X.; Tong, J. Investigation of Chinese oil shale resources comprehensive utilization performance. Energy 2012, 42, 224–232. [Google Scholar] [CrossRef]
- Miao, Z.; Wu, G.; Li, P.; Meng, X.; Zheng, Z. Investigation into co-pyrolysis characteristics of oil shale and coal. Int. J. Min. Sci. Technol. 2012, 22, 245–249. [Google Scholar] [CrossRef]
- Meng, Q.; Bruch, A.A.; Sun, G.; Liu, Z.; Hu, F.; Sun, P. Quantitative reconstruction of Middle and Late Eocene paleoclimate based on palynological records from the Huadian Basin, northeastern China: Evidence for monsoonal influence on oil shale formation. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2018, 510, 63–77. [Google Scholar] [CrossRef]
- Jia, J.; Liu, Z.; Bechtel, A.; Strobl, S.A.I.; Sun, P. Tectonic and climate control of oil shale deposition in the Upper Cretaceous Qingshankou Formation (Songliao Basin, NE China). Int. J. Earth Sci. 2013, 102, 1717–1734. [Google Scholar] [CrossRef]
- Liu, B.; Song, Y.; Zhu, K.; Su, P.; Ye, X.; Zhao, W. Mineralogy and element geochemistry of salinized lacustrine organic-rich shale in the Middle Permian Santanghu Basin: Implications for paleoenvironment, provenance, tectonic setting and shale oil potential. Mar. Pet. Geol. 2020, 120, 104569. [Google Scholar] [CrossRef]
- Xu, J.; Liu, Z.; Bechtel, A.; Sachsenhofer, R.F.; Jia, J.; Meng, Q.; Sun, P. Organic matter accumulation in the Upper Cretaceous Qingshankou and Nenjiang Formations, Songliao Basin (NE China): Implications from high- resolution geochemical analysis. Mar. Pet. Geol. 2019, 102, 187–201. [Google Scholar] [CrossRef]
- Oskay, R.G.; Bechtel, A.; Karayiğit, A.İ. Mineralogy, petrography and organic geochemistry of Miocene coal seams in the Kınık coalfield (Soma Basin-Western Turkey): Insights into depositional environment and palaeovegetation. Int. J. Coal Geol. 2019, 210, 103205. [Google Scholar] [CrossRef]
- Tao, S.; Xu, Y.; Tang, D.; Xu, H.; Li, S.; Chen, S.; Liu, W.; Cui, Y.; Gou, M. Geochemistry of the Shitoumei oil shale in the Santanghu Basin, Northwest China: Implications for paleoclimate conditions, weathering, provenance and tectonic setting. Int. J. Coal Geol. 2017, 184, 42–56. [Google Scholar] [CrossRef]
- Zhao, Z.; Littke, R.; Zieger, L.; Hou, D.; Froidl, F. Depositional environment, thermal maturity and shale oil potential of the Cretaceous Qingshankou Formation in the eastern Changling Sag, Songliao Basin, China: An integrated organic and inorganic geochemistry approach. Int. J. Coal Geol. 2020, 232, 103621. [Google Scholar] [CrossRef]
- Zhang, P.; Meng, Q.; Misch, D.; Sachsenhofer, R.F.; Liu, Z.; Hu, F.; Shen, L. Oil shale potential of the lower cretaceous Jiufotang Formation, Beipiao Basin, Northeast China. Int. J. Coal Geol. 2021, 236, 103640. [Google Scholar] [CrossRef]
- Dyni, J.R. Geology and resources of some world oil shale deposits. Oil Shale 2003, 20, 193–252. [Google Scholar]
- Liu, Z.; Yang, H.; Dong, Q.; Zhu, J.; Guo, W. Oil Shale in China; Petroleum Industry Press: Beijing, China, 2009; pp. 14–115. [Google Scholar]
- Liu, Z.; Meng, Q.; Dong, Q.; Zhu, J.; Guo, W.; Ye, S.; Liu, R.; Jia, J. Characteristics and Resource Potential of Oil Shale in China. Oil Shale 2017, 34, 15–41. [Google Scholar] [CrossRef] [Green Version]
- Liu, R.; Liu, Z.; Liu, S.; Liu, D.; Li, B.; Yang, X.; Xu, Y. Coal and oil shale occurrence characteristic and metallogenic regularity in Yilan Basin. J. China Coal Soc. 2012, 37, 776–781. [Google Scholar]
- Song, Y.; Bechtel, A.; Sachsenhofer, R.F.; Groß, D.; Liu, Z.; Meng, Q. Depositional environment of the Lower Cretaceous Muling Formation of the Laoheishan Basin (NE China): Implications from geochemical and petrological analyses. Org. Geochem. 2017, 104, 19–34. [Google Scholar] [CrossRef]
- Song, Y.; Liu, Z.; Meng, Q.; Wang, Y.; Zheng, G.; Xu, Y. Petrography and geochemistry characteristics of the lower Cretaceous Muling Formation from the Laoheishan Basin, Northeast China: Implications for provenance and tectonic setting. Mineral. Petrol. 2017, 111, 383–397. [Google Scholar] [CrossRef]
- Song, Y.; Liu, Z.; Groß, D.; Meng, Q.; Xu, Y. Petrology, mineralogy and geochemistry of the Lower Cretaceous oil-prone coal and host rocks from the Laoheishan Basin, northeast China. Int. J. Coal Geol. 2018, 191, 7–23. [Google Scholar] [CrossRef]
- Xu, W.; Wang, F.; Meng, E.; Gao, F.; Pei, F.; Yu, J.; Tang, J. Paleozoic-early Mesozoic tectonic evolution in the eastern Heilongjiang province, NE China: Evidence from igneous rock association and U-Pb geochronology of detrital zircons. J. Jilin Univ. (Earth Sci. Ed.) 2012, 42, 1378–1389. [Google Scholar]
- ASTM International. ASTM Standard D3174-12. In Test Method for Ash in the Analysis Sample of Coal and Coke from Coal; ASTM International: West Conshohocken, PA, USA, 2012. [Google Scholar]
- Lafargue, E.; Marquis, F.; Pillot, D. Rock-Eval 6 applications in hydrocarbon exploration, production, and soil contamination studies. Rev. Inst. Fr. Pét. 1998, 53, 421–437. [Google Scholar] [CrossRef] [Green Version]
- Traverse, A. Paleopalynology; Springer: Dordrecht, The Netherlands, 2007; p. 813. [Google Scholar]
- Radke, M.; Willsch, H.; Welte, D.H. Preparative hydrocarbon group type determination by automated medium pressure liquid chromatography. Anal. Chem. 1980, 52, 406–411. [Google Scholar] [CrossRef]
- Schneider, A.C.; Heimhofer, U.; Heunisch, C.; Mutterlose, J. From arid to humid-The Jurassic-Cretaceous boundary interval in northern Germany. Rev. Palaeobot. Palynol. 2018, 255, 57–69. [Google Scholar] [CrossRef]
- Staplin, F.L. Sedimentary organic matter, organic metamorphism and oil and gas occurrence. Bull. Can. Petrol. Geol. 1969, 17, 47–66. [Google Scholar]
- Sykes, R.; Snowdon, L.R. Guidelines for assessing the petroleum potential of coaly source rocks using Rock-Eval pyrolysis. Org. Geochem. 2002, 33, 1441–1455. [Google Scholar] [CrossRef]
- Pepper, A.S.; Corvi, P.J. Simple kinetic models of petroleum formation. Part III: Modeling an open system. Mar. Pet. Geol. 1995, 12, 417–452. [Google Scholar] [CrossRef]
- Peters, K.E.; Moldowan, J.M. The Biomarker Guide: Interpreting Molecular Fossils in Petroleum and Ancient Sediments; Prentice Hall: Englewood Cliffs, NJ, USA, 1993; pp. 550–590. [Google Scholar]
- Wang, Y.; Mosbrugger, V.; Zhang, H. Early to Middle Jurassic vegetation and climatic events in the Qaidam Basin, Northwest China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2005, 224, 200–216. [Google Scholar] [CrossRef]
- Petersen, H.I.; Lindström, S.; Therkelsen, J.; Pedersen, G.K. Deposition, floral composition and sequence stratigraphy of uppermost Triassic (Rhaetian) coastal coals, southern Sweden. Int. J. Coal Geol. 2013, 116–117, 117–134. [Google Scholar] [CrossRef]
- Eble, C.F. Palynology of late Middle Pennsylvanian coal beds in the Appalachian Basin. Int. J. Coal Geol. 2002, 50, 73–88. [Google Scholar] [CrossRef]
- Hower, J.C.; Ruppert, L.F.; Eble, C.F.; Clark, W.L. Geochemistry, petrology, and palynology of the Pond Creek coal bed, northern Pike and southern Martin counties, Kentucky. Int. J. Coal Geol. 2005, 62, 167–181. [Google Scholar] [CrossRef]
- Çelik, Y.; Karayiğit, A.İ.; Querol, X.; Oskay, R.G.; Mastalerz, M.; Kayseri Özer, M.S. Coal characteristics, palynology, and palaeoenvironmental interpretation of the Yeniköy coal of Late Oligocene age in the Thrace Basin (NW Turkey). Int. J. Coal Geol. 2017, 181, 103–123. [Google Scholar] [CrossRef]
- Çelik, Y.; Karayigit, A.I.; Oskay, R.G.; Kayseri-Özer, M.S.; Christanis, K.; Hower, J.C.; Querol, X. A multidisciplinary study and palaeoenvironmental interpretation of middle Miocene Keles lignite (Harmancık Basin, NW Turkey), with emphasis on syngenetic zeolite formation. Int. J. Coal Geol. 2021, 237, 103691. [Google Scholar] [CrossRef]
- Johnston, M.N.; Eble, C.F.; O’Keefe, J.M.K.; Freeman, R.L.; Hower, J.C. Petrology and palynology of the Middle Pennsylvanian Leatherwood coal bed, Eastern Kentucky: Indications for depositional environments. Int. J. Coal Geol. 2017, 181, 23–38. [Google Scholar] [CrossRef]
- Mishra, S.; Singh, V.P. Palynology, palynofacies, and taphonomical studies of Kamthi Formation, (Godavari Graben), southern India: Implications to biostratigraphy, palaeoecology, and depositional environment. Int. J. Coal Geol. 2018, 195, 102–124. [Google Scholar] [CrossRef]
- Eble, C.F.; Greb, S.F.; Williams, D.A.; Hower, J.C.; O’Keefe, J.M.K. Palynology, organic petrology and geochemistry of the Bell coal bed in Western Kentucky, Eastern Interior (Illinois) Basin, USA. Int. J. Coal Geol. 2019, 213, 103264. [Google Scholar] [CrossRef]
- Wagner, N.; Eble, C.; Hower, J.; Falcon, R. Petrology and palynology of select coal samples from the Permian Waterberg Coalfield, South Africa. Int. J. Coal Geol. 2019, 204, 85–101. [Google Scholar] [CrossRef]
- Li, J.G.; Batten, D.J. Early Cretaceous palynofloral provinces in China: Western additions. Isl. Arc 2010, 20, 35–42. [Google Scholar] [CrossRef]
- Jin, P.; Ji, L.; Ma, B.; Yuan, B.; Long, L. Early Cretaceous palynology and paleoclimate of the Hanxia-Hongliuxia Area, Jiuxi Basin, China. Rev. Palaeobot. Palynol. 2020, 281, 104259. [Google Scholar] [CrossRef]
- Van Konijnenburg-Van Cittert, J.H.A. Ecology of some Late Triassic to Early Cretaceous ferns in Eurasia. Rev. Palaeobot. Palynol. 2002, 119, 113–124. [Google Scholar] [CrossRef]
- Couper, R.A. British Mesozoic microspores and pollen grains. A systematic and stratigraphic study. Palaeontogr. Abt. B 1957, 103, 75–179. [Google Scholar]
- Balme, B.E. Fossil in situ spores and pollen grains: An annotated catalogue. Rev. Palaeobot. Palynol. 1995, 87, 81–323. [Google Scholar] [CrossRef]
- Kovaleva, T.A.; Markevich, V.S.; Sun, G. Age and palynological characteristic of the Dongning Formation (Eastern Heilongjiang, China). Russ. J. Pac. Geol. 2017, 11, 178–190. [Google Scholar] [CrossRef]
- Wan, C.; Qiao, X.; Kong, H.; Jin, Y.; Sun, Y.; Liu, P.; Yang, J.; Ren, Y. Early Cretaceous spore-pollen assemblage from Bei’an area, Heilongjiang Province. Acta Micropalaeontol. Sin. 2002, 19, 83–90. [Google Scholar]
- Simoneit, B.R.T.; Grimalt, J.O.; Wang, T.G.; Cox, R.E.; Hatcher, P.G.; Nissenbaum, A. Cyclic terpenoids of contemporary resinous plant detritus and fossil woods, ambers and coals. Org. Geochem. 1986, 10, 877–889. [Google Scholar] [CrossRef]
- Stefanova, M.; Markova, K.; Marinov, S.; Simoneit, B.R.T. Molecular indicators for coal-forming vegetation of the Miocene Chukurovo lignite, Bulgaria. Fuel 2005, 84, 1830–1838. [Google Scholar] [CrossRef]
- Diefendorf, A.F.; Freeman, K.H.; Wing, S.L. A comparison of terpenoid and leaf fossil vegetation proxies in Paleocene and Eocene Bighorn Basin sediments. Org. Geochem. 2014, 71, 30–42. [Google Scholar] [CrossRef]
- Bechtel, A.; Chekryzhov, I.Y.; Pavlyutkin, B.I.; Nechaev, V.P.; Dai, S.; Vysotskiy, S.V.; Velivetskaya, T.A.; Tarasenko, I.A.; Guo, W. Composition of lipids from coal deposits of the Far East: Relations to vegetation and climate change during the Cenozoic. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2020, 538, 109479. [Google Scholar] [CrossRef]
- Otto, A.; Walther, H.; Püttmann, W. Sesqui- and diterpenoid biomarkers in Taxodium-rich Oligocene oxbow lake clays Weisselster basin, Germany. Org. Geochem. 1997, 26, 105–115. [Google Scholar] [CrossRef]
- van Aarssen, B.G.K.; Cox, H.C.; Hoogendoorn, P.; de Leeuw, J.W. A cadinene biopolymer present in fossil and extant dammar resins as a source for cadinanes and bicadinanes in crude oils from Southeast Asia. Geochim. Cosmochim. Acta 1990, 54, 3021–3031. [Google Scholar] [CrossRef]
- Philp, R.P. Fossil Fuel Biomarkers Methods in Geochemistry and Geophysics; Elsevier: New York, NY, USA, 1985; Volume 23, pp. 1–294. [Google Scholar]
- Fabiańska, M.J.; Kurkiewicz, S. Biomarkers, aromatic hydrocarbons and polar compounds in the Neogene lignites and gangue sediments of the Konin and Turoszów Brown Coal Basins (Poland). Int. J. Coal Geol. 2013, 107, 24–44. [Google Scholar] [CrossRef]
- Wakeham, S.G.; Schaffner, C.; Giger, W. Polycyclic aromatic hydrocarbons in recent lake sediments–II. Compounds derived from biogenic precursors during early diagenesis. Geochim. Cosmochim. Acta 1980, 44, 415–429. [Google Scholar] [CrossRef]
- Otto, A.; Wilde, V. Sesqui-, di-, and triterpenoids as chemosystematic markers in extant conifers-a review. Bot. Rev. 2001, 67, 141–238. [Google Scholar] [CrossRef]
- Hauke, V.; Graff, R.; Wehrung, P.; Trendel, J.M.; Albrecht, P.; Schwark, L.; Keely, B.; Peakman, T. Novel triterpene-derived hydrocarbons of the arborane/fernane series in sediments Part I. Tetrahedron 1992, 48, 3915–3924. [Google Scholar] [CrossRef]
- Hauke, V.; Graff, R.; Wehrung, P.; Trendel, J.M.; Albrecht, P.; Riva, A.; Hopfgartner, G.; Gülacar, F.O.; Buchs, A.; Eakin, P.A. Novel triterpene-derived hydrocarbons of the arborane/fernane series in sediments: Part II. Geochim. Cosmochim. Acta 1992, 56, 2595–3602. [Google Scholar] [CrossRef]
- Brassell, S.C.; Eglinton, G. Steroids and Triterpenoids in Deep Sea Sediments as Environmental and Diagenetic Indicators. In Advances in Organic Geochemistry; John Wiley and Sons: Hoboken, NJ, USA, 1981; Volume 2, pp. 684–697. [Google Scholar]
- Volkman, J.K.; Allen, D.I.; Stevenson, P.L.; Burton, H.R. Bacterial and algal hydrocarbons from a saline Antarctic lake, Ace Lake. Org. Geochem. 1986, 10, 671–681. [Google Scholar] [CrossRef]
- Gruber, W.; Sachsenhofer, R.F. Coal deposition in the Noric Depression (Eastern Alps): Raised and low-lying mires in Miocene pull-apart basins. Int. J. Coal Geol. 2001, 48, 89–114. [Google Scholar] [CrossRef]
- Opluštil, S.; Pšenicka, J.; Libertín, M.; Bek, J.; Dašková, J.; Šimunek, Z.; Drábková, J. Composition and structure of an in situ Middle Pennsylvanian peat-forming plant assemblage buried in volcanic ash, Radnice Basin (Czech Republic). Palaios 2009, 24, 726–746. [Google Scholar] [CrossRef]
- Wu, H.; Hu, Z. Comparative anatomy of resin ducts of the Pinaceae. Trees-Struct. Funct. 1997, 11, 135–143. [Google Scholar] [CrossRef]
- Grimalt, J.O.; Simoneit, B.R.T.; Hatcher, P.G. Chemical affinities between the solvent extractable and the bulk organic matter of fossil resin associated with an extinct podocarpaceae. Phytochemistry 1989, 28, 1167–1171. [Google Scholar] [CrossRef]
- Simoneit, B.R.T.; Cox, R.E.; Oros, D.R.; Otto, A. Terpenoid Compositions of Resins from Callitris Species (Cupressaceae). Molecules 2018, 23, 3384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heady, R.D.; Banks, J.G.; Evans, P.D. Wood anatomy of Wollemi pine (Wollemia nobilis, Araucariaceae). IAWA J. 2002, 23, 339–357. [Google Scholar] [CrossRef]
- Wilkins, R.W.T.; George, S.C. Coal as a source rock for oil: A review. Int. J. Coal Geol. 2002, 50, 317–361. [Google Scholar] [CrossRef]
- Shao, L.; Zhang, P.; Hilton, J.; Gayer, R.; Wang, Y.; Zhao, C.; Luo, Z. Paleoenvironments and paleogeography of the Lower and lower Middle Jurassic coal measures in the Turpan-Hami oil-prone coal basins, northwestern China. AAPG Bull. 2003, 87, 335–355. [Google Scholar] [CrossRef]
Spore-Pollen Taxa or Category | Botanical Affinity | Vegetation Type | Humidity-Aridity Type |
---|---|---|---|
Spores | |||
Leiotriletes sp. | Ferns | Herb | Phreatophyte |
Concavissimisporites sp. | Sphenopsids (Lygodiaceae) | Shrub | Phreatophyte |
Cicatricosisporites sp. | Ferns (Schizaeaceae) | Shrub | Phreatophyte |
Osmundacidites sp. | Ferns (Osmundaceae) | Herb | Helophyte |
Cardioangulina sp. | Sphenopsids (Lygodiaceae) | Shrub | Phreatophyte |
Cyathidites sp. | Ferns (Dicksoniaceae/Cyatheaceae) | Tree fern | Phreatophyte |
Baculatisporites sp. | Ferns (Osmundaceae) | Herb | Helophyte |
Pilosisporites sp. | Ferns | Shrub | Phreatophyte |
Biretisporites sp. | Ferns (Hymenophyllaceae) | Herb | Helophyte |
Aequitriradites sp. | Bryophytes | Herb | Phreatophyte |
Appendicisporites sp. | Ferns (Schizaeaceae) | Shrub | Phreatophyte |
Toroisporis sp. | Ferns (Marttiaceae) | Herb | Phreatophyte |
Acanthotriletes sp. | Ferns (Marttiaceae) | Herb | |
Laevigatosporites sp. | Ferns (Polypodiaceae) | Herb | Helophyte |
Maculatisporites sp. | |||
Verrucosisporites sp. | Ferns (Cyatheaceae/Dipteridaceae) | ||
Neoraistrickia sp. | Lycopods (Pleuromeiaceae/Selaginellaceae) | Herb | Phreatophyte |
Klukisporites sp. | Ferns (Schizaeaceae) | Shrub | Phreatophyte |
Triporoletes cf. asper | Bryophytes | ||
Lycopodiumsporites sp. | Lycopods | Herb | Mesophyte |
Microreticulatisporites pingyangensis | Ferns | ||
Converrucosisporites sp. | Ferns (Cyatheaceae/Dipteridaceae) | Herb | Phreatophyte |
Foveotriletes sp. | Ferns (Cyatheaceae) | Herb | Mesophyte |
Brochotriletes degradatus | |||
Cooksonites erenensis | Bryophytes | ||
Densoisporites sp. | Lycopods (Pleuromeiaceae/Selaginellaceae) | Herb | Phreatophyte |
Pollen | |||
Pinuspollenites sp. | Conifers (Pinaceae) | Conifer tree | Mesophyte |
Podocarpidites sp. | Conifers (Podocarpaceae) | Conifer tree | Phreatophyte |
Alisporites sp. | Seed ferns (Corystospermales) | Conifer tree | |
Protoconiferus sp. | Conifers (Cupressaceae/Taxodiaceae) | Conifer tree | Phreatophyte |
Abietineaepollenites sp. | Conifers (Pinaceae) | Conifer tree | Mesophyte |
Cedripites sp. | Conifers (Pinaceae) | Conifer tree | Mesophyte |
Piceaepollenites sp. | Conifers (Pinaceae) | Conifer tree | Mesophyte |
Piceites sp. | Conifers (Pinaceae) | Conifer tree | Phreatophyte |
Psophosphaera sp. | Conifers (Pinaceae) | Conifer tree | Mesophyte |
Pseudopiceae sp. | Conifers | Conifer tree | Phreatophyte |
Quadraeculina sp. | Conifers | Conifer tree | |
Pristinuspollenites sp. | Seed ferns | ||
Protopinus sp. | Conifers | Conifer tree | Phreatophyte |
Erlianpollis sp. | Conifers | Conifer tree | Phreatophyte |
Keteleeria sp. | Conifers (Pinaceae) | Conifer tree | Mesophyte |
Araucariacutes sp. | Conifers (Araucariaceae) | Conifer tree | Mesophyte |
Chasmatosporites sp. | Cycadophytes/Ginkgophytes | Shrub | Phreatophyte |
Concentrisporites fragilis | Conifers (Taxodiaceae) | Conifer tree | |
Jiaohepollis sp. | Conifers (Araucariaceae) | Conifer tree | Mesophyte |
Cerebropollenites sp. | Conifers | Conifer tree | |
Klausipollenites sp. | |||
Callialasporites sp. | Conifers (Araucariaceae) | Conifer tree | Mesophyte |
Classopollis sp. | Conifers (Cheirolepidiaceae) | Conifer tree | Xerophyte |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Y.; Zhu, K.; Xu, Y.; Meng, Q.; Liu, Z.; Sun, P.; Ye, X. Paleovegetational Reconstruction and Implications on Formation of Oil Shale and Coal in the Lower Cretaceous Laoheishan Basin (NE China): Evidence from Palynology and Terpenoid Biomarkers. Energies 2021, 14, 4704. https://doi.org/10.3390/en14154704
Song Y, Zhu K, Xu Y, Meng Q, Liu Z, Sun P, Ye X. Paleovegetational Reconstruction and Implications on Formation of Oil Shale and Coal in the Lower Cretaceous Laoheishan Basin (NE China): Evidence from Palynology and Terpenoid Biomarkers. Energies. 2021; 14(15):4704. https://doi.org/10.3390/en14154704
Chicago/Turabian StyleSong, Yu, Kai Zhu, Yinbo Xu, Qingtao Meng, Zhaojun Liu, Pingchang Sun, and Xiang Ye. 2021. "Paleovegetational Reconstruction and Implications on Formation of Oil Shale and Coal in the Lower Cretaceous Laoheishan Basin (NE China): Evidence from Palynology and Terpenoid Biomarkers" Energies 14, no. 15: 4704. https://doi.org/10.3390/en14154704
APA StyleSong, Y., Zhu, K., Xu, Y., Meng, Q., Liu, Z., Sun, P., & Ye, X. (2021). Paleovegetational Reconstruction and Implications on Formation of Oil Shale and Coal in the Lower Cretaceous Laoheishan Basin (NE China): Evidence from Palynology and Terpenoid Biomarkers. Energies, 14(15), 4704. https://doi.org/10.3390/en14154704