Prioritizing Energy-Intensive Machining Operations and Gauging the Influence of Electric Parameters: An Industrial Case Study
Abstract
:1. Introduction
1.1. Research Gaps Based on Literature Review
1.2. Research Questions and Intended Contribution of the Study
“Do we need to identify the electric parameters and prioritize the most energy-intensive machining processes?”
1.3. Research Objectives
- To investigate the significant electric parameters and to analyze their impact on power consumption.
- To ascertain a methodology to identify and prioritize the most energy-intensive machining processes.
2. Materials and Methods
2.1. Electric Parameters and Energy Responses
2.2. Experimental Procedure, Observations, and Calculations
3. Regression Models of Active Power Consumption for Machining Operations
3.1. Analysis of the Regression Model for Operation-1 (O-1)
3.2. Analysis of the Regression Model for Operation-2 (O-2)
3.3. Analysis of the Regression Model for Operation-3 (O-3)
3.4. Analysis of the Regression Model for Operation-4 (O-4)
3.5. Analysis of the Regression Model for Operation-5 (O-5)
3.6. Comparative Analysis of Modeling
4. Hybrid Decision-Making Methodology
5. Conclusions
- The quality of the power supplied to the machine tool seems to be affected by the concurrent functioning of the other machine tools in the surrounding area of the machine shop. This is evident from the fact that different electric parameters become significant at different times in the power consumption of a machining operation examined on the same shop floor of the industry. Therefore, the quality of power being supplied to the machine tool needs to be monitored and corrected to lower power consumption.
- Multiple regression analysis revealed that, out of the seven electric parameters considered, the rms values of the current and the power factor emerged as significant in all five machining operations. The current total harmonic distortion factor appeared significant in the three machining operations (O-1, O-4, and O-5). Current unbalance, the rms value of voltage, and voltage unbalance were significant in two machining operations each (O-2 and O-5, O-1 and O-2, and O-3 and O-5, respectively). The voltage total harmonic distortion factor was significant in only a single machining operation (O-4).
- The values of the coded coefficients of regression models revealed the relative impact of significant electric parameters on active power consumption. It was observed that the rms value of the current had the maximum direct impact, followed by the power factor. Therefore, their optimization would lead to a maximum reduction in electric power and energy. These factors were followed by the current unbalance, which also had a direct impact on power consumption. The rms value of voltage ranked last, with a small positive impact, whereas the voltage unbalance and the total harmonic distortion factor negatively affected the power consumption. To reduce the power consumption of a machining operation, it is imperative to assess the significance of electric parameters and evaluate their relative importance.
- The maximum absolute error in the estimation of active power using the standard power equation was 118.941 for machining operation O-5, but that with the developed regression model was 0.05. Similarly, the maximum relative error using the standard power equation was 5.350 for O-4 compared to 0.001 using the developed regression model. The R-squared value was more than 98% for O-1 to O-4 and 93% for O-5 for the developed models. This proves the results are theoretically correct.
- The TOPSIS equal-weights method identified machining operation O-1 as the most energy-intensive and O-5 as the least energy-intensive. With the assistance of the entropy weights without the decision maker’s input, the same technique classified machining operation O-1 as the most energy-intensive but O-3 as the least energy-intensive process. The AHP weights method with the decision-maker’s input ranked O-5 as the maximum and O-4 as the minimum energy consumption. Furthermore, the degree of membership (DoM) approach was employed to establish the final conjoined ranks. Machining operation O-1 was the most energy-intensive, followed by O-2, O-3, O-5, and O-4.
- The awareness of the importance of electric parameters in the active power consumption of machining processes and the identification of the energy-intensive machining operation benefit researchers and the industry in reducing energy consumption and minimizing the impact of carbon dioxide emissions in the industry environment.
- The most energy-intensive machining operation identified, i.e., O-1, a drilling process, needs to be optimized for minimum energy consumption. In addition, research is required to investigate or explore why some electric parameters become significant and others do not for the machine tools and machining processes conducted on the same shop floor. Furthermore, some electric parameters have positive and small negative impacts on the machining operation’s power consumption and need to be investigated.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Abbreviations | Acronym | Units |
Machining Time | ƪm/c | seconds (s) |
Active power consumption air cut | ӒPCair | kilowatt (kW) |
Active power consumption by machine | ӒPCm/c | kilowatt (kW) |
Active energy consumption air cut | ӒECair | kilowatt hour (kWh) |
Active energy consumption by machine | ӒECm/c | kilowatt hour (kWh) |
Energy efficiency | ĖĖή | No units |
Specific energy consumption | ʂ | kilojoule/cm3 |
Power factor | ƤFm/c | No units |
Average current (rms) | Ϊm/c | ampere (A) |
Current total harmonic distortion factor | Ϊthdf | (%) |
Current unbalance | Ϊub | (%) |
Average voltage (rms) | Ѷav | volt |
Voltage total harmonic distortion factor | Ѷthdf | (%) |
Voltage unbalance | Ѷub | (%) |
Air cut | AC | No unit |
Actual cut | ACT | No unit |
p-Value | Ƥ | No unit |
Volume of material removed | V | cm3 |
Cutting speed | Vc | m/min |
Depth of cut | ɗ | mm |
Feed rate | Ƒd | mm/min |
Specific cutting energy | Śe | kJ/cm3 |
Tool wear | Ŧw | mm |
Material removal rate | Ϣ | cm3/min |
Appendix A
Operation | ӒPCm/c | ӒECm/c | ĖĖή | ʂ | ƤFm/c | Ϊm/c | Ϊthdf | Ϊub |
---|---|---|---|---|---|---|---|---|
O-1 | 0.7814 | 0.3929 | 0.5904 | 0.7974 | 0.9169 | 0.8638 | 1.0000 | 0.2714 |
O-2 | 0.6644 | 0.4925 | 0.8805 | 1.0000 | 0.9146 | 0.7370 | 0.9984 | 0.3067 |
O-3 | 0.4160 | 0.4286 | 0.9277 | 0.8659 | 0.9309 | 0.4697 | 0.9870 | 1.0000 |
O-4 | 1.0000 | 1.0000 | 0.6983 | 0.3869 | 0.8767 | 1.0000 | 0.9365 | 0.5887 |
O-5 | 0.5183 | 0.6226 | 1.0000 | 0.9149 | 1.0000 | 0.6111 | 0.7950 | 0.5633 |
Operation | ӒPCm/c | ӒECm/c | ĖĖή | ʂ | ƤFm/c | Ϊm/c | Ϊthdf | Ϊub |
---|---|---|---|---|---|---|---|---|
O-1 | 0.2312 | 0.1338 | 0.1441 | 0.2011 | 0.1977 | 0.2346 | 0.2120 | 0.0994 |
O-2 | 0.1966 | 0.1677 | 0.2149 | 0.2522 | 0.1972 | 0.2002 | 0.2117 | 0.1123 |
O-3 | 0.1231 | 0.1459 | 0.2264 | 0.2184 | 0.2007 | 0.1276 | 0.2093 | 0.3663 |
O-4 | 0.2959 | 0.3405 | 0.1704 | 0.0976 | 0.1890 | 0.2716 | 0.1985 | 0.2156 |
O-5 | 0.1533 | 0.2120 | 0.2441 | 0.2307 | 0.2156 | 0.1660 | 0.1685 | 0.2063 |
Operation | ӒPCm/c | ӒECm/c | ĖĖή | ʂ | ƤFm/c | Ϊm/c | Ϊthdf | Ϊub |
---|---|---|---|---|---|---|---|---|
Equal weights | ||||||||
O-1 | 0.3372 | 0.5746 | 0.3168 | 0.3654 | 0.4415 | 0.3430 | 0.4169 | 0.6592 |
O-2 | 0.3966 | 0.4583 | 0.4725 | 0.2914 | 0.4404 | 0.4020 | 0.4176 | 0.5833 |
O-3 | 0.6334 | 0.5267 | 0.4979 | 0.3365 | 0.4483 | 0.6308 | 0.4224 | 0.1789 |
O-4 | 0.2635 | 0.2257 | 0.3748 | 0.7530 | 0.4222 | 0.2963 | 0.4452 | 0.3039 |
O-5 | 0.5083 | 0.3625 | 0.5367 | 0.3185 | 0.4815 | 0.4848 | 0.5245 | 0.3176 |
Entropy weights | ||||||||
O-1 | 0.3372 | 0.5746 | 0.3168 | 0.3654 | 0.4415 | 0.3430 | 0.4169 | 0.6592 |
O-2 | 0.3966 | 0.4583 | 0.4725 | 0.2914 | 0.4404 | 0.4020 | 0.4176 | 0.5833 |
O-3 | 0.6334 | 0.5267 | 0.4979 | 0.3365 | 0.4483 | 0.6308 | 0.4224 | 0.1789 |
O-4 | 0.2635 | 0.2257 | 0.3748 | 0.7530 | 0.4222 | 0.2963 | 0.4452 | 0.3039 |
O-5 | 0.5083 | 0.3625 | 0.5367 | 0.3185 | 0.4815 | 0.4848 | 0.5245 | 0.3176 |
AHP weights | ||||||||
O-1 | 0.3372 | 0.5746 | 0.3168 | 0.3654 | 0.4415 | 0.3430 | 0.4169 | 0.6592 |
O-2 | 0.3966 | 0.4583 | 0.4725 | 0.2914 | 0.4404 | 0.4020 | 0.4176 | 0.5833 |
O-3 | 0.6334 | 0.5267 | 0.4979 | 0.3365 | 0.4483 | 0.6308 | 0.4224 | 0.1789 |
O-4 | 0.2635 | 0.2257 | 0.3748 | 0.7530 | 0.4222 | 0.2963 | 0.4452 | 0.3039 |
O-5 | 0.5083 | 0.3625 | 0.5367 | 0.3185 | 0.4815 | 0.4848 | 0.5245 | 0.3176 |
Operation | ӒPCm/c | ӒECm/c | ĖĖή | ʂ | ƤFm/c | Ϊm/c | Ϊthdf | Ϊub |
---|---|---|---|---|---|---|---|---|
Equal weights | ||||||||
O-1 | 0.0421 | 0.0718 | 0.0396 | 0.0457 | 0.0552 | 0.0429 | 0.0521 | 0.0824 |
O-2 | 0.0496 | 0.0573 | 0.0591 | 0.0364 | 0.0551 | 0.0502 | 0.0522 | 0.0729 |
O-3 | 0.0792 | 0.0658 | 0.0622 | 0.0421 | 0.0560 | 0.0789 | 0.0528 | 0.0224 |
O-4 | 0.0329 | 0.0282 | 0.0468 | 0.0941 | 0.0528 | 0.0370 | 0.0557 | 0.0380 |
O-5 | 0.0635 | 0.0453 | 0.0671 | 0.0398 | 0.0602 | 0.0606 | 0.0656 | 0.0397 |
Entropy weights | ||||||||
O-1 | 0.0485 | 0.1169 | 0.0178 | 0.0483 | 0.0013 | 0.0353 | 0.0046 | 0.2295 |
O-2 | 0.0570 | 0.0932 | 0.0265 | 0.0385 | 0.0013 | 0.0413 | 0.0046 | 0.2030 |
O-3 | 0.0910 | 0.1071 | 0.0279 | 0.0444 | 0.0013 | 0.0648 | 0.0047 | 0.0623 |
O-4 | 0.0379 | 0.0459 | 0.0210 | 0.0994 | 0.0012 | 0.0305 | 0.0050 | 0.1058 |
O-5 | 0.0731 | 0.0737 | 0.0301 | 0.0421 | 0.0014 | 0.0498 | 0.0058 | 0.1105 |
AHP weights | ||||||||
O-1 | 0.0101 | 0.0534 | 0.0317 | 0.0365 | 0.0667 | 0.0597 | 0.1122 | 0.0547 |
O-2 | 0.0119 | 0.0426 | 0.0473 | 0.0291 | 0.0665 | 0.0699 | 0.1123 | 0.0484 |
O-3 | 0.0190 | 0.0490 | 0.0498 | 0.0336 | 0.0677 | 0.1098 | 0.1136 | 0.0148 |
O-4 | 0.0079 | 0.0210 | 0.0375 | 0.0753 | 0.0637 | 0.0516 | 0.1198 | 0.0252 |
O-5 | 0.0152 | 0.0337 | 0.0537 | 0.0318 | 0.0727 | 0.0844 | 0.1411 | 0.0264 |
ӒPCm/c | ӒECm/c | ĖĖή | ʂ | ƤFm/c | Ϊm/c | Ϊthdf | Ϊub | |
---|---|---|---|---|---|---|---|---|
Equal weights | ||||||||
Ideal positive | 0.0329 | 0.0282 | 0.0671 | 0.0364 | 0.0602 | 0.0370 | 0.0521 | 0.0224 |
Ideal negative | 0.0792 | 0.0718 | 0.0396 | 0.0941 | 0.0528 | 0.0789 | 0.0656 | 0.0824 |
Entropy weights | ||||||||
Ideal positive | 0.0379 | 0.0459 | 0.0301 | 0.0385 | 0.0014 | 0.0305 | 0.0046 | 0.0623 |
Ideal negative | 0.0910 | 0.1169 | 0.0178 | 0.0994 | 0.0012 | 0.0648 | 0.0058 | 0.2295 |
AHP weights | ||||||||
Ideal positive | 0.0079 | 0.0210 | 0.0537 | 0.0291 | 0.0727 | 0.0516 | 0.1122 | 0.0148 |
Ideal negative | 0.0190 | 0.0534 | 0.0317 | 0.0753 | 0.0637 | 0.1098 | 0.1411 | 0.0547 |
Ranks | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
O-1 | 0 | 0 | 1 | 0 | 2 |
O-2 | 0 | 1 | 0 | 2 | 0 |
O-3 | 1 | 0 | 1 | 0 | 1 |
O-4 | 1 | 2 | 0 | 0 | 0 |
O-5 | 1 | 0 | 1 | 1 | 0 |
References
- Aktar, M.A.; Alam, M.M.; Al-Amin, A.Q. Global economic crisis, energy use, CO2 emissions, and policy roadmap amid COVID-19. Sustain. Prod. Consum. 2021, 26, 770–781. [Google Scholar] [CrossRef]
- Sutrisno, A.; Nomaler, Ӧ.; Alkemade, F. Has the global expansion of energy markets truly improved energy security? Energy Policy 2021, 148, 111931. [Google Scholar] [CrossRef]
- Bogdanov, D.; Ram, M.; Aghahosseini, A.; Gulagi, A.; Oyewo, A.S.; Child, M.; Caldera, U.; Sadovskaia, K.; Farfan, J.; De Souza Noel Simas Barbosa, L.; et al. Low-cost renewable electricity as the key driver of the global energy transition towards sustainability. Energy 2021, 227, 120467. [Google Scholar] [CrossRef]
- Zhang, Y. Review of recent advances on energy efficiency of machine tools for sustainability. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2014, 229, 2095–2108. [Google Scholar] [CrossRef]
- Yoon, H.-S.; Kim, E.-S.; Kim, M.-S.; Lee, J.-Y.; Lee, G.-B.; Ahn, S.-H. Towards greener machine tools—A review on energy saving strategies and technologies. Renew. Sustain. Energy Rev. 2015, 48, 870–891. [Google Scholar] [CrossRef]
- Zhou, L.; Li, J.; Li, F.; Meng, Q.; Li, J.; Xu, X. Energy consumption model and energy efficiency of machine tools: A comprehensive literature review. J. Clean. Prod. 2016, 112, 3721–3734. [Google Scholar] [CrossRef]
- Zhou, L.; Li, J.; Li, F.; Xu, X.; Wang, L.; Wang, G.; Kong, L. An improved cutting power model of machine tools in milling process. Int. J. Adv. Manuf. Technol. 2017, 91, 2383–2400. [Google Scholar] [CrossRef]
- Bayoumi, A.E.; Yücesan, G.; Hutton, D.V. On the closed form mechanistic modeling of milling: Specific cutting energy, torque, and power. J. Mater. Eng. Perform. 1994, 3, 151–158. [Google Scholar] [CrossRef]
- Draganescu, F.; Gheorghe, M.; Doicin, C.V. Models of machine tool efficiency and specific consumed energy. J. Mater. Process. Technol. 2003, 141, 9–15. [Google Scholar] [CrossRef]
- Gutowski, T.; Dahmus, J.; Thiriez, A. Electrical Energy Requirements for Manufacturing Processes. In Proceedings of the 13th CIRP International Conference of Life Cycle Engineering, Lueven, Belgium, 31 May–2 June 2006; pp. 1–5. [Google Scholar]
- Li, W.; Kara, S. An empirical model for predicting energy consumption of manufacturing processes: A case of turning process. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2011, 225, 1636–1646. [Google Scholar] [CrossRef]
- He, Y.; Liu, B.; Zhang, X.; Gao, H.; Liu, X. A modeling method of task-oriented energy consumption for machining manufacturing system. J. Clean. Prod. 2012, 23, 167–174. [Google Scholar] [CrossRef]
- Li, L.; Yan, J.; Xing, Z. Energy requirements evaluation of milling machines based on thermal equilibrium and empirical modelling. J. Clean. Prod. 2013, 52, 113–121. [Google Scholar] [CrossRef]
- Li, T.; Yuan, C. Numerical Modeling of Specific Energy Consumption in Machining Process. In Proceedings of the ASME 2013 International Manufacturing Science and Engineering Conference collocated with the 41st North American Manufacturing Research Conference, Madison, WI, USA, 10–14 June 2013. [Google Scholar]
- Moon, J.-Y.; Shin, K.; Park, J. Optimization of production scheduling with time-dependent and machine-dependent electricity cost for industrial energy efficiency. Int. J. Adv. Manuf. Technol. 2013, 68, 523–535. [Google Scholar] [CrossRef]
- Velchev, S.; Kolev, I.; Ivanov, K.; Gechevski, S. Empirical models for specific energy consumption and optimization of cutting parameters for minimizing energy consumption during turning. J. Clean. Prod. 2014, 80, 139–149. [Google Scholar] [CrossRef]
- O’Rielly, K.; Jeswiet, J. Strategies to Improve Industrial Energy Efficiency. Procedia CIRP 2014, 15, 325–330. [Google Scholar] [CrossRef] [Green Version]
- Zhao, G.; Hou, C.; Qiao, J.; Cheng, X. Energy consumption characteristics evaluation method in turning. Adv. Mech. Eng. 2016, 8, 1687814016680737. [Google Scholar] [CrossRef] [Green Version]
- Sealy, M.P.; Liu, Z.Y.; Zhang, D.; Guo, Y.B.; Liu, Z.Q. Energy consumption and modeling in precision hard milling. J. Clean. Prod. 2016, 135, 1591–1601. [Google Scholar] [CrossRef]
- Hu, S.; Liu, F.; He, Y.; Hu, T. An on-line approach for energy efficiency monitoring of machine tools. J. Clean. Prod. 2012, 27, 133–140. [Google Scholar] [CrossRef]
- Mativenga, P.T.; Rajemi, M.F. Calculation of optimum cutting parameters based on minimum energy footprint. CIRP Ann. 2011, 60, 149–152. [Google Scholar] [CrossRef]
- Behrendt, T.; Zein, A.; Min, S. Development of an energy consumption monitoring procedure for machine tools. CIRP Ann. 2012, 61, 43–46. [Google Scholar] [CrossRef]
- Aramcharoen, A.; Mativenga, P.T. Critical factors in energy demand modelling for CNC milling and impact of toolpath strategy. J. Clean. Prod. 2014, 78, 63–74. [Google Scholar] [CrossRef]
- Guo, Y.; Duflou, J.R.; Qian, J.; Tang, H.; Lauwers, B. An operation-mode based simulation approach to enhance the energy conservation of machine tools. J. Clean. Prod. 2015, 101, 348–359. [Google Scholar] [CrossRef]
- Balogun, V.A.; Gu, H.; Mativenga, P.T. Improving the integrity of specific cutting energy coefficients for energy demand modelling. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2015, 229, 2109–2117. [Google Scholar] [CrossRef]
- Altıntaş, R.S.; Kahya, M.; Ünver, H.Ö. Modelling and optimization of energy consumption for feature based milling. Int. J. Adv. Manuf. Technol. 2016, 86, 3345–3363. [Google Scholar] [CrossRef]
- Albertelli, P.; Keshari, A.; Matta, A. Energy oriented multi cutting parameter optimization in face milling. J. Clean. Prod. 2016, 137, 1602–1618. [Google Scholar] [CrossRef]
- Ma, F.; Zhang, H.; Cao, H.; Hon, K.K.B. An energy consumption optimization strategy for CNC milling. Int. J. Adv. Manuf. Technol. 2017, 90, 1715–1726. [Google Scholar] [CrossRef]
- Jia, S.; Yuan, Q.; Lv, J.; Liu, Y.; Ren, D.; Zhang, Z. Therblig-embedded value stream mapping method for lean energy machining. Energy 2017, 138, 1081–1098. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Li, C.; Jin, Y.; Li, L. Optimization of cutting parameters with a sustainable consideration of electrical energy and embodied energy of materials. Int. J. Adv. Manuf. Technol. 2018, 96, 775–788. [Google Scholar] [CrossRef] [Green Version]
- Fujishima, M.; Mori, M.; Oda, Y. Energy-efficient manufacturing on machine tools by machining process improvement. Prod. Eng. 2014, 8, 217–224. [Google Scholar] [CrossRef]
- Mori, M.; Fujishima, M.; Inamasu, Y.; Oda, Y. A study on energy efficiency improvement for machine tools. CIRP Ann. 2011, 60, 145–148. [Google Scholar] [CrossRef]
- Yan, J.; Li, L. Multi-objective optimization of milling parameters—The trade-offs between energy, production rate and cutting quality. J. Clean. Prod. 2013, 52, 462–471. [Google Scholar] [CrossRef]
- Kant, G.; Sangwan, K.S. Prediction and optimization of machining parameters for minimizing power consumption and surface roughness in machining. J. Clean. Prod. 2014, 83, 151–164. [Google Scholar] [CrossRef]
- Iqbal, A.; Zhang, H.-C.; Kong, L.L.; Hussain, G. A rule-based system for trade-off among energy consumption, tool life, and productivity in machining process. J. Intell. Manuf. 2015, 26, 1217–1232. [Google Scholar] [CrossRef]
- Bilga, P.S.; Singh, S.; Kumar, R. Optimization of energy consumption response parameters for turning operation using Taguchi method. J. Clean. Prod. 2016, 137, 1406–1417. [Google Scholar] [CrossRef]
- Kumar, R.; Bilga, P.S.; Singh, S. Multi objective optimization using different methods of assigning weights to energy consumption responses, surface roughness and material removal rate during rough turning operation. J. Clean. Prod. 2017, 164, 45–57. [Google Scholar] [CrossRef]
- Teimouri, R.; Amini, S.; Lotfi, M.; Alinaghian, M. Sustainable drilling process of 1045 steel plates regarding minimum energy consumption and desired work quality. Int. J. Lightweight Mater. Manuf. 2019, 2, 397–406. [Google Scholar] [CrossRef]
- Su, Y.; Zhao, G.; Zhao, Y.; Meng, J.; Li, C. Multi-Objective Optimization of Cutting Parameters in Turning AISI 304 Austenitic Stainless Steel. Metals 2020, 10, 217. [Google Scholar] [CrossRef] [Green Version]
- Warsi, S.S.; Jaffery, H.I.; Ahmad, R.; Khan, M.; Akram, S. Analysis of power and specific cutting energy consumption in orthogonal machining of al 6061-T6 alloys at transitional cutting speeds. In Proceedings of the ASME 2015 International Mechanical Engineering Congress and Exposition, IMECE 2015, Houston, TX, USA, 13–19 November 2015. [Google Scholar]
- Bustillo, A.; Pimenov, D.Y.; Mia, M.; Kapłonek, W. Machine-learning for automatic prediction of flatness deviation considering the wear of the face mill teeth. J. Intell. Manuf. 2021, 32, 895–912. [Google Scholar] [CrossRef]
- Khan, A.M.; Anwar, S.; Gupta, M.K.; Alfaify, A.; Hasnain, S.; Jamil, M.; Mia, M.; Pimenov, D.Y. Energy-Based Novel Quantifiable Sustainability Value Assessment Method for Machining Processes. Energies 2020, 13, 6144. [Google Scholar] [CrossRef]
- Singh, G.; Sharma, V.S.; Gupta, M.K.; Nguyen, T.-T.; Królczyk, G.M.; Pimenov, D.Y. Parametric optimization of multi-phase MQL turning of AISI 1045 for improved surface quality and productivity. J. Prod. Syst. Manuf. Sci. 2021, 2, 5–16. [Google Scholar]
- Markopoulos, A.P.; Karkalos, N.E.; Mia, M.; Pimenov, D.Y.; Gupta, M.K.; Hegab, H.; Khanna, N.; Aizebeoje Balogun, V.; Sharma, S. Sustainability Assessment, Investigations, and Modelling of Slot Milling Characteristics in Eco-Benign Machining of Hardened Steel. Metals 2020, 10, 1650. [Google Scholar] [CrossRef]
- Jamil, M.; Zhao, W.; He, N.; Gupta, M.K.; Sarikaya, M.; Khan, A.M.; R, S.M.; Siengchin, S.; Pimenov, D.Y. Sustainable milling of Ti–6Al–4V: A trade-off between energy efficiency, carbon emissions and machining characteristics under MQL and cryogenic environment. J. Clean. Prod. 2021, 281, 125374. [Google Scholar] [CrossRef]
- Pimenov, D.Y.; Abbas, A.T.; Gupta, M.K.; Erdakov, I.N.; Soliman, M.S.; El Rayes, M.M. Investigations of surface quality and energy consumption associated with costs and material removal rate during face milling of AISI 1045 steel. Int. J. Adv. Manuf. Technol. 2020, 107, 3511–3525. [Google Scholar] [CrossRef]
- Karim, M.R.; Tariq, J.B.; Morshed, S.M.; Shawon, S.H.; Hasan, A.; Prakash, C.; Singh, S.; Kumar, R.; Nirsanametla, Y.; Pruncu, C.I. Environmental, Economical and Technological Analysis of MQL-Assisted Machining of Al-Mg-Zr Alloy Using PCD Tool. Sustainability 2021, 13, 7321. [Google Scholar] [CrossRef]
- Kumar, R.; Singh, S.; Sidhu, A.S.; Pruncu, C.I. Bibliometric Analysis of Specific Energy Consumption (SEC) in Machining Operations: A Sustainable Response. Sustainability 2021, 13, 5617. [Google Scholar] [CrossRef]
- Sen, B.; Gupta, M.K.; Mia, M.; Pimenov, D.Y.; Mikołajczyk, T. Performance Assessment of Minimum Quantity Castor-Palm Oil Mixtures in Hard-Milling Operation. Materials 2021, 14, 198. [Google Scholar] [CrossRef] [PubMed]
- Abbas, A.T.; Gupta, M.K.; Soliman, M.S.; Mia, M.; Hegab, H.; Luqman, M.; Pimenov, D.Y. Sustainability assessment associated with surface roughness and power consumption characteristics in nanofluid MQL-assisted turning of AISI 1045 steel. Int. J. Adv. Manuf. Technol. 2019, 105, 1311–1327. [Google Scholar] [CrossRef]
- Markiewicz, H.; Klajn, A. Voltage disturbances standard en 50160-voltage characteristics in public distribution systems. Wroc. Univ. Technol. 2004, 21, 215–224. [Google Scholar]
- Pimenov, D.Y.; Bustillo, A.; Mikolajczyk, T. Artificial intelligence for automatic prediction of required surface roughness by monitoring wear on face mill teeth. J. Intell. Manuf. 2018, 29, 1045–1061. [Google Scholar] [CrossRef] [Green Version]
- Association, C.D. Voltage Disturbances. Standard EN 50160 Voltage Characteristics in Public Distribution Systems. In Power Quality Application Guide; European Copper Institute: Brussels, Belgium, 2004; pp. 7–21. [Google Scholar]
- Anderson, M.J.; Whitcomb, P.J. RSM Simplified: Optimizing Processes Using Response Surface Methods for Design of Experiments, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2016; p. 311. [Google Scholar]
- Zhang, S. Analysis of some measurement issues in bushing power factor tests in the field. IEEE Trans. Power Deliv. 2006, 21, 1350–1356. [Google Scholar] [CrossRef]
- Kumar, R.; Kaur, S. Multi Attribute Decision Making Approach to Select Microwave Oven with TOPSIS Method. In Proceedings of the 7th International Conference on Advancements in Engineering and Technology (ICAET-2019), Bhai Gurdas Institute of Engineering & Technology, Sangrur, India, 15–16 March 2019; pp. 357–361. [Google Scholar]
- Kumar, R.; Dubey, R.; Singh, S.; Singh, S.; Prakash, C.; Nirsanametla, Y.; Królczyk, G.; Chudy, R. Multiple-Criteria Decision-Making and Sensitivity Analysis for Selection of Materials for Knee Implant Femoral Component. Materials 2021, 14, 2084. [Google Scholar] [CrossRef]
- Kumar, R.; Singh, S.; Bilga, P.S.; Jatin, K.; Singh, J.; Singh, S.; Scutaru, M.-L.; Pruncu, C.I. Revealing the benefits of entropy weights method for multi-objective optimization in machining operations: A critical review. J. Mater. Res. Technol. 2021, 10, 1471–1492. [Google Scholar] [CrossRef]
- Chodha, V.; Dubey, R.; Kumar, R.; Singh, S.; Kaur, S. Selection of industrial arc welding robot with TOPSIS and Entropy MCDM techniques. Mater. Today Proc. 2021, in press. [Google Scholar] [CrossRef]
- Saaty, T.L. Decision making—The Analytic Hierarchy and Network Processes (AHP/ANP). J. Syst. Sci. Syst. Eng. 2004, 13, 1–35. [Google Scholar] [CrossRef]
Component Blickle for O-1 to O-4 | |
Workpiece material | Mild steel grade: DIN: ST52.3 |
Percentage composition | C: 0.207–0.22, Mn: 1.04–1.6, Si: 0.240–0.5, P: 0.033–0.035, Al: 0.038, and rest Fe |
Surface Hardness | 149/167 BHN |
Grain size | 6.5 to 7.0 |
Micro Structure | Pearlite + ferrite |
Applications | Manufacturing of automobile parts, airport trolley parts |
Component Gear Blank for O-5 | |
Workpiece material | 20MnCr5 steel or EN 10084-2008 |
Percentage composition | C: 0.17–0.22, Simax: 0.4, Mn: 1.1–1.4, Cr: 1–1.3, Pmax: 0.035, Smax: 0.035 |
Applications | Auto parts, tractor parts |
Operation | Cutting Tool | Technical Particulars |
---|---|---|
O-1 Drilling | HSS drill; Make: ITM | Diameter Φ 16.0, flute length 110 mm, point angle 140°, number of flutes 2 |
O-1 Core Drilling | Special core drill (solid carbide) with SECO inserts; Namoh Tooling’s | Flute length 85 mm, diameter Φ 17.75, tool with two fine boring inserts SECO make SCGX060204P2 |
O-2 Drilling | Solid carbide drill; Namoh Tooling’s | Diameter Φ 16, point angle of 140°, coating of TiAIN, flute length 100 mm, shank length of 50 mm, external cooling |
O-2 Core Drilling | Special core drill (solid carbide) with SECO inserts; Namoh Tooling’s | Flute length 85 mm, diameter Φ 17.75, tool with two fine boring inserts SECO make SCGX060204P2 |
O-2 Chamfer | SECO insert | TCMT110204-F1-TP1501, chamfer at angle 45° |
O-2 Facing | SECO insert | SCGX060204P2 |
O-3 Rough Turning | SECO carbide insert | WNMG060408-M5-TP1501 |
O-3 Facing | Facing insert; SECO Make | ONMU0900520 ANTN-M13-F40M |
O-4 Drilling | Special carbide drill Namoh Tooling | Flute length 50 mm, point angle 140° |
O-4 Chamfer | SECO insert | TCMT110204-F1-TP1501 chamfer at angle 45° |
O-4 Facing | SECO insert | SCGX060204P2 |
O-5 Turning and Facing | SECO carbide insert | WNMG060408-M5-TP1501 |
Machining Operation | Cutting Parameters Details |
---|---|
O-1 | Drilling and Core Drilling-1: (on VMC) Drilling-1 (HSS drill): External diameter of workpiece 30 mm Hole diameter in drilling: 16 mm, Spindle RPM 450 Incremental peck drilling 15 mm of peck length, Feed rate 70 mm/min, the actual depth of the hole 77 mm Core drilling: Core diameter 17.8 mm, Spindle RPM 1200, Feed rate 120 mm/min |
O-2 | Drilling and Core Drilling-2: (on VMC) Drilling-2 (Solid carbide drill): External diameter of workpiece 30 mm Hole diameter in the drilling 16 mm, Spindle RPM 1050 Incremental peck drilling 10 mm of peck length, Feed rate 125 mm/min, The actual depth of the hole 77 mm Core drilling: Core diameter 17.8 mm, Spindle RPM 1200, Feed rate 120 mm/min |
O-3 | Rough Turning: (on CNC) External diameter of rough turning 35 mm, Final diameter 31.4 mm, depth of cut of 1.8 mm, feed of 0.18 mm/rev, Cutting speed 31 m/min, Length of cut 105 mm |
O-4 | Drilling and Chamfer, Facing: (on VMC) Facing: Spindle RPM 1500, Feed rate of 200 mm/min Drilling: Drill diameter 14 mm, Spindle speed 1500 RPM, Incremental peck drilling Peck length 8.2 mm, Hole depth 10.5 mm Chamfer: Spindle RPM 2000, Feed 150 mm/min, 1 × 45° |
O-5 | Turning and Facing: (on CNC) Turning: Final outer diameter obtained 133.4 mm, Length of cut 19.1 mm, depth of cut 1 mm, Feed 0.18 mm/rev, Cutting speed 168 m/min Facing-1: Outer diameter 133.4 mm and inner diameter 105 mm, faced through the depth of 1 mm. Feed 0.18 mm/rev, cutting speed 150 m/min Facing-2: Outer diameter 68 mm and inner diameter 52.78 mm, faced through the depth 1 mm, Feed 0.18 mm/rev, cutting speed 76 m/min |
Description | Units | VMC BFW/V-4 BT-40 | CNC LATHE BFW RHINO (2550) | CNC LATHE JYOTI (DX-100) |
---|---|---|---|---|
CNC System | - | Fanuc 01-MF | Fanuc (B-6i) 828D | Siemens |
Spindle Motor Power | kW | 7.5 (Cont.) | 11 | 7 |
11 (Int.) | 15 | 10.5 | ||
Spindle Speed | rpm | 8000 | 2000 | 4000 |
Table X-Axis | mm | 600 | 200 (cross) | 360 |
Saddle Y-Axis | mm | 450 | - | - |
Spindle Z-Axis | mm | 500 | 625 (longitudinal) | 200 |
Axis Drives Feed Rate | mm/min | 1–10,000 | 20 Rapid feed (X and Z) axis | 24 Rapid feed (X and Z) axis |
Ball screw Día × Pitch | mm | 32 × 16 | 32 × 10 (X-axis) 40 × 10 (Z-axis) | 32 × 10 |
Table Clamping Area | mm × mm | 450 × 900 | - | - |
ATC (No. of Tools) | - | 24 | 8/12 | 5 |
Accuracy Positioning | mm | ±0.007 | ±0.007 | ±0.007 |
Accuracy Repeatability | mm | ±0.005 | ±0.005 | ±0.005 |
Power Supply | 3-Phase, 415 V, 50 Hz | 3-Phase, 415 V, 50 Hz | 3-Phase, 415 V, 50 Hz | |
Total Machine Power | KVA | 18 | 16 | |
Chuck Size | mm | - | 250 | 170 |
Std. Turning Diameter | mm | - | 350 (max) | 100 |
Max. Turning Length | mm | - | 200 | 200 |
Operation | ƪm/c | ӒPCAC | ӒECAC | Ϊm/c | Ϊthdf | Ϊub | Ѷav | Ѷub | Ѷthdf |
---|---|---|---|---|---|---|---|---|---|
O-1 | 154 | 1.467 | 0.062 | 3.335 | 26.345 | 33.645 | 416.540 | 2.658 | 3.132 |
O-2 | 104 | 1.449 | 0.041 | 3.277 | 26.676 | 31.750 | 411.223 | 1.570 | 5.406 |
O-3 | 76 | 2.205 | 0.046 | 5.423 | 29.082 | 14.240 | 415.302 | 0.410 | 2.149 |
O-4 | 77 | 1.080 | 0.023 | 2.457 | 41.035 | 35.515 | 417.354 | 0.260 | 2.255 |
O-5 | 63 | 1.626 | 0.030 | 3.594 | 52.480 | 12.930 | 428.041 | 0.260 | 5.900 |
Operation | ƪm/c (sec) | ӒPCm/c (kW) | ӒECm/c (kWh) | V (cm3) | ƤFm/c | Ϊm/c (A) | Ϊthdf (%) | Ϊub (%) | Ѷav (V) | Ѷub (%) | Ѷthdf (%) |
---|---|---|---|---|---|---|---|---|---|---|---|
O-1 | 154 | 1.973 | 0.084 | 19.759 | 0.677 | 4.027 | 40.898 | 40.316 | 415.500 | 2.58 | 3.638 |
O-2 | 104 | 2.321 | 0.067 | 19.759 | 0.675 | 4.719 | 40.965 | 35.670 | 409.706 | 1.630 | 6.565 |
O-3 | 76 | 3.706 | 0.077 | 19.702 | 0.686 | 7.404 | 41.435 | 10.94 | 415.234 | 0.405 | 2.26 |
O-4 | 77 | 1.542 | 0.033 | 3.760 | 0.647 | 3.478 | 43.673 | 18.583 | 416.825 | 0.225 | 2.257 |
O-5 | 63 | 2.975 | 0.053 | 14.300 | 0.738 | 5.691 | 51.447 | 19.420 | 426.704 | 0.285 | 6.349 |
Operation | ӒECm/c (kJ) | ĖĖή (%) | ʂ (kJ/cm3) |
---|---|---|---|
O-1 | 302.472 | 25.637 | 15.308 |
O-2 | 241.200 | 38.209 | 12.207 |
O-3 | 277.74 | 40.260 | 14.097 |
O-4 | 118.620 | 30.303 | 31.548 |
O-5 | 190.800 | 43.396 | 13.343 |
Operation | Iteration-1 | Final Iteration | ||
---|---|---|---|---|
R-Sq. | (%) | Non-Significant Terms Removed | R-Sq. (%) | |
O-1 | R-sq. | 98.56 | Ѷub, Ѷthdf, Ϊub | 98.55 |
R-sq. (adj) | 98.50 | 98.51 | ||
R-sq. (pred) | 98.19 | 98.27 | ||
O-2 | R-sq. | 99.52 | Ѷub, Ѷthdf, Ϊthdf | 99.50 |
R-sq. (adj) | 99.48 | 99.48 | ||
R-sq. (pred) | 99.39 | 99.42 | ||
O-3 | R-sq. | 99.69 | Ѷthdf, Ϊthdf, Ѷav, Ϊub | 99.65 |
R-sq. (adj) | 99.66 | 99.64 | ||
R-sq. (pred) | 99.46 | 99.49 | ||
O-4 | R-sq. | 98.60 | Ѷub, Ѷav, Ϊub | 98.41 |
R-sq. (adj) | 98.46 | 98.33 | ||
R-sq. (pred) | 98.07 | 98.02 | ||
O-5 | R-sq. | 93.96 | Ѷthdf, Ѷav | 93.64 |
R-sq. (adj) | 93.20 | 93.08 | ||
R-sq. (pred) | 89.57 | 89.30 |
Source | DF | Adj SS | Adj MS | F-Value | p-Value |
---|---|---|---|---|---|
O-1 | |||||
Regression | 4 | 41,924,033 | 10,481,008 | 2526.98 | 0.000 |
Error | 149 | 617,999 | 4148 | ||
Total | 153 | 42,542,032 | |||
O-2 | |||||
Regression | 4 | 103,689,348 | 25,922,337 | 4895.57 | 0.000 |
Error | 99 | 524,211 | 5295 | ||
Total | 103 | 104,213,559 | |||
O-3 | |||||
Regression | 3 | 68,657,447 | 22,885,816 | 6859.26 | 0.000 |
Error | 72 | 240,227 | 3336 | ||
Total | 75 | 68,897,674 | |||
O-4 | |||||
Regression | 4 | 19,636,536 | 4,909,134 | 1117.05 | 0.000 |
Error | 72 | 316,419 | 4395 | ||
Total | 76 | 19,952,955 | |||
O-5 | |||||
Regression | 5 | 143,722,619 | 28,744,524 | 167.81 | 0.000 |
Error | 57 | 9,763,666 | 171,292 | ||
Total | 62 | 153,486,286 |
Term | Coef | SE Coef | T-Value | p-Value | VIF |
---|---|---|---|---|---|
O-1 | |||||
Constant | 1942.20 | 5.19 | 374.24 | 0.000 | |
Ѷav | 12.04 | 5.39 | 2.23 | 0.000 | 1.07 |
Ϊthdf | 82.22 | 8.76 | 9.39 | 0.000 | 2.83 |
ƤFm/c | 369.48 | 7.55 | 48.93 | 0.000 | 2.10 |
Ϊm/c | 239.48 | 8.97 | 26.71 | 0.000 | 2.95 |
O-2 | |||||
Constant | 2302.78 | 7.14 | 322.73 | 0.000 | |
Ϊub | 96.0 | 11.7 | 8.19 | 0.000 | 2.67 |
Ѷav | 30.05 | 8.04 | 3.74 | 0.000 | 1.26 |
ƤFm/c | 386.7 | 13.8 | 28.03 | 0.000 | 3.70 |
Ϊm/c | 755.8 | 10.8 | 69.77 | 0.000 | 2.28 |
O-3 | |||||
Constant | 3685.24 | 6.63 | 556.20 | 0.000 | |
Ѷub | −30.80 | 6.91 | -4.46 | 0.000 | 1.07 |
ƤFm/c | 158.1 | 13.2 | 11.94 | 0.000 | 3.94 |
Ϊm/c | 816.1 | 13.1 | 62.42 | 0.000 | 3.84 |
O-4 | |||||
Constant | 1528.34 | 7.55 | 202.30 | 0.000 | |
Ѷthdf | −17.43 | 8.09 | −2.15 | 0.035 | 1.13 |
Ϊthdf | 105.1 | 13.8 | 7.60 | 0.000 | 3.30 |
ƤFm/c | 431.4 | 13.0 | 33.31 | 0.000 | 2.90 |
Ϊm/c | 415.02 | 8.96 | 46.34 | 0.000 | 1.39 |
O-5 | |||||
Constant | 2942.9 | 52.1 | 56.44 | 0.000 | |
Ѷub | −183.9 | 62.2 | −2.96 | 0.005 | 1.40 |
Ϊub | 367 | 180 | 2.04 | 0.046 | 11.68 |
Ϊthdf | 218.9 | 98.9 | 2.21 | 0.031 | 3.54 |
ƤFm/c | 1108.4 | 61.2 | 18.12 | 0.000 | 1.35 |
Ϊm/c | 1211 | 133 | 9.11 | 0.000 | 6.40 |
Machining Operation | Avg. Ѷav | Avg. ƤFm/c | Avg. Ϊm/c | ӒPCm/c (W) (Exp.) | ӒPCm/c (Pred.) Std. Equation | Abs. Error Std. Equation | Relative Error |
---|---|---|---|---|---|---|---|
O-1 | 415.500 | 0.673 | 3.986 | 1942.203 | 1930.828 | 11.375 | 0.586 |
O-2 | 409.706 | 0.667 | 4.739 | 2302.782 | 2243.197 | 59.585 | 2.588 |
O-3 | 415.234 | 0.684 | 7.386 | 3685.243 | 3633.658 | 51.585 | 1.400 |
O-4 | 416.825 | 0.645 | 3.459 | 1528.342 | 1610.101 | 81.759 | 5.350 |
O-5 | 426.704 | 0.735 | 5.638 | 2942.897 | 3061.838 | 118.941 | 4.042 |
Machining Operation | Avg. Ѷub | Avg. Ѷthdf | Avg. Ϊub | Avg. Ѷav | Avg Ϊthdf | Avg. ƤFm/c | Avg. Ϊm/c | ӒPCm/c (Exp.) | ӒPCm/c (Pred.) Reg. Mod. | Abs. Error Reg. Mod. | Relative Error |
---|---|---|---|---|---|---|---|---|---|---|---|
O-1 | 2.600 | 3.626 | 39.887 | 415.500 * | 40.801 * | 0.673 * | 3.986 * | 1942.203 | 1941.442 | 0.761 | 0.039 |
O-2 | 1.655 | 6.869 | 35.751 * | 409.706 * | 42.887 | 0.667 * | 4.739 * | 2302.782 | 2302.557 | 0.225 | 0.010 |
O-3 | 0.405 * | 2.260 | 10.958 | 415.234 | 40.800 | 0.684 * | 7.386 * | 3685.243 | 3685.243 | 0.000 | 0.000 |
O-4 | 0.238 | 2.263 * | 19.060 | 416.825 | 43.767 * | 0.645 * | 3.459 * | 1528.342 | 1528.332 | 0.010 | 0.001 |
O-5 | 0.288 * | 6.350 | 19.698 * | 426.704 | 51.975 * | 0.735 * | 5.638 * | 2942.897 | 2942.847 | 0.050 | 0.002 |
Operation | ӒPCm/c | ӒECm/c | ĖĖή | ʂ | ƤFm/c | Ϊm/c | Ϊthdf | Ϊub |
---|---|---|---|---|---|---|---|---|
O-1 | 1.973 | 0.084 | 25.619 | 15.308 | 0.677 | 4.027 | 40.898 | 40.316 |
O-2 | 2.321 | 0.067 | 38.209 | 12.207 | 0.675 | 4.719 | 40.965 | 35.67 |
O-3 | 3.707 | 0.077 | 40.260 | 14.097 | 0.687 | 7.405 | 41.435 | 10.94 |
O-4 | 1.542 | 0.033 | 30.303 | 31.548 | 0.647 | 3.478 | 43.673 | 18.583 |
O-5 | 2.975 | 0.053 | 43.396 | 13.343 | 0.738 | 5.691 | 51.447 | 19.42 |
ӒPCm/c | ӒECm/c | ĖĖή | ʂ | ƤFm/c | Ϊm/c | Ϊthdf | Ϊub | |
---|---|---|---|---|---|---|---|---|
0.9718 | 0.9600 | 0.9890 | 0.9741 | 0.9994 | 0.9798 | 0.9978 | 0.9316 | |
0.0282 | 0.0400 | 0.0110 | 0.0259 | 0.0006 | 0.0202 | 0.0022 | 0.0684 | |
0.1437 | 0.2034 | 0.0561 | 0.1321 | 0.0030 | 0.1028 | 0.0111 | 0.3481 | |
(%) | 14.371 | 20.343 | 5.6058 | 13.207 | 0.2957 | 10.279 | 1.1134 | 34.806 |
Responses | ӒPCm/c | ӒECm/c | ĖĖή | ʂ | ƤFm/c | Ϊm/c | Ϊthdf | Ϊub |
---|---|---|---|---|---|---|---|---|
ӒPCm/c | 1 | 1/5 | 1/7 | 1/5 | 1/7 | 1/3 | 1/5 | 1/2 |
ӒPCm/c | 5 | 1 | 1 | 1 | 1 | 1/3 | 1/3 | 1 |
ĖĖή | 7 | 1 | 1 | 1 | 1 | 1/3 | 1/3 | 1 |
ʂ | 5 | 1 | 1 | 1 | 1 | 3 | 1/2 | 1 |
ƤFm/c | 7 | 1 | 1 | 1 | 1 | 1/3 | 1/3 | 1 |
Ϊm/c | 3 | 3 | 3 | 1/3 | 3 | 1 | 1/3 | 3 |
Ϊthdf | 5 | 3 | 3 | 2 | 3 | 3 | 1 | 3 |
Ϊub | 2 | 1 | 1 | 1 | 1 | 1/3 | 1/3 | 1 |
Eigen Vector | 0.03 | 0.093 | 0.1 | 0.151 | 0.1 | 0.174 | 0.269 | 0.083 |
ӒPCm/c | ӒECm/c | ĖĖή | ʂ | ƤFm/c | Ϊm/c | Ϊthdf | Ϊub | |
---|---|---|---|---|---|---|---|---|
Equal | 12.5% | 12.5% | 12.5% | 12.5% | 12.5% | 12.5% | 12.5% | 12.5% |
Entropy | 14.37% | 20.34% | 5.60% | 13.21% | 0.29% | 10.27% | 1.11% | 34.81% |
AHP | 3% | 9.3% | 10% | 15.10% | 10% | 17.4% | 26.9% | 8.3% |
Operation | Equal Weights | Entropy Weights | AHP Weights | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Sepi+ | Sepi− | MCS | Rank | Sepi+ | Sepi− | MCS | Rank | Sepi+ | Sepi− | MCS | Rank | |
O-1 | 0.0806 | 0.0721 | 0.0341 | 5 | 0.1827 | 0.2555 | 0.0208 | 5 | 0.0573 | 0.0702 | 0.0387 | 3 |
O-2 | 0.0628 | 0.0752 | 0.0410 | 4 | 0.1502 | 0.2321 | 0.0289 | 4 | 0.0450 | 0.0697 | 0.0423 | 2 |
O-3 | 0.0733 | 0.0839 | 0.0448 | 3 | 0.0883 | 0.2649 | 0.1177 | 1 | 0.0660 | 0.0666 | 0.0335 | 5 |
O-4 | 0.0636 | 0.0890 | 0.0519 | 2 | 0.0754 | 0.2315 | 0.1052 | 2 | 0.0514 | 0.0770 | 0.0461 | 1 |
O-5 | 0.0477 | 0.0829 | 0.0526 | 1 | 0.0688 | 0.2102 | 0.0951 | 3 | 0.0476 | 0.0656 | 0.0380 | 4 |
Weights | 1 | 2 | 3 | 4 | 5 | SUM | Rank |
---|---|---|---|---|---|---|---|
O-1 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 3.3333 | 4.3333 | 5 |
O-2 | 0.0000 | 0.6667 | 0.0000 | 2.6667 | 0.0000 | 3.3333 | 4 |
O-3 | 0.3333 | 0.0000 | 1.0000 | 0.0000 | 1.6667 | 3.0000 | 3 |
O-4 | 0.3333 | 1.3333 | 0.0000 | 0.0000 | 0.0000 | 1.6667 | 1 |
O-5 | 0.3333 | 0.0000 | 1.0000 | 1.3333 | 0.0000 | 2.6667 | 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sidhu, A.S.; Singh, S.; Kumar, R.; Pimenov, D.Y.; Giasin, K. Prioritizing Energy-Intensive Machining Operations and Gauging the Influence of Electric Parameters: An Industrial Case Study. Energies 2021, 14, 4761. https://doi.org/10.3390/en14164761
Sidhu AS, Singh S, Kumar R, Pimenov DY, Giasin K. Prioritizing Energy-Intensive Machining Operations and Gauging the Influence of Electric Parameters: An Industrial Case Study. Energies. 2021; 14(16):4761. https://doi.org/10.3390/en14164761
Chicago/Turabian StyleSidhu, Ardamanbir Singh, Sehijpal Singh, Raman Kumar, Danil Yurievich Pimenov, and Khaled Giasin. 2021. "Prioritizing Energy-Intensive Machining Operations and Gauging the Influence of Electric Parameters: An Industrial Case Study" Energies 14, no. 16: 4761. https://doi.org/10.3390/en14164761
APA StyleSidhu, A. S., Singh, S., Kumar, R., Pimenov, D. Y., & Giasin, K. (2021). Prioritizing Energy-Intensive Machining Operations and Gauging the Influence of Electric Parameters: An Industrial Case Study. Energies, 14(16), 4761. https://doi.org/10.3390/en14164761