
energies

Article

Analyzing the Trade-Offs between Meeting Biorefinery
Production Capacity and Feedstock Supply Cost: A Chance
Constrained Approach

Lixia H. Lambert 1,* , Eric A. DeVuyst 1, Burton C. English 2 and Rodney Holcomb 3

����������
�������

Citation: Lambert, L.H.; DeVuyst,

E.A.; English, B.C.; Holcomb, R.

Analyzing the Trade-Offs between

Meeting Biorefinery Production

Capacity and Feedstock Supply Cost:

A Chance Constrained Approach.

Energies 2021, 14, 4763. https://

doi.org/10.3390/en14164763

Academic Editors: Fernando Rubiera

González and Dino Musmarra

Received: 17 July 2021

Accepted: 30 July 2021

Published: 5 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Agricultural Economics, Oklahoma State University; Stillwater, OK 74078, USA;
eric.devuyst@okstate.edu

2 Department of Agricultural and Resource Economics, University of Tennessee, Knoxville, TN 37996, USA;
benglish@utk.edu

3 Department of Agricultural Economics and Food & Ag Products Center, Oklahoma State University,
Stillwater, OK 74078, USA; rodney.holcomb@okstate.edu

* Correspondence: lixia.lambert@okstate.edu

Abstract: Commercial-scale switchgrass production for cellulosic biofuel remains absent in U.S. A
well-recognized difficulty is the steady provision of high-quality feedstock to biorefineries. Switch-
grass yield is random due to weather and growing conditions, with low yields during establishment
years. Meeting biorefinery production capacity requirements 100% of the time or at any other fre-
quency requires contracting sufficient amount of agricultural land areas to produce feedstock. Using
chance-constrained programming, the trade-offs between the degree of certainty that refinery de-
mand for feedstock and the cost of contracting production acreage is assessed. Varying the certainty
from 60% to 95%, we find the costs of production, logistics and transportation ranged from 27% to
96% of the cost of 100% certainty. Investors and managers need to consider the cost of certainty of
biomass acquisition when contracting for production acreage.

Keywords: biofuel; switchgrass (Panicum virgatum L.); uncertainty; risk; chance constrained programming

1. Introduction

The United States (U.S.) Renewable Fuel Standard (RFS) mandates the production of
16 billion gallons of cellulosic ethanol by 2022. The U.S. cellulosic biofuel industry is well
behind this target. Little cellulosic biofuel is currently produced at the commercial scale in
the U.S. Of the existing commercial cellulosic ethanol plants, three are idled, one is on hold,
one is under construction, and one is operational [1].

Challenges and opportunities facing the development of the cellulosic biofuel de-
velopment have been extensively researched. Previous studies primarily focus on cellu-
losic feedstock production, conversion technologies, end uses, and segments along the
value chain in the U.S. Among all the cellulosic feedstock options, perennial switchgrass
(Panicum virgatum L.) is a promising cellulosic feedstock because it can be produced on
marginal agricultural land. This feature reduces land substitution for food production,
reduces soil erosion potential on environmentally sensitive land, offsets greenhouse gas
emissions, and supports biodiversity [2,3]. Financial support through federal programs are
available for establishing switchgrass and to assist with the logistical costs of transporting
feedstock to biorefineries [4]. Previous research suggests growing switchgrass can be
profitable with vertical contracting systems between farmers and biorefineries [5]. Further,
landowners are willing to plant switchgrass if the opportunity cost of converting from
current uses to switchgrass production is low and downside risk can be prevented [6,7].

Technical and economic analyses demonstrate that commercial-scale switchgrass-
driven biofuel production is feasible under certain market conditions [8–10]. Deterministic
and stochastic studies have analyzed feedstock production and costs, logistic, and optimal
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facility location to invest and establish the preprocessing centers and biorefineries in
Tennessee, Oklahoma, and Dakotas (e.g., [11–15]). Yet, the absence of cellulosic ethanol
production in these well-studied states indicates that the investment risk remains high for
biofuel industry [16].

Like all dryland perennial crops, switchgrass yield is stochastic and affected by
weather and growing conditions. In addition, switchgrass requires two to three years
to establish and reach yield potential. Switchgrass yields vary with soil quality and annual
weather conditions [17]. Many feedstock supply chain and economic studies assumed
deterministic switchgrass yields over a 10 to 15 year lifetime (e.g., [11,18–24]). However, an
increasing number of recent studies consider feedstock supply uncertainty as an important
determinant of optimal facility and preprocessing locations (e.g., [16,21,25–28]), in addition
to considering economic, social, and environmental goals (e.g., [29,30]). For biorefinery
management, capacity utilization is likely a critical factor for profitability. Ignoring the
three-year establishment period for switchgrass and the inherent variability in yield may
translate into biomass shortages at the biorefinery or high costs of contracting production
acres. Assuming switchgrass yields follow a roughly symmetric distribution, if acres are
contracted to meet plant capacity using mean yields, the facility will experience a biomass
shortfall in roughly 50% of the operating years.

This research extends previous economic modeling efforts on optimal biomass con-
tracting by incorporating spatial and temporal yield variability for switchgrass establish-
ment and production. A chance constrained program [31,32] is developed to model the
biorefinery by minimizing the sum of costs of acquiring biomass feedstock over a ten-year
period. The programming model is constrained to require that feedstock demand is met
with a degree of certainty in each of the ten-year planning horizon. The analysis focuses on
the state of Oklahoma, which has a substantial amount of pasture and hay land that could
be converted to switchgrass production.

2. Chance Constrained Programming and Application in Biofuel Supply
Chain Research

Chance constrained programming (CCP) is a useful approach for modeling uncer-
tainty in optimization problems. CCP was introduced by [31,32]. CCP assumes that the
decision maker faces uncertain circumstances, and is forced to make a decision based on the
predetermined frequency of which constraints must be satisfied. For a producer, the proba-
bility (or likelihood) of a resource constraint (or a production targeted level) being satisfied
is set to be greater than or equal to some predetermined values. The advantage of CCP
is its simplicity with respect to satisfying a constraint at some probability. CCP is widely
applicable to problems that involve making decisions (or plans) under risk and uncertainty,
including water resource management (e.g., [33–38]), agriculture (e.g., [39–41]), finance
(e.g., [42,43]), power flow and generation (e.g., [44,45]), and renewable energy (e.g., [46,47]).
One of the main critiques of CCP is that it cannot provide alternative solutions to decision
makers if constraints are not met (e.g., [48,49]).

CCP has been used in a handful of biofuel supply chain analysis. [50] formulated
a chance constrained model to determine a biofuel supply chain network while ensur-
ing that the probability of utilizing certain amount municipal wastes was satisfied. [51]
demonstrates the use of CCP with multiple distribution assumptions for biofuel demand.
Compared with deterministic and two-stage stochastic programming model results, CCP
provides the most conservative, risk-averse solution [51]. CCP has also been used along
with other stochastic programming approaches such as two-stage or multi-stage stochastic
programming in municipal solid waste power supply [52] and renewable energy stor-
age [53]. While CCP had shown this is a useful tool in early stage planning of biofuel
industry, it appears that this approach has not been applied in switchgrass acquisition and
biorefinery capacity fulfillment. If a biorefinery contracts farmers to produce switchgrass
as its main feedstock, the foremost question for the biorefinery is how much land will be
needed and what are the optimal locations of these acres. Uncertainty in biomass supply
will affect realized biorefinery output as unmet demand or oversupply of feedstock.
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3. Materials and Methods

The application of chance constrained approach in a switchgrass supply is formulated
considering feedstock production area and location, logistic costs, travel distance from the
location of switchgrass production to a biorefinery, and the associated costs. The analysis in
this manuscript assumes that all potential switchgrass producers have identical opportunity
costs and receive the same contracting prices from each biorefinery.

3.1. Optimization Model

A linear chance constrained programming model is formulated to determine optimal
switchgrass production areas and shipping routes between that biomass supply and de-
mand. The model’s objective is to minimize total costs of feedstock production, logistics,
and transportation, assuming that each biorefinery has a t-year contract with farmers to
supply switchgrass biomass (Equation (1)).

min
x≥0

ECP + ECL + ECS (1)

where ECP is total expected switchgrass production costs, ECL is total expected switchgrass
logistic costs, and ECS is total expected switchgrass transportation costs. Each biorefinery
j contracts acres xij from producer i.

In Equation (2) expected production costs ECP are calculated using the mean yield of
switchgrass Yit at location i, in year t, multiplied by the per acre cost production (αij) and
contracted acres xij:

ECP = ∑
ijt

α · xij ·Yit (2)

Transportation costs per ton from production location i to biorefinery j are βij, ECS

the total expected cost of switchgrass transportation is calculated as:

ECS = ∑
ijt

βij · xij ·Yit. (3)

Equation (4) calculates the total expected logistic costs, where γ is the logistic costs
per dry Mg of switchgrass.

ECL = ∑
ijt

γ · xij ·Yit (4)

Model constraints include acreage constraints and chance constraints on the proba-
bility of delivering the annual capacity to each biorefinery. The switchgrass production
area in location i cannot exceed the available land (Li_) that can be used for switchgrass
production (Equation (5)).

∑
j

xij ≤ Li ∀ i (5)

Given yield variability during the establishment through post-establishment years, the
minimum probability of meeting annual switchgrass demand is denoted θt (Equation (6)).
The annual biomass demand Mj for each biorefinery ensures that the probability (Pr) of
meeting Mj in year t is at least θt.

Pr

[
∑

i
xij · yit ≥ Mj

]
≥ θt ∀ t (6)
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In Equations (5) and (6), yit is a random yield at location i, in year t, with the probability
density function f (yit). A triangular distribution is imposed on dryland switchgrass
yield [54,55] assuming yields are not serially correlated. A triangular distribution for
switchgrass yield was used because the yield data for each period t is limited, given that
switchgrass would be new to many producers. Information on minimum, maximum, and
most likely yields are comparatively easier to obtain. These are all parameters needed
of the triangular distribution. The triangular distribution is fully parameterized with the
maximum yield Ymax

it , the minimum yield Ymin
it , and the yield mode Ymod

it . Further, the
cumulative density function can be expressed as a linear equation (Equation (7)):

Mj −∑
i

xij ·
[

Ymax
it −

√
θt ·
(
Ymax

it −Ymin
it
)
·
(
Ymax

it −Ymod
it
)]
≤ 0 ∀ j, t. (7)

Then, expected yield Yit for each location i, year t, is the sum of minimum yield,
maximum yield, and most likely yield Ymode

it divided by three (Equation (8)):

Yit =
Ymax

it + Ymin
it + Ymod

it
3

∀ i, t. (8)

3.2. Study Region and Data
3.2.1. Oklahoma and Decision Making Unit

Oklahoma, located in south central of the U.S., is a transition zone from humid
continental (north) to humid subtropical (east and southeast) to semi-arid (west). Oklahoma
is primarily an agricultural state. Over 70% of the state land areas, more than 13 million
ha, are employed for agricultural production [56] with about 20% of agricultural hectares
cropped. About 40% of crop hectares are in hay production to support the state’s large
cattle industry. Most of Oklahoma’s counties are relatively sparsely populated with most
of its population located in central and northeastern counties.

Two biorefinery locations are selected based on previous research in Oklahoma
(Figure 1). The first location is in Grady County [57], and the second is in Okfuskee
County [27]. A cost minimizing switchgrass-based biofuel supply chain was formulated
assuming these biorefineries vertically contract with farmers to convert hay production
land to establish and produce switchgrass. Investors or managers of these biorefineries
choose least cost switchgrass production sites, mainly determined by regional agricultural
productivity, as well as logistics and transportation costs to situate the switchgrass contract-
ing areas. The biorefinery planning period of contracting switchgrass production is ten
years, although the biorefinery project life period could be twenty years. This is a common
assumption that the expected life a switchgrass stand is ten years [58] (Recent research
have shown that switchgrass lifetime can be longer than 10 years [59]).
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A distance matrix was generated between centroids of counties where biorefineries
are located and centroids of other nearby counties with hay land available to produce
switchgrass using ArcGIS [60]. If the switchgrass contracting areas are located in the Grady
and Okfuskee counties (i.e., biorefinery locations), the distance is measured from the cen-
troid of these two counties to its furthest boundary. The maximum one-way transportation
distance is 80 km as suggested by [18].

3.2.2. Switchgrass Yields

Lengthy switchgrass yield time series data are not available for multiple Oklahoma
locations. The Environmental Policy Integrated Climate (EPIC) model [61] is employed to
simulate switchgrass yield for Oklahoma Crop Reporting Districts (CRDs). Each CRD is
considered a homogeneous production area. CRDs are composed of five or more counties
in Oklahoma (Figure 1). There are nine CRDs in Oklahoma.

Data required for simulating switchgrass in EPIC include weather, soil type, and oper-
ation inputs (fertilizers), and planting, fertilizer, and harvesting dates. Weather and wind
data from weather stations located in the center of each CRD were used. Representative
agricultural land soil types for each CRD were identified from the USDA Natural Resources
Conservation Service (NRCS) Soil Survey Geographic Database (SSRUGO). Twenty-six
representative cropland soil types were identified. Each EPIC evaluation was 100 years
long, with switchgrass re-establishment every ten years. Switchgrass was planted in May
at the beginning of each ten-year interval, harvested annually in December, and then
terminated at the end of each ten-year period. On April 1, starting in year two of each
ten-year cycle, 100 kg per ha of nitrogen was applied. Over the 100 simulated years, ten
observations of switchgrass yields were generated for each year in the ten-year cycle. For
example, ten yield observations were generated for the establishment year of switchgrass.
Table 1 presents the statistics of yield observations for each year and CRD generated by
EPIC simulations. CRD-3 and CRD-6, located in humid northeastern Oklahoma, have
higher modal switchgrass yields compared with other CRDs. Each county in a CRD was
assumed to have the annual simulated CRD switchgrass yield.

3.2.3. Production, Logistic, and Transportation Costs and Land Availability

A production cost of USD 58.39 per dry Mg [62] and a logistic cost of USD 23.70 per
dry Mg for switchgrass [62] were assumed (Table 2). Production costs are composed of
payments to biomass, harvesting and collection, and field storage. Logistic costs are the
sum of processing, handling, and queuing at the biorefinery. Transportation costs include
the movement of material from location i to biorefinery j, plus loading, trucking, and
unloading. A linear regression determined by [63] is used to calculate unit transportation
costs for different routes. The fixed transportation cost of USD 3.62 per Mg, and variable
transportation cost USD 0.0708 per dry Mg-km. The cost function is (Equation (9)):

βij = 3.62 + 0.0708 · dij (9)

where βij is the transport cost per dry Mg if transport biomass from location i to location j,
and dij is the round-trip distance in km between locations i and j.

Land available for each county is constrained to the 2017 harvested hay land areas
(USDA-NASS). Hay land is a good candidate for switchgrass production in Oklahoma
because of its proximity to roads, and because existing haying equipment can be used
to harvest switchgrass. Although Oklahoma has a vast amount of pasture land, 65%
of its pasture land is rangeland [64]. Rangeland may not be accessible or suitable for
switchgrass production because of its relatively low productivity, inaccessible terrain, or
critical ecological service.
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Table 1. Statistics of switchgrass yields (dry Mg per ha) in each CRD in years 1–10.

Crop Reporting
District (CRD) Statistic

Year

1 2 3 4 5 6 7 8 9 10

CRD-1
min a 3.93 3.98 5.38 4.64 5.33 5.02 3.22 4.37 4.63 4.24
max b 11.12 14.43 11.45 12.47 11.66 11.43 15.64 12.75 14.34 10.24

mode c 7.21 7.31 8.26 7.79 8.96 8.14 7.51 8.18 9.05 7.14

CRD-2
min 3.59 3.09 2.73 4.16 4.03 4.14 2.9 2.81 3.61 2.57
max 14.72 17.3 14.92 19.56 16.07 16.75 19.41 13.95 13.11 14.74

mode 7.16 7.66 7.31 8.57 7.56 7.2 7.19 6.36 7.21 6.1

CRD-3
min 2.72 2.99 2.32 3.01 3.4 3.29 2.18 2.34 2.57 2.27
max 14.46 20.56 19.96 19.41 20.82 18.12 19.56 17.42 15.36 15.95

mode 7 7.75 7.43 7.82 7.62 7.39 7.11 7.1 7.08 5.9

CRD-4
min 3.29 3.08 2.74 3.59 3.41 3.86 2.88 3.39 3.27 2.91
max 16.27 16.39 16.57 20.43 17.25 17.74 18.33 14.24 15.72 16.54

mode 6.84 7.29 7.35 7.98 7.56 6.73 7.44 6.83 6.83 6

CRD-5
min 3.17 3.73 3.03 3.62 3.55 3.89 2.91 3.27 3.43 3.08
max 13.85 16.43 20.53 18.41 19.57 18.63 17.56 14.74 13.75 17.36

mode 6.78 7.87 7.61 7.64 7.59 7.34 7.11 6.56 6.66 5.98

CRD-6
min 3.75 3.71 2.76 3.51 3.97 4.22 3.13 3.45 3.94 3.04
max 15.15 17.75 19.53 23.45 21.01 17.28 17.12 15.52 14.47 16.16

mode 7.26 7.94 7.63 8.63 8.31 7.88 7.29 7.14 7.06 6.3

CRD-7
min 2.62 3.24 2.87 3.18 3.18 3.94 2.66 3.09 3.28 2.89
max 12.33 18.7 16.58 20.45 16.83 21.34 23.07 17.11 18.13 13.64

mode 6.47 7.7 7.98 7.91 7.33 8 7.67 6.94 7.74 6.49

CRD-8
min 3.17 2.81 3.45 3.74 3.68 4 2.55 3.74 3.47 3.18
max 13.15 16.87 19.53 20.26 21.75 20.23 21.75 16.11 16.49 18.12

mode 7.05 7.87 7.99 8.08 7.92 7.7 7.46 7.6 7.21 6.48

CRD-9
min 2.7 2.79 2.19 2.94 2.48 3.53 2.31 2.91 2.64 2.45
max 9.78 11.26 14.13 15.76 15.69 14.13 14.39 11.04 11.53 13.99

mode 5.41 5.57 5.59 5.79 5.91 5.7 5.45 5.44 5.15 4.72
a. min refers to minimum yield level. b. max refers to maximum yield level. c. mode refers to ‘most likely yield level’. Median yields were
used as mode.

Table 2. Parameters.

Symbol Parameters Value Source

α Product Cost (USD/Mg) 58.39 Roni et al., 2019
γ Logistic Cost (USD/Mg) 23.7 Roni et al., 2019
M biomass demand (dry Mg/year) 724,000 Davis et al., 2015

3.2.4. Biorefinery Production Capacity and Switchgrass Biomass Demand Scenarios

A facility with a biomass demand of 2205 dry Mg per day of biomass operating at 90%
efficiency will require 724,000 dry Mg per year [65] (Table 2). Given a 10-year growth period
for switchgrass, it may be cost prohibitive for a biorefinery to expect that 100 percent of this
demand can be met annually. Table 3 presents a set of demand scenarios for switchgrass
based on the probability of meeting each biorefinery annual targeted conversion capacity.
The scenario SA constraints the preassigned probability of meeting biorefinery conversion
capacity is 100% from years 1 to 10. Scenarios S100, S95, S90, S85, S80, S75, S70, S65, and
S60 require that over the first three years, the probability of meeting annual biorefinery
demand are 35%, 45%, and 55%, respectively. From year four to year ten, the probabilities
of meeting demand vary from 100% to 60%.
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Table 3. Definition of scenarios based on probability meeting biorefinery annual demand.

Scenarios a Establishment Years Post-Establishment Years

Year 1 Year 2 Year 3 Years 4~10

SA 100% 100% 100% 100%
S100 35% 45% 55% 100%
S95 35% 45% 55% 95%
S90 35% 45% 55% 90%
S85 35% 45% 55% 85%
S80 35% 45% 55% 80%
S75 35% 45% 55% 75%
S70 35% 45% 55% 70%
S65 35% 45% 55% 65%
S60 35% 45% 55% 60%

a. Scenarios defined using probability meeting biorefinery annual demand. SA:100% of the time the biorefinery
annual demand can be met. S100-S60: probability of meeting biorefinery demand is 35% for the first year, 45% for
the second year, 55% for the third year, and varies from 100% to 60% for years 4 to 10.

4. Results
4.1. Switchgrass Production Area and Locations

The optimal solution for contracting switchgrass areas and locations is determined
under each biorefinery demand scenario (Figure 2 and Table 4). Although the two biore-
fineries, Grady and Okfuskee, have the same capacity, their solutions on feedstock draw
areas are different. Under the SA scenario, a 100% probability of meeting biorefinery annual
demand, the feedstock draw areas for a biorefinery in Grady is 124,135 ha of land, while the
Okfuskee biorefinery is 116,493 ha. The feedstock draw area for the biorefinery in Grady
is smaller than the Okfuskee biorefinery feedstock draw area if preassigned probabilities
for the first three years are less than 100% (S100~S60). The difference is mainly due to
land productivity where feedstocks were drawn. Both Grady and Okfuskee birefineries
are located in CRD-5 which is the central crop district. The Okfuskee biorefinery is near
the eastern boundary of the CRD-5 while the Grady biorefinery is near the southwestern
end of the CRD-5 (Figure 1). Beside drawing feedstock from counties located in CRD-5,
Okfuskee draws feedstock from counties located in CRD-3 and CRD-6, while Grady draws
feedstock from counties located in CRD-7 and CRD-8. The switchgrass yields are higher in
CRD-3 and CRD-6 than CRD-7 and CRD-8 because of projected higher precipitation.

Table 4. Switchgrass area (ha) and location under different scenarios.

Biorefinery County (Crop
Reporting District)

Scenarios a

SA S100 S95 S90 S85 S80 S75 S70 S65 S60

Grady Caddo (CRD-7) 9582 14,130 16,494 19,481 19,637 22,217 24,674 25,569 25,569 25,569
Canadian (CRD-5) 22,215 8170 1317
Cleveland (CRD-5) 8940 8940 8940 8940

Garvin (CRD-8) 18,418 18,418 18,418 12,902 17,295 11,358 5739 1733
Grady (CRD-5) 31,214 31,214 31,214 31,214 31,214 31,214 31,214 31,214 31,214 31,214

McClain (CRD-5) 18,765 18,765 18,765 18,765 18,765 18,765 18,765 18,765 18,765 18,765
Stephens (CRD-8) 15,002 15,002 15,002 15,002 15,002 15,002 15,002 15,002 13,700 10,749

Okfuskee Creek (CRD-5) 16,194 16,194 16,194 16,194 16,194 16,194 16,194 13,301 10,266 7307
Hughes (CRD-6) 15,772 15,772 15,772 15,772 15,772 15,772 15,772 15,772 15,772 15,772
Lincoln (CRD-5) 18,126 20,882 13,756 10,196 6762 3442 226

McIntosh (CRD-6) 16,298 13,171 16,298 16,298 16,298 16,298 16,298 16,298 16,298 16,298
Okfuskee (CRD-5) 17,043 17,043 17,043 17,043 17,043 17,043 17,043 17,043 17,043 17,043
Okmulgee (CRD-6) 21,028 21,028 21,028 21,028 21,028 21,028 21,028 21,028 21,028 21,028
Seminole (CRD-5) 12,032 12,032 12,032 12,032 12,032 12,032 12,032 12,032 12,032 12,032

Total 240,627 230,761 222,272 214,867 207,041 200,364 193,987 187,756 181,687 175,777
a. SA:100% of the time the biorefinery annual demand can be met. S100-S60: probability of meeting biorefinery demand is 35% for the first
year, 45% for the second year, 55% for the third year, and varies from 100% to 60% for years 4 to 10.
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As the probability of meeting biorefinery annual capacity decreases during the switch-
grass post-establishment period (years 4 to 10), the feedstock draw area is reduced for both
biorefineries (Figure 2 and Table 4). If meeting the annual capacity post establishment years
75% of the time (S75) is acceptable, the total draw area for both biorefineries is 193,987 acres,
or about 84% of draw area under S100. For the Okfuskee biorefinery, feedstock draw areas
in Lincoln county were affected the most, decreasing from 13,171 under S100 to 226 under
S75. Lincoln is 74 km from the Okfuskee biorefinery and located in CRD-5. From McIntosh
county to the Okfuskee biorefinery, the travel distance is longer compared with from Lin-
coln county to the Okfuskee biorefinery. McIntosh is located in CRD-6, where switchgrass
yields are higher. Seven counties supply switchgrass to the Grady biorefinery under S100,
but only five counties are need to meet a 75% level of certainty (S75).
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4.2. Estimated Costs

Total production, transportation, and logistics costs decline as the preassigned probability
of meeting biorefinery production capacity over establishment- and post-establishment
decrease (Table 5). Switchgrass transportation costs were affected most, compared with the
costs of production and logistics. Smaller, more local feedstock draw areas were required and
the distance traveled from producing county to biorefinery shortened as the chance of meeting
the biorefinery full capacity drops. Comparing S75 to S100, transportation costs decreased
by 20%, production and logistic costs fell by 16%, and total costs dropped by 17%. As is
expected, due to increasing marginal cost on probability of meeting biorefinery production
capacity, total costs increase at an increasing rate as this probability is increased from 60%
(S60) to 100% (SA). Figure 3 shows the resulting convex cost curve and the trade-offs between
the total expected cost and probability of meeting the production capacity. Higher probability
reflects a higher degree of certainty to meet the biorefinery production capacity. However,
as expected, higher degrees of certainty required even higher economic costs. A biorefinery
manager and owner could be better off without achieving the 100% certainty in meeting
production capacity if the costs are much higher than profits or the remaining capacity can be
met with other feedstock.
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Table 5. Cost Associated with Each Scenario (million U.S. dollars).

Scenarios a Production Cost Transportation Cost Logistic Cost Total

SA 1317 296 535 2147
S100 1264 281 513 2058
S95 1220 269 495 1984
S90 1179 257 478 1914
S85 1138 248 462 1848
S80 1101 237 447 1785
S75 1065 227 432 1724
S70 1030 218 418 1666
S65 996 210 404 1611
S60 964 202 391 1557

a. SA:100% of the time the biorefinery annual demand can be met. S100–S60: probability of meeting biorefinery
demand is 35% for the first year, 45% for the second year, 55% for the third year, and varies from 100% to 60% for
years 4 to 10.
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4.3. Excess Supply of Switchgrass

The expected annual volume of switchgrass produced and transported from fields
to biorefineries is higher than the facility capacity. Requiring the biorefinery meeting
the annual capacity 100% of establishment and post-establishment (SA) generates excess
supply from years 2–10 for Grady biorefinery and years 2–7 for Okfuskee biorefinery
(Figure 4). A lower degree of certainty during establishment period (years 1 to 3) results
in higher excess supply in the first three years under all scenarios. However, a lower
probability of meeting biomass demand for first three years results in lower excess supply
of switchgrass or even eliminated it in years 4 to 10, and lower biomass acquisition costs. A
decrease in the probability of meeting annual biorefinery capacity during the establishment
and post-establishment reduces excess supply across the project period and associated cost.



Energies 2021, 14, 4763 10 of 13Energies 2021, 14, x FOR PEER REVIEW 11 of 14 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Expected biomass volume exceed annual demand under different scenarios. (a) SA-100% of the time the biore-
finery annual demand can be met; (b) S100-probability of meeting biorefinery demand is 35% ,45%, and 55% for the first 
three years respectively, and 100% for years 4 to 10; (c) S95- probability of meeting biorefinery demand is 35% ,45%, and 
55% for the first three years respectively, and 95% for years 4 to 10; (d) S90- probability of meeting biorefinery demand is 
35% ,45%, and 55% for the first three years respectively, and 90% for years 4 to 10; (e) S85- probability of meeting biore-
finery demand is 35% ,45%, and 55% for the first three years respectively, and 85% for years 4 to 10; (f) S80- probability of 
meeting biorefinery demand is 35% ,45%, and 55% for the first three years respectively, and 80% for years 4 to 10; (g) S75- 
probability of meeting biorefinery demand is 35% ,45%, and 55% for the first three years respectively, and 75% for years 4 
to 10; (h) S70- probability of meeting biorefinery demand is 35% ,45%, and 55% for the first three years respectively, and 
70% for years 4 to 10; (i) S65- probability of meeting biorefinery demand is 35% ,45%, and 55% for the first three years 
respectively, and 65% for years 4 to 10; (j) S60- probability of meeting biorefinery demand is 35% ,45%, and 55% for the 
first three years respectively, and 60% for years 4 to 10.   

5. Conclusions 
One of the well-recognized reasons that hinge the second-generation biofuel industry 

development is feedstock production uncertainty. Existing technical and economic anal-
ysis demonstrate the feasibility of scaled-up biofuel production from converting 
switchgrass to drop-in fuel. However, uncertainty in procuring a steady flow of feedstock 
to meet the biorefinery capacity is an important planning issue. Resulting acquisition costs 
can be high for higher levels of biomass supply certainty.  

 In this research, the Oklahoma case study used a chance constrained approach to 
model the cost of acquiring biomass feedstock with a predetermined probability of meet-
ing the full capacity assuming switchgrass as the only feedstock available. Results show 
the land area required and the costs of meeting biorefinery production capacity increase 

Figure 4. Expected biomass volume exceed annual demand under different scenarios. (a) SA-100%
of the time the biorefinery annual demand can be met; (b) S100-probability of meeting biorefinery
demand is 35%, 45%, and 55% for the first three years respectively, and 100% for years 4 to 10;
(c) S95-probability of meeting biorefinery demand is 35%, 45%, and 55% for the first three years
respectively, and 95% for years 4 to 10; (d) S90-probability of meeting biorefinery demand is 35%, 45%,
and 55% for the first three years respectively, and 90% for years 4 to 10; (e) S85-probability of meeting
biorefinery demand is 35%, 45%, and 55% for the first three years respectively, and 85% for years 4 to
10; (f) S80-probability of meeting biorefinery demand is 35%, 45%, and 55% for the first three years
respectively, and 80% for years 4 to 10; (g) S75-probability of meeting biorefinery demand is 35%,
45%, and 55% for the first three years respectively, and 75% for years 4 to 10; (h) S70-probability of
meeting biorefinery demand is 35%, 45%, and 55% for the first three years respectively, and 70% for
years 4 to 10; (i) S65-probability of meeting biorefinery demand is 35%, 45%, and 55% for the first
three years respectively, and 65% for years 4 to 10; (j) S60-probability of meeting biorefinery demand
is 35%, 45%, and 55% for the first three years respectively, and 60% for years 4 to 10.

5. Conclusions

One of the well-recognized reasons that hinge the second-generation biofuel industry
development is feedstock production uncertainty. Existing technical and economic analysis
demonstrate the feasibility of scaled-up biofuel production from converting switchgrass
to drop-in fuel. However, uncertainty in procuring a steady flow of feedstock to meet the
biorefinery capacity is an important planning issue. Resulting acquisition costs can be high
for higher levels of biomass supply certainty.
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In this research, the Oklahoma case study used a chance constrained approach to
model the cost of acquiring biomass feedstock with a predetermined probability of meeting
the full capacity assuming switchgrass as the only feedstock available. Results show the
land area required and the costs of meeting biorefinery production capacity increase at
an increasing rate as the probability of meeting the full capacity increases. Land required,
costs, and excess supply amount also differ between biorefinery locations with identical
capacity due to transportation distances and spatial and temporal land productivity. A
lower probability of meeting the full production capacity during switchgrass establishment
years (years 1–3) is a reasonable strategy as the total costs can be reduced by more than 4%.
If further reduce the probability in the switchgrass post-establishment year, the cost can be
dropped by 27% compared with 100% of the time to meet biorefinery production capacity
in years 1 to 10.
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