
energies

Article

Non-Fragile H∞ Nonlinear Observer for State of Charge
Estimation of Lithium-Ion Battery Based on a
Fractional-Order Model

Zhongwei Zhang 1,†, Dan Zhou 2,†, Neng Xiong 2,† and Qiao Zhu 2,*

����������
�������

Citation: Zhang, Z.; Zhou, D.;

Xiong, N.; Zhu, Q. Non-Fragile H∞

Nonlinear Observer for State of

Charge Estimation of Lithium-Ion

Battery Based on a Fractional-Order

Model. Energies 2021, 14, 4771.

https://doi.org/10.3390/en14164771

Academic Editor: Teuvo Suntio

Received: 15 June 2021

Accepted: 21 July 2021

Published: 5 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Institute of Energy Storage and New Materials Technology, Dongfang Electric Corporation Science and
Technology Research Institute Co., Ltd., 18 Xixin Avenue High-Tech Zone West Park, Chengdu 611731, China;
zhangzw@dongfang.com

2 School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, China;
zhoudan@my.swjtu.edu.cn (D.Z.); swjtuxiongneng@163.com (N.X.)

* Correspondence: zhuqiao@home.swjtu.edu.cn; Tel.: +86-159-2882-0525
† These authors contributed equally to this work.

Abstract: This paper deals with the state of charge (SOC) estimation of lithium-ion battery (LIB)
in electric vehicles (EVs). In order to accurately describe the dynamic behavior of the battery, a
fractional 2nd-order RC model of the battery pack is established. The factional-order battery state
equations are characterized by the continuous frequency distributed model. Then, in order to ensure
the effective function of nonlinear function, Lipschitz condition and unilateral Lipschitz condition
are proposed to solve the problem of nonlinear output equation in the process of observer design.
Next, the linear matrix (LMIS) inequality based on Lyapunov’s stability theory and H∞ method is
presented as a description of the design criteria for non-fragile observer. Compared with the existing
literature that adopts observers, the proposed method takes the advantages of fractional-order
systems in modeling accuracy, the robustness of H∞ method in restricting the unknown variables,
and the non-fragile property for tolerating slow drifts on observer gain. Finally, The LiCoO2 LIB
module is utilized to verify the effectiveness of the proposed observer method in different operation
conditions. Experimental results show that the maximum estimation accuracy of the proposed
non-fragile observer under three different dynamic conditions is less than 2%.

Keywords: lithium-ion battery; state of charge estimation; fractional-order modeling; non-fragile
nonlinear observer; H∞ method; linear matrix inequality

1. Introduction

Due to the huge fossil energy consumption since the industrial revolution, electric
vehicles (EVs) have been greatly developed [1]. The key energy source of electric vehicles,
lithium-ion batteries (LIBs), is considered to be an important way of energy storage because
of its high energy storage per unit volume, stable performance, and the potential for lower
production costs [2].The state of charge (SOC) of LIB, defined as the ratio of the remaining
capacity to the nominal capacity of the battery is crucial to prevent battery from over-
charging or over-discharging, fire, and even explosion. Meanwhile, SOC stands for the
most basic parameter in a battery management system (BMS) in EVs. The electrochemistry
complexity of the battery’s internal reaction usually causes the high nonlinearities of battery
systems. Moreover, in practice, SOC cannot be measured directly by sensors.

In the existing studies, a series of equivalent circuit models (ECMs) is carried out to
capture nonlinearities of LIB comprehensively, such as Rint Model [3], Thevenin model [4],
2nd-order RC (resistor-capacitor) model [5], etc. More recently, many researchers have
found that nonlinear systems have fractional properties [6]. The fractional-order (FO)
battery models, which consist of fractional elements, including Warburg element [7],
constant phase element (CPE) [7,8], and fractional capacitor [9–12], have been introduced to
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model the nonlinear characteristics of battery. The three electrical components, indeed, can
be unified by the same equation. Compared with integer-order (IO) models, fractional-order
models can model nonlinearities of battery more accurately to achieve better approximation
of the battery system [7,8,11,12]. Among them, the Kalman filter-based approaches [7,9]
often suppose that the model and measurement noises are Gaussian, and assume that
both the covariance matrix of measurement noise and model error are known. On the
other hand, the observer-based approaches [8,11,12] do not demand knowledge on noise
distributions which are considered to be more practical, of which the observer in [8] with
constant gain was slightly weak in tracking the nonlinear dynamic process. In fact, only
for integer-order battery models, the observers with dynamic gain were proposed to adapt
the nonlinear dynamics [13,14]. Moreover, in order to improve the role of the observer to
suppress the measurement noise and modeling error, the H∞ observers for integer-order
battery model were introduced in [15,16]. Finally, note that the fractional-order calculus,
an extension of the classical integer-order calculus, is developed in various fields such
as control engineering [17,18], signal processing [19,20], and system modeling, including
supercapacitors [21] and LIBs [7].

In practical applications, many SOC estimation methods are implemented digitally on
microcontrollers [22], and the FOC is also actualized by numerical techniques [7–12]. Mean-
while, some perturbations such as external disturbances and slow drifts on the observer
gain may cause serious deterioration of the observer performance [20,23,24]. This brings up
a fragility problem that has been of great interest in the control theory area [20,24–27]. As
the observer gains are usually obtained from LMIs, which are calculated off-line [8,13–16],
a non-fragile observer that tolerates some perturbations or gain fluctuations [25] and allows
for on-line tuning of model parameters to retrench the cost of implementation is essential.
The authors of [26] focused on a class of nonlinear fractional-order uncertain systems with
bounded perturbation on the observer gain. In [20], the authors dealt with the problem
of non-fragile observer design for a class of Lipschitz nonlinear fractional-order systems.
In [24,25,27], non-fragile observers based on H∞ performance have been investigated.

For the purpose of capturing nonlinearities of LIB in modeling and considering the
advantages of the H∞ observer and its practical applications, a non-fragile H∞ observer
method with dynamic gain based on fractional 2nd-order RC model is proposed in this
paper. Compared with the existing literature, the main contributions of this paper are as
follows:

1. Kalman filter-based approaches [7,9] usually assume that the model and measurement
noises are Gaussian, which is not the case in actual situations. In order to restrict
the effects of the non-Gaussian model and measurement noises [28] for fractional-
order battery models, a H∞-based nonlinear observer is proposed. Furthermore, the
proposed observer with dynamic gain is also considered to outperform the constant
gain observer [8]. The dynamic gain means that the proposed observer can estimate
the SOC accurately in various dynamic operation conditions.

2. The fragility problem involves a trade-off between implementation accuracy and
performance deterioration of the observer implementation. It has caused extensive
concern in [20,24–27,29], but it has not be taken seriously in research areas of SOC
estimation. Therefore, to further improve the accuracy of SOC estimation of observer-
based methods, we put forward the non-fragile observer. For SOC estimation of
fractional-order battery model, the non-fragile observer design criterion for the gain
of proposed observer is crucial to solve the fragility problem in practical and real-time
applications. Considering the additive perturbation on observer gain with known
bound make it implement more properly than the off-line calculation of the observer
gain in [8]. Moreover, it is vital to improve the reliability and robustness of all
observer-based methods for SOC estimation.

The content of this article is arranged as follows. In Section 2, the fractional-order 2 RC
equivalent circuit model of the battery pack is explained. Section 3 consists of experiments
and a least-square method mixed with physical behavior based identification method for
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model parameters. In Section 4, the nonlinear observer design criterion is presented to
design the SOC estimator. Experimental validations of the SOC estimation are discussed in
Section 5. Conclusions are given in Section 6.

2. Fractional-Order Modeling for LiCoO222 Lithium-Ion Battery (LIB) Module
2.1. Constant Phase Element (CPE)

The electrochemical impedance spectroscopy (EIS) method is based on the measure-
ment of the electrical voltage response of a LIB by applying a wide frequency range of a.c.
signal. CPE is an equivalent electrical circuit component to describe the investigated LIB
impedance, that is, an imperfect capacitor [30]. Meanwhile, it was introduced in [31] that
the majority of capacitors show fractional properties in practical dynamic conditions. In
consequence, the electrical impedance of the CPE could be represented as the following
form [9]:

ZCPE(jω) =
1

CCPE(jω)α
, 0 < α < 1 (1)

or

ZCPE(s) =
1

CCPEsα
, s = jω, 0 < α < 1 (2)

where ZCPE(jω) = uCPE(jω)/iCPE(jω) is the electrical impedance of the CPE when the a.c.
signal iCPE(jω) is applied with frequency ω; iCPE and uCPE denote the current and voltage
of the CPE, respectively; CCPE is the capacitance of the CPE, j is the imaginary unit; α is the
fractional-order; and s denotes the Laplace variable.

It follows that

iCPE(t) = CCPE
dαuCPE(t)

dtα
(3)

2.2. Fractional 2nd-Order RC Battery Model

The Grünwald–Letnikov (GL) definition for generalized fractional integro-differential
system is commonly used.

Definition 1. The α-th order GL fractional derivative of x(t) is defined by [9,32]

Dα
t x(t) = lim

h→0
h−α

[t/h]

∑
j=0

ωα
j x(t− jh), (4)

where Dα
t =


dα

dtα
, α > 0

1, α = 0∫ t

0
(dτ)α. α < 0

is the continuous integro-differential operator, the factor ωα
j =

(−1)j(α
j), ωα

0 = 1, (α
j) is the binomial coefficient, thus ωα

j = (1− α+1
j )ωα

j−1, and [t/h] is the
integer part of t/h.

According to Definition 1, the following GL fractional-order integral form when α < 0
can be obtained:

Dαx(t) =
∫ t

0
x(τ)(dτ)α = lim

h→0
hα

[t/h]

∑
j=0

ω−α
j x(t− jh). (5)

As is mentioned in the introduction, various kinds of ECMs have been widely used
in battery modeling, most of which comprise one or more capacitors. Generally, the
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capacitors of the ECMs are assumed to be integer-order. As is mentioned in [31], the
fractional capacitor model can reproduce and predict the capacitor’s behavior much better
than any other theory. Considering the fractional properties of capacitor, in this paper,
the fractional 2nd-order RC battery model is introduced by adopting two CPEs to replace
the two integer-order capacitors in the commonly used integer 2nd-order RC ECM [5,33],
which had been studied in [7,8]. Another reason to employ this model is that we find it
can perform better in modeling the change of terminal voltage than the integer 2nd-order
RC model. As such, the fractional 2nd-order RC ECM is employed here, and its schematic
diagram is shown in Figure 1.

Figure 1. The schematic diagram of the fractional 2nd-order RC model.

In Figure 1, the notation UOC denotes the OCV related to SOC; IT is the operating
current, which is positive in the discharge process and negative in the charge process; UT
indicates the terminal voltage; and R0 is Ohmic resistance. The notations R1 and C1 are
the electrochemical polarization resistance and constant phase element CPE1, respectively.
R2 and C2 are the concentration polarization resistance and constant phase element CPE2,
respectively. In addition, U1 and U2 denote the voltages of CPE1 and CPE2, respectively.

Next, we will build a battery model based on Kirchhoff Voltage laws with relationship
Equation (3).

State Equation: 

dα1U1

dtα1
= − 1

R1C1
U1 +

1
C1

IT ,

dα2U2

dtα2
= − 1

R2C2
U2 +

1
C2

IT ,

dSOC
dt

= − 1
Qn

IT .

(6)

Output equation:

UT = UOC(SOC)− R0 IT −U1 −U2, (7)

where Qn is the nominal capacity of the battery, and 0 < α1, α2 < 1 are the fractional orders
of the CPE1 and CPE2, respectively.

3. Experiments and Identification of Model Parameters

In this section, we want to identify the unknown parameters α1, α2, R0, R1, R2, C1, C2
and nonlinear function UOC(SOC) in battery Equations (6) and (7) by experiments. First,
let us introduce our test bench.
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3.1. Test Bench

The test bench is illustrated in Figure 2; two sets of devices are used to measure the bat-
tery characteristics at the same time and record the battery voltage and current data. Device
1 is NEWARE BTS-4000. Because of its high measurement accuracy and low measurement
noise, the measured value of this device is used as a reference value. Meanwhile, using
a set of home-made equipment to measure battery voltage and current data, the devices
have measurement noise and errors during the data collection process, which can be used
to simulate the real measurement environment and verify the effectiveness of the proposed
SOC estimation method. Finally, the cell type used in the experiments is NCR18650BE,
a LIB with cathode material lithium cobalt oxide and anode material graphite made by
Panasonic Corp., Kadoma, Japan. Its nominal voltage is 3.6 V, and the nominal capacity is
3.2 Ah. Moreover, the test object is a battery pack with ten batteries connected in parallel.
So the nominal capacity of the battery pack Qn equals to 32 Ah.

Figure 2. Block diagram of the test bench.

3.2. Parameters and Nonlinear Function Identification

Step 1. Identify the parameters R0, R1, R2, C1, C2, and UOC(SOC). Here, both the
orders α1 and α2 are assumed to be unity. Using the method employed in [5] with current
pulses, these parameters R0(mΩ), R1(mΩ), R2(mΩ), C1(kF), and C2(kF) are identified as
the blue points in Figure 3.

The mean values of the SOC interval [0.2, 1] in Figure 3 are set to the constant identified
results. The eighth-order polynomial is employed to fit the nonlinear function of OCV and
SOC and it is given by

UOC(SOC) = p1SOC8 + p2SOC7 + ... + p9, (8)

where [p1, p2, ..., p9] = [−775.25, 3273.15,−5691.59, 5264.44,
− 2795.32, 860.49,−148.66, 14.13, 2.78]. The measurement data and fitted curve of OCV vs.
SOC are shown in Figure 4. As a result, the parameters are shown in Table 1.
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Figure 3. Identification results and mean value in [0.2, 1] of parameters R0, R1, R2, C1, C2.

Figure 4. Measurement data and fitted curve of OCV vs. SOC.

Step 2. Identify the fractional orders α1 and α2. Based on the identified parameters in
Step 1, the fractional orders α1 and α2 are further employed to improve modeling accuracy.
To this end, the least-square (LS) method is used to minimize the modeling error, that is,

min
α1,α2

N

∑
j=1
‖U∗T(j)−UT(j)‖2 (9)

where N is the number of the samples, U∗T(j) is the measured terminal voltage, and UT(j)
is the predictive voltage using the identified model. Notice that for given fractional orders
α1 and α2, the predictive voltage UT(j) is given by

UT = UOC(SOC)− R0 IT

−hα1
k
∑

j=0
ω−α1

j
R1 I(t−jh)−U1(t−jh)

R1C1

−hα2
k
∑

j=0
ω−α2

j
R2 I(t−jh)−U2(t−jh)

R2C2
,

(10)

where h is the sample time. The identification results of parameters α1 and α2 are also
shown in Table 1.
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Table 1. Identification results of the parameters.

α1 α2 R0 R1 R2 C1 C2

0.91 0.83 6.974 2.604 8.201 10.259 125.688

4. Non-Fragile H∞ Nonlinear Observer for SOC Estimation Based on Fractional-Order
Model
4.1. Battery State-Space Model

The battery Equations (6) and (7) can be rewritten as{
Dαxxx = Axxx + Bu, xxx(0) = xxx0,

y = h(xxx) + Cxxx− R0u,
(11)

where α = [α1, α2, 1], xxx = [U1, U2, SOC]T, y = UT , u = IT , h(xxx) = UOC(SOC), xxx0 is the
initial state and

A =

 − 1
τ1

0 0
0 − 1

τ2
0

0 0 0

, B =


1

C1
1

C2

− 1
Qn

, CT =

 −1
−1
0

.

As the battery charging and discharging process involves complicated physical and
chemical reactions, the battery Equation (18) are further rewritten as{

Dαxxx = Axxx + Bu + dx, xxx(0) = xxx0,
y = h(xxx) + Cxxx− R0u + dy,

(12)

where dx represents the state disturbance caused by the modeling error of current and
measurement noise, and dy represents the output disturbance caused by measurement
noise of current and terminal voltage. In the observer-based SOC estimation method,
assuming that only dx and dy bounded, the range is ‖dx‖ < ∞ and ‖dy‖ < ∞.

4.2. Discussions for SOC-OCV Function UOC(SOC)

The estimated values of the state xxx and SOC are x̂xx and ˆSOC, respectively, and
h̃ , h(xxx) − h(x̂xx). The SOC values range from [0,1] and the function of UOC(SOC) is a
monotonically increasing. Then, we have

βmin ≤ U̇OC(SOC) ≤ βmax, (13)

with βmin, βmax > 0. In addition, the battery used in the experiment during the test,
according to the SOC-OCV curve Equation (8), is satisfied by the the above Equation (13)
with

βmin = 0.4551, βmax = 4.4708. (14)

In order to design a nonlinear observer for the above system Equation (12), we first
need to discuss the properties of the nonlinear function h(xxx).

There exists matrix Q, W, for any xxx, x̂xx with SOC, ˆSOC ∈ [0, 1], such that the nonlinear
functions h(xxx) satisfies the following one-sided Lipschitz condition Equation (15) and
Lipschitz condition Equation (16):

−x̃xxT
[

∂h
∂xxx

]T

xxx=x̂xx
h̃ ≤ −x̃xxTQx̃xx, (15)

h̃Th̃ ≤ x̃xxTW2x̃xx, (16)
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where Q =

 0 0 0
0 0 0
0 0 β2

min

, W =

 0 0 0
0 0 0
0 0 β2

max

.

Proof. Please see the authors’ previous work [5].

4.3. Non-Fragile Observer Designed for SOC Estimation

The following two lemmas are crucial for designing the observer based on fractional-
order model and establish non-fragile observer design criterion, respectively.

Lemma 1. The factional-order system [17–19]

Dα
t x(t) = f (x(t)), (17)

can be characterized by the continuous frequency distributed model{
∂Zx(ω,t)

∂t = −ωZx(ω, t) + f (x(t)),
x(t) =

∫ ∞
0 µ(ω)Zx(ω, t)dω,

(18)

where ω is the elementary frequency, zx(ω, t) is the infinite dimension distributed state variable,
and µ(ω) = sin(απ)

π ω−α.

Lemma 2. Ref. [20] Let X ∈ RRRn, Y ∈ RRRn, and ε > 0. Then we have XTY + YTX ≤ εYTY +
1
ε XTX.

Considering the application of the above mentioned observer-based methods [5,8,11–14],
the non-fragile observer design criterion is introduced here. These observers would be
implemented digitally on microcontrollers as many other SOC estimation methods [22].
Meanwhile, as is mentioned in [8], the real application of FOC should be actualized on mi-
crocontrollers by numerical techniques. However, the electrical signal loss or interference
on the D/A converter (DAC) and Hall sensor is unavoidable in the signals’ conversion
and transmission process. Besides, there exist rounding error when the microcontroller
unit (MCU) processes floating point numbers, thermal noise of electric conductor, stray
electromagnetic field interference, etc. All these bring perturbations to the observer gain
lead to a fragility problem, and the fragility problem indeed requires a trade-off of ob-
server implementation accuracy and performance deterioration [23]. Thus, if the fragility
problem is not considered, the estimation accuracy of observer-based methods will not be
ideal enough as it is designed by H∞ performance. The non-fragile observer provides a
optimization algorithm to improve practicability of SOC estimation.

Therefore, we further develop the nonlinear observer based on integer-order model
in [5,13,14] to a non-fragile observer based on fractional-order model that tolerates some
perturbations as follows:{

Dαx̂xx = Ax̂xx + Bu + (L + ∆L)H(x̂xx)(y− ŷ), x̂xx(0) = x̂xx0,
ŷ = h(x̂xx) + Cx̂xx− R0u,

(19)

where ŷ is the estimate of the real terminal voltage y, L is a matrix that will be designed

later, but the vector (L + ∆L)
[

∂h
∂xxx

]T

xxx=x̂xx
is the actual observer gain that is dynamic. Let[

∂h
∂xxx

]T

xxx=x̂xx
, H(x̂xx) for simplification. ∆LH(x̂xx) is additive perturbation on the error gain with

the bound satisfying ‖∆L‖ ≤ δ and δ is a positive constant. Note that the upper bound δ
will be calculated later. It follows that the error dynamics is given by

Dαx̃xx = (A− (L + ∆L)H(x̂xx)C)x̃xx− (L + ∆L)H(x̂xx)h̃
+(E− (L + ∆L)H(x̂xx)F)ddd

(20)
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where ddd =

[
dx
dy

]
is the synthetic disturbance, E = [I0, 0], F = [0, 1], and I0 denotes the

appropriate dimensional identity matrix.
The main contribution of this paper, the non-fragile H∞ design criteria with H∞

performance, is then established as shown in the Figure 5.

Figure 5. The implement flowchart of non-fragile H∞ observer.

Theorem 1. Regarding to the non-fragile observer Equation (19), it has a stable observation under
system disturbance Equation (12), for given positive scalars ε < 2β2

min, and γ, if there exist positive
real number ε1, ε2, ε3, matrix P = PT > 0 and vector S, while the observer gain L is the solution of
the following LMIs: 

Ξ < 0
R2S < βmax
R2S > βmin

(21)

where Ξ =


Ξ11 PE− R1SF P P P

Ξ22 0 0 0
− 1

ε1
I0 0 0

∗ − 1
ε2

I0 0
− 1

ε3
I0

 and Ξ11 = PA + ATP− R1SC

−CTSTRT
1 + εI0 − 2Q + δ1CTC + δ2W, Ξ22 = δ3FTF− γ2 I0, δ1 = δ2

ε1
, δ2 = δ2

ε2
, δ3 = δ2

ε3
, then

the battery Equation (12) and the non-fragile nonlinear observer Equation (19) L = P−1 satisfy the
H∞ performance with the given attenuation γ > 0, that is

∫ Γ

t=0
‖x̃xx‖2dt < λmax(P)‖x̃xx(0)‖2 +

γ2

ε

∫ Γ

0
‖ddd(t)‖2dt (22)

for any Γ > 0.

Proof. From Lemma 1, the observer error dynamic system Equation (20) can characterized
by {

∂ZZZx̃xx(ω,t)
∂t = −ωZZZx̃xx(ω, t) + Dαx̃xx,

x̃xx =
∫ ∞

0 µ(ω)ZZZx̃xx(ω, t)dω,
(23)
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where µ(ω) = diag{µ1(ω), µ2(ω), µ3(ω)} = diag{ sin(α1π)
π ω−α1 ,

sin(α2π)
π ω−α2 , sinπ

π ω−1}. Note that for 0 < αi < 1, i = 1, 2, ω > 0, µi(ω) = sin(αiπ)
π ω−αi and

sinπ
π ω−1 are always positive. Therefore, let the candidate of the Lyapunov function be

V(xxx) =
∫ ∞

0
µ(ω)ZZZT

x̃xx (ω, t)PZZZx̃xx(ω, t)dω, (24)

and the observer gain L = P−1.
Taking the derivative of V(xxx) along the error System (20) causes

V̇(xxx) = 2
∫ ∞

0
µ(ω)ZZZT

x̃xx P[−ωZZZx̃xx(ω, t) + Dαx̃xx]dω. (25)

V̇(xxx) =2
∫ ∞

0
µ(ω)ZZZT

x̃xx P[−ωZZZx̃xx(ω, t) + Dαx̃xx]dω,

≤2x̃xxTPDαx̃xxdω

≤2x̃xxT[(PA− R1SC−Q)x̃xx + (PE− R1SF)ddd]− 2x̃xxTP∆LH(x̂xx)Cx̃xx

−2x̃xxTP∆LH(x̂xx)h̃− 2x̃xxTP∆LH(x̂xx)Fddd,

(26)

V̇(xxx) ≤2x̃xxT[(PA− R1SC−Q)x̃xx + (PE− R1SF)ddd] + ε1x̃xxTPPTx̃xx

+ε2x̃xxTPPTx̃xx + ε3x̃xxTPPTx̃xx

+
1
ε1

x̃xxTCTHT(x̂xx)∆LT∆LH(x̂xx)Cx̃xx +
1
ε2

h̃THT(x̂xx)∆LT∆LH(x̂xx)h̃

+
1
ε3

dddTFTHT(x̂xx)∆LT∆LH(x̂xx)Fddd,

≤2x̃xxT[(PA− R1SC−Q +
1
2
(ε1 + ε2 + ε3)PPT +

δ2

2ε1
CTC +

δ2

2ε2
W)x̃xx

+(PE− R1SF)ddd] + dddT δ2

ε3
FTFddd.

(27)

By applying L = P−1 and the oneside Lipschitz condition Equation (15), and substitut-
ing the term x̃xx(t) in Equation (23), the above Equation (25) can be rewritten as Equation (26)
at the top of the next page.

Whereas ‖∆LH(x̂xx)‖ ≤ δ, applying Lemma 2 and the Lipschitz condition Equation (16)
to Equation (26) concludes Equation (27) at the top of the next page.

To establish then H∞ performance, we have

V̇(xxx) + εx̃xxTx̃xx− γ2dddTddd < 0, (28)

where ε < 2β2
min is used to guarantee that the matrix Ξ11 could be negative definite.

Applying the Schur complement lemma to Equation (28), it is clear to get:[
x̃xx
ddd

]T

Ξ
[

x̃xx
ddd

]
< 0, (29)

where Ξ is defined by criterion Equation (21). Therefore, we see that

Ξ < 0, R2S < βmax, R2S > βmin (30)

which yield to Equation (21). Note that
∫ Γ

0 V̇(x̃xx)dt = V(Γ)−V(0) ≥ −V(0) ≥ −λmax(P)

‖x̃xx(0)‖2. Therefore, we have
∫ Γ

0 x̃xxTx̃xxdt ≤ λmax(P)
ε ‖x̃xx(0)‖2 + γ2

ε

∫ Γ
0 dddTddddt for any Γ > 0.
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Therefore, the criterion Equations (21) and (22) could be directly proved. This ends the
proof.

5. Experimental Validations of the SOC Estimation
5.1. Calculate the Gain L and Bound δ

In the subsection, the LMIs (21) are utilized to calculate the gain L. However, the
upper bound δ of uncertainty ∆L is unknown in practice. As such, the gain L is obtained
by solving the following optimization problem (21):

max
L

δ s.t. LMIs. (31)

Here, the purpose is to obtain the greatest robustness for the unknown uncertainty
∆L.

Using the MATLAB LMI Toolbox [34] to solve the convex optimization problem (31),
the feasible solutions of design critiron Equation (21) with ε = 0.1 in Theorem 1 can be
obtained and some of them are list by γ = 5.36, δ = 1.864× 10−2 and ε1 = 1.35× 10−7,
ε2 = 7.46× 10−7, ε3 = 1.03× 10−9,

L =

 1.21× 10−5 8.72× 10−8 4.36× 10−7

8.72× 10−8 2.32× 10−4 3.27× 10−4

4.36× 10−7 3.27× 10−4 0.0055

. (32)

In addition, the observer in [8] is used to highlight the advantages of the nonlinear
observer proposed in this paper. Note that in the following figures, the lines named as Real
SOC are directly obtained by the standard measurement data based on the ampere-hour
counting, but the other lines are calculated by the home-made measurement data.

5.2. Numerical Implementation and Issue for Fractional-Order Observer

There are several numerical methods for fractional-order systems implementations [6,8].
The most commonly used among them is the aforementioned approximate GL definition,
where the step size of h is assumed to be very small. By GL definition, the numerical
implementation for proposed fractional-order observer Equation (19) is obtained as

x̂xx(k + 1) =(Ahα + diag(α))x̂xx(k)

−
k+1

∑
i=2

(−1)i
(

α

j

)
x̂xx(k + 1− i)

+ Bhαu(k) + hαL
[

∂h
∂xxx

]T

xxx=x̂xx(k)
(y(k)− ŷ(k)),

(33)

for k ≥ 1, and x̂xx(1) = (Ahα + diag(α))x̂xx(0) + Bhαu(0) + hαL
[

∂h
∂xxx

]T

xxx=x̂xx(0)
(y(0)− ŷ(0)),

x̂xx(0) = x̂xx0,

y(k) = h(x̂xx(k)) + Cx̂xx(k)− R0u(k), (34)

where hα = diag{hα1 hα2 h}, (α
j) = diag{(α1

j ) (α2
j ) (1

j)}. Note that L is substituted by
L + ∆L for proposed non-fragile observer (19). Note that the short memory principle [6,35]
is adopted to overcome the increasing amount of calculation from the second term on the
right side of Equation (33).

5.3. Experimental Results

We adopt three operation condition: the urban dynamometer driving schedule
(UDDS), the new European driving cycle (NEDC), and the highway fuel economy test
(HWFET) cycle to evaluate the SOC estimation accuracy of the proposed observer methods.



Energies 2021, 14, 4771 12 of 17

In order to show accurately the SOC estimation results of proposed non-fragile observer
for IO model (IONFO) and FO model (FONFO) and the observer for FO model in [8], the
mean SOC estimation errors of the above observers are demonstrated in Table 2.

5.3.1. UDDS

The current and terminal voltage profiles are shown in Figure 6. The SOC estimation
profiles and the SOC estimation error profiles are shown in Figures 7 and 8, respectively.

Figure 6. Current and terminal voltage profiles of UDDS.

Figure 7. SOC estimation profiles for UDDS.

Figure 8. SOC estimation error profiles for UDDS.
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5.3.2. NEDC

The current and terminal voltage profiles are shown in Figure 9. The SOC estimation
profiles and the SOC estimation error profiles are shown in Figures 10 and 11, respectively.

Figure 9. Current and terminal voltage profiles of NEDC.

Figure 10. SOC estimation profiles for NEDC.

Figure 11. SOC estimation error profiles for NEDC.

5.3.3. HWFET

The current and terminal voltage profiles are shown in Figure 12. The SOC estimation
profiles and the SOC estimation error profiles are shown in Figures 13 and 14, respectively.
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Figure 12. Current and terminal voltage profiles of HWFET.

Figure 13. SOC estimation profiles for HWFET.

Figure 14. SOC estimation error profiles for HWFET.

5.4. SOC Estimation Results and Evaluation

In order to better discuss the effectiveness of the proposed method under various
dynamic conditions, we will display the mean/maximum errors after overcoming the
initial SOC error in the following table.
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Table 2. Mean/maximum SOC estimation errors of observers after convergence.

Operation Condition UDDS NEDC HWFET

IONFO 0.85%/2.62% 0.71%/1.64% 0.51%/2.72%
FONFO 0.73%/1.64% 0.53%/1.24%% 0.41%/1.83%

Observer in Ref. [8] 0.83%/3.44% 0.94%/2.23% 0.55%/3.58%

After that, by observing Figures 8, 11 and 14 and Table 2, the following conclusions
can be obtained.

1. As is shown in Figures 8, 11 and 14 and Table 2 with the initial condition is given as
[U1 U2 SOC]= [0 0 80%], we draw the conclusion that the SOC estimation accuracy
of the proposed observer for the fractional-order battery model is higher than the
integer-order battery model. This implies that smaller modeling error brings higher
SOC estimation accuracy. This fact is in accordance with the former studies [7,9] in
fractional modeling for this battery. Meanwhile, the convergence rate of proposed
observer for the battery model is slightly lower than integer-order battery model,
which is the main drawback for fractional-order battery with the identified parameters
of orders 0 < α1, α2 < 1.

2. In Figures 8, 11 and 14 and Table 2, we can see that the SOC estimation accuracy of
proposed observer is superior to the observer in [8]. This is principally because of
the Lipschitz constant γ mentioned in [8]. The value γ is close to 1 in [8] and the
SOC estimation error bound is very sensitive to this value as is claimed. Moreover,
according to eighth-order fitted curve Equation (8) of the SOC-OCV relationship,
the coefficient of linear term of the polynomial is 14.13, which is larger than it in [8].
Moreover, the Lipschitz constant of UOC(SOC) function without the linear term is
calculated by γ = 9.66, which is much more larger than γ in [8] as well. In fact, the
fifth-order polynomial used for curve fitting in [8] demonstrates poor accuracy for
SOC-OCV relationship of the LiCoO222 LIB module. Because of the high nonlinearity
of SOC-OCV relationship, the observer method in [8] shows lower accuracy below
expectation for the battery used in our study. On the contrary, the H∞ performance
of the proposed nonlinear observer can deal with the different Lipschitz constant in
modeling for various types of batteries, which presents advanced universal property
than the observer in [8].

3. It is shown in Figures 8, 11 and 14 and Table 2 that the SOC estimation of non-fragile
observer Equation (19) shows more accuracy compared to H∞ observer for integer-
order model in [5]. This means that, if the gain drifts are taken into account in observer
design procedure, the proposed non-fragile observer Equation (19) outperforms the
observer in [5]. Therefore, clearly, non-fragile observer functions in tolerating additive
perturbation or gain fluctuations on the observer gain. Thus, the proposed non-fragile
H∞ observer design criterion can not only restrict the effect of the modeling error and
measurement noises on the state estimation, but also limit effect of the gain drifts on
observer.

Based on the above analysis, we can see that proposed observer for the fractional-order
battery model is more effective than the integer-order battery model. The proposed method
can be generally used for SOC estimation of various types of batteries. The non-fragile
observer design criterion is robust under the effects of gain drifts.

6. Conclusions

This paper presents a non-fragile nonlinear observer based on a time-varying gain
algorithm which can estimate the SOC of the LIBs in electric vehicles accurately. The
fractional 2nd-order RC model compared with integer 2nd-order RC model is introduced
to model the charging/discharging behavior of the LIB. Moreover, a least-square method
mixed with physical behavior based identification method is proposed for model parame-
ters identification. The OCV–SOC relationship is fitted using the eighth-order polynomial



Energies 2021, 14, 4771 16 of 17

for better consideration of the test battery’ property. The principle of H∞ performance
design criterion is to reduce the effect of the non-Gaussian system and measurement noises.
Furthermore, a non-fragile observer design criterion is proposed to tolerate observer gain
drifts to achieve a robust SOC estimation algorithm. Three operation conditions are applied
to evaluate the performance of the proposed method by comparing with one former study.
Experimental SOC estimation results and evaluation reveal the superiority of the proposed
method.

In our study, by comparing the SOC estimation accuracy of fractional-order and
integer-order, we reinforce impression that the influence of modeling error is much larger
than the measurement noise. As is shown in the parameters identification section, the
parameters changes rapidly in low SOC range due to the serious polarization effects.
Therefore, despite of the better considering of fractional-order modeling, our future research
is towards modeling and online parameters identification in low SOC range.
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