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Abstract: Geothermal power is being regarded as depending on techniques derived from hydro-
carbon production in worldwide current strategy. However, it has artificially been developed far
less than its natural potentials due to technical restrictions. This paper introduces the Enhanced
Geothermal System based on Excavation (EGS-E), which is an innovative scheme of geothermal
energy extraction. Then, based on cohesion-weakening-friction-strengthening model (CWFS) and
literature investigation of granite test at high temperature, the initiation, propagation of excavation
damaged zones (EDZs) under unloading and the EDZs scale in EGS-E closed to hydrostatic pressure
state is studied. Finally, we have a discussion about the further evolution of surrounding rock stress
and EDZs during ventilation is studied by thermal-mechanical coupling. The results show that the
influence of high temperature damage on the mechanical parameters of granite should be considered;
Lateral pressure coefficient affects the fracture morphology and scale of tunnel surrounding rock, and
EDZs area is larger when the lateral pressure coefficient is 1.0 or 1.2; Ventilation of high temperature
and high in-situ stress tunnel have a significant effect on the EDZs scale; Additional tensile stress
is generated in the shallow of tunnel surrounding rock, and the compressive stress concentration
transfers to the deep. EDZs experiences three expansion stages of slow, rapid and deceleration with
cooling time, and the thermal insulation layer prolongs the slow growth stage.

Keywords: EGS-E; EDZs; Thermo-Mechanical coupling

1. Introduction

Geothermal resources have become a key research and development objective among
the world’s renewable clean energy options because of its source stability, potential high uti-
lization ratio, tremendous reserve and widespread distribution [1]. According to theoretical
calculations, the energy reserves in the upper 10 km of the earth’s crust are approximately
1.3 × 1027 J. These geothermal reserves could supply global energy use for approximately
217 million years [2]. Therefore, once large-scale utilization was realized, geothermal
energy would act as a key technique to cope with the environmental problems brought
from mainly consuming fossil fuels. This promising option can ease the energy crisis,
promote and eventually realize sustainability for the prosperity of future world [3,4].

Currently, borehole-based enhanced geothermal system (EGS-D), in which the tech-
niques of Drilling and hydraulic fracturing rooting out of petroleum industry operations
are adopted, is the most widely used scheme on extracting heat from hot dry rocks [5].
However, to be frank, EGS-D has to date been failing to be successfully commercialized.
One of the root causes should lie at the drawbacks out of hydraulic fracturing, which is
hardly controllable at precise and yields insufficient effectively stimulated volume within
quartzite rocks. These two main defects have so far caused many obstacles in extracting
heat from Hot Dry Rocks, including limited amount of heat extraction [6,7], difficult to
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optimal design of hydraulic fracturing [8,9], water loss, ground-water replacement, mixing
and contamination [10,11], inducing earthquakes [12,13].

In recent years, deep underground associated excavation technologies are readily
available [14–16]. Gold mining in South Africa has accessed into hard orebodies being
buried over 4 km deep, and intelligent mine robots are rapidly iterating and evolving.
Based on these backgrounds, aiming at solution to the bottleneck of EGS-D, a disrup-
tively innovative geothermal extraction solution based on excavation rather than drilling,
i.e., Enhanced Geothermal Systems based on Excavation technology (EGS-E), is proposed,
as shown in Figure 1. EGS-E overcomes the shortcomings of the boreholes and frac-
turing based conventional EGS and provides a new large-scale scheme for developing
hot dry rocks. The concept of EGS-E has the following connotations and advantages:
(1) Excavation of shaft and roadways accessing the hot rock levels and then creating heat
reservoirs artificially in a distributive way. The diameter of its vertical shafts is far much
larger than that of boreholes, and its provided multi-level flow channels replaces the frac-
tured ones in a far more controllable way, with far larger flow rates and flow amounts;
(2) The horizontal roadways are excavated with certain spacing to form a room-and-pillar
mining-like complex. Heat is extracted from surrounding rock being stimulated by long
drilling, inter-hole fracturing, borehole-blasting or even caving method in which the ut-
most automatic interplay between stress concentration and gravitational collapse will be
induced. Large volume and highly conductive heat reservoir is eventually constructed
from roadway networks converging into focal caverns. Only in this way can predetermined
volume of cracked zones for enhanced permeability and sufficient area for effective heat
exchange be accurately controlled; (3) Heat collected from distributive but systematical
roadway branches are transported over to the focused “hot pool” at each level. There
focused heat exchange occurs between the colder working-fluid through inlet pipes and
the much hotter water under a high pressure. Steam carrying heat was transferred to the
relatively shallow level where installed turbines runs to generate electricity [7]. Different
patterns of selection are adjusted from roadway complex and then some run and others
rest in alternating cycles to ensure the entire system becomes stable and durable. Facing
future in the world, engineering structure should be taken as a solution to mining heat
from hot rocks which belongs to a vast but scattered resource.
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The problem of deep rock excavation engineering, especially the EGS-E engineering,
has two main characteristics simultaneously: high in-situ stress and high temperature
conditions. For the former, many researchers studied the stress redistribution and dam-
age extent of surrounding rock due to excavation by relying on empirical approach [17],
numerical simulation [18,19] and theoretical calculation [20]. For the latter, relevant stud-
ies focused on the temperature evolution of surrounding rock [21], effective ventilation
distance [22] and heat insulation [23] in tunnel ventilation. However, due to the tempera-
ture of the non-geothermal mining tunnel is not high (usually less than 80 ◦C), previous
researches mostly studied the characteristic factors of deep engineering separately and
independently. Only a limited number of studies have involved the effect of rock strength
and deformation parameters changes caused by high temperature damaged on EDZs. On
the other hand, the coupling effect between temperature and stress in ventilation process
of damaged surrounding rock after excavation is lack of research, and the damage further
evolution of surrounding rock induced by ventilation was not explored.

In this paper, rock properties under high temperature were first reviewed after in-
vestigating a large number of others’ existing studies. Then, using numerical modelling,
a section of typical roadway with the circular shape at cross section, which is excavated
within high-temperature and high-stress hard rock, was analyzed. During the simulation,
a simple, effective model CWFS was applied to preliminarily estimate the scale and zoning
of Excavation Damage Zones in a quantitative way. Finally, the further evolution law of
damage caused by tunnel ventilation after surrounding rock damage was studied.

2. Influence of High Temperature on Granite Properties

Hot Dry Rock geothermal energy resources are reserved in high-temperature depths
which usually are radioactive igneous rocks such as granite. In this section, the micro-
structure of this type of rocks and its influence on its macroscopic properties under the
corresponding temperatures which deviate from usual ground or shallow to rather deeply
buried conditions are mainly investigated. Adopting conventional methods of thermal
treatment, many researchers [24–33] have undertaken experimental or numerical simula-
tion studies on rock physical and mechanical properties under high temperature.

It has been found that (1) Two microscopic mechanisms were essentially revealed by
laboratory examinations when samples had been heated to various temperature levels.
They are (a) the extension of existing cracks or the formation of new microcracks which is
attributed to the thermal expansion of minerals: The mismatch of thermal expansions of dif-
ferent mineral grains causes microcracks to initiate at mineral contacts, and the anisotropy
in the thermal expansion of individual mineral under restricted surrounding leads to
the development of intra-granular microcracks; (b) Collapse of mineral structures due to
thermally induced stress enhancement: The underlying mechanism is the heterogeneity
among thermal deformation of mineral grains and the α-β phase transition of quartz [25].
For instance, granite taken from Quanzhou city, Fujian province of China was tested in
the experimental study. As shown in Figure 2, the experimental results reveal that almost
all destructive chemical reactions occurred at temperatures in excess of 300–400 Celsius
degrees. In the range of from 100 ◦C to 573 ◦C, thermal cracks are mainly intergranular
ones. While once temperature exceeded 573 ◦C, due to the phase transition of quartz,
intra-granular cracks began to develop [26].
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Figure 2. Stress-strain curves of Granite during uniaxial compression under various temperatures [24].

(2) The transformation of mechanical parameters with temperature is due to the
competition between strengthening and degradation effects, which were simultaneously
induced by raising temperature [27]. The former is toughness enhancement of biotite
under high temperature [28] and inter-crystalline contact compaction due to volume
expansion [29]. The latter is intergranular cracks caused by non-uniform thermal expansion
of different minerals after the temperature threshold was exceeded [30]. As shown in
Figure 3, when temperature was below 200 ◦C, damage factors only dropped slightly
indicating that mechanical properties were first strengthened due to water loss and mineral
expansion. Over 200 up to 400 ◦C, damage factors first dropped shortly and then start
rising, mechanical properties immediately deteriorated along with the appearance of
intercrystalline cracks [31]. These findings were further confirmed by SEM analysis. After
all, it should be concluded that under 300 ◦C the rock microstructures is only subject to
minor change [29].
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(3) The brittleness-ductility transition of granite occurred at temperature as high
as 600–700 ◦C [31]. At 25–600 ◦C, uniaxial compressive stress in granite dominated the
tendency of brittle fracture process, which mainly induced tensile cracks along its axial
direction. While at 700–800 ◦C, thermal stress in granite determined ductile damage
process, which turned to result in post-peak ductile deformation [33].
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(4) A series of triaxial compression tests were undertaken with granite samples ex-
tracted from Hunan Province of China under four different confining pressures, i.e., 10, 30,
60, 90 MPa, and four different temperatures, i.e., Room Temperature, 100, 200, 300 ◦C. The
results [21] showed that within range of up to moderate temperature it would be stress but
not temperature that dominantly influenced rock mechanical behavior [27,33]. Although
the samples deformed more along with the levels of confining stress and temperature were
raised, their stress-strain curves still showed brittle failure feature when the experimental
conditions fell into the ranges of confining stress and temperature.

In most geothermal engineering, the rock temperature rarely exceeds 300 ◦C. Com-
bined with the literature investigation, it ought be concluded that the hard rocks at a
temperature that are not exceeding 300 ◦C still typically belong to brittle ones. Yet their
physical characteristics, mechanical behaviors as well as failure process and patterns are
roughly similar to those under room temperature.

3. Numerical Model to Study Tunneling Induced Excavation Damage Zone

Working roadway excavation in EGS-E will confront in-situ rocks with their high-
stress and high-brittleness problems. The dominant failure mechanisms of excavations
in hard, massive rock masses at great depths are governed by the tensile strength of the
rock mass and shown as extensile fractures. So-called macroscopic spalling is generated
under high-magnitude compressive stresses at low confinement along the excavation
boundary [34].

The photograph shown in Figure 4 was taken to view the cross-section of a testing
tunnel with radius 1.75 m at depth 420 m within Lac du Bonnet granite. It was com-
pleted during Underground Research Laboratory ‘Mine-by Experiment project’ which
was undertaken by Atomic Energy of Canada Limited at southeastern Manitoba. As well,
photographs shown in Figure 5 are vividly telling the visible brittle failures surrounding
designed open-space during deep tunnelling. It should be pointed out that the micro-crack
like shearing damages which were difficult to detect with naked eyes would also concern
hydraulic conductivity, especially in leakage and sealing around a tunnel. Its fundamental
study is indispensable to any further implementation of permeability enhancement in
order to construct an artificial geothermal reservoir in hot dry rocks.
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excavations. Schemes follow another format. (a) Wall spalling and floor softening caused by excavating drift tunnel within
rock salt in Germany [36]; (b) Hangingwall falls out along the primary fracture extension both caused by a 3300 m deep
gold mining within hard orebody Ventersdrop Contact Reef in South Africa [37].

3.1. Damage Initiation–Spalling Limit (DISL) Criterion and CWFS Model

Traditional rock failure criteria, e.g., Hoek Brown strength envelope, was applicable to
surface or shallow engineering where rock mass is naturally so jointed that its response
to excavation will be controlled by structural issues as its prerequisite condition. At deep
underground, however, igneous rock like granite wouldn’t be jointed to that extent and
its strength yet can be regarded as roughly isotropic. Then there had been unfortunately
no methodology available till recent few years. A common criterion on shear yielding
couldn’t imitate rock brittle failure until it reflected the following two requisite mechanisms:
tensile fracture under low constraint and shear rupture under high constraint. The in-
situ strength envelop was established by so-called DISL criterion [38], which came from
accepted empirical observations in excavating massive to moderately jointed hard rocks and
laboratory cases of axial stress-strain measurements to study the thresholds indicating the
inception of nonlinear long-term yielding envelop. As illustrated in Figure 6, this criterion is
an S-shaped or three-segment straight composite polylines, not a Mohr-Coulomb like linear
arc or Hoek-Brown like continuous curve [39]. The reason lies at that rock heterogeneity
subjecting to compression leads to local tensile cracks so as to create Griffith type of
extensional fractures. Under low constraint conditions, rock mass cannot withstand failing
at about one-tenth of its UCS. Much prior to the peak, instead, local high tensile stresses
could exceed its corresponding tensile strength, eventually resulting in thin rock slabs
referred to as spalling [39]. In laboratory samples, crack propagation is inhibited due
to geometry effects, whereas near the excavation wall, cracks can freely propagate. The
composite strength envelope for in-situ excavation of brittle rocks as shown by the red
solid line was based on conceptual model DISL, which is compared with the corresponding
laboratory peak and long-term yield strength envelopes.
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The S-type criterion combines the cohesion weak-friction enhancement (CWFS) strength
model at low confinement and the shear yield model at high confinement to characterize the
lower brittleness at high confining pressures. At room temperature, the fracture and Highly
Damaged Zone scale caused by hard rock excavation under high in-situ stress have been
verified in some actual field measurements [40–44]. Diederichs et al. adopted this failure
criterion to model the stress states corresponding to excavating caused boundary damage
as well as surrounding yield. The approach had been testified through matching the failure
morphology of Lac du Bonnet granite under the Underground Research Laboratory project
within Manitoba province of Canada. Rojat et al. further applied it to investigating spalling
phenomena during operate the Swiss Alps tunnel through gneiss, granodiorite and granite
formations [40]. So far, it has been applied to simulate fracture openings of several hard
brittle rock masses [41,43]. Among them, the Creighton Mine in Sudbury, Canada was
worthy of being mentioned as the application reached depth 2400 m and the major principle
stress up to 114.1 MPa [44]. Quantitative estimation of risk in spalling damage [45] and
sensitivity in predictions using the DISL method has been evaluated [46] based on a large
number of field data and empirical formulae [47–50].

The CWFS model is a strain-dependent yield criterion which accounts for the non-
simultaneous mobilization of friction and cohesion. The changes in these two strength
components are controlled by plastic shear strain-a variable which is used as a proxy for
damage. The yield criterion of CWFS model can be generalized by Mohr-Coulomb:

τ = c
(

ε
p
c

)
+ σntanϕ

(
ε

p
ϕ

)
(1)

where c and ϕ are cohesion and friction angle, respectively; σn is the normal stress;
ε

p
c and ε

p
ϕ are the characteristic plastic strains that control the loss of cohesion and the

enhancement of friction angle, respectively.
According to Figure 7, the CWFS strength model requires six parameters to define:

ϕi, the initial friction; ϕm, the mobilized friction angle; cp, peak cohesion; cr, residual cohe-
sion; ε

p
c and ε

p
ϕ are plastic strain limit for cohesion weakening and friction strengthening. In

addition, parameters related to tensile strength loss are also used: tp, peak tensile strength;
tr, residual tensile strength; ε

p
t , plastic strain limit for tensile strength weakening. The

programme to obtain accurate CWFS parameters has been explained through performing
extensive uniaxial and triaxial compressive tests [51].
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3.2. Numerical Modelling Simulator

The finite-difference simulator FLAC3D was used to model the mechanical process.
This commercial software was chosen because it is convenient to use and widely applicable
across mining and Geo-engineering fields. The incremental plastic parameter is defined by
FLAC3D as:

∆eps =
1√
2

√(
∆ε

p
1 − ∆ε

p
m

)2
+
(

∆ε
p
m

)2
+
(

∆ε
p
3 − ∆ε

p
m

)2
(2)

where ∆ε
p
1, ∆ε

p
m, ∆ε

p
3 represent the major, mean, and minor principal plastic strain incre-

ment, respectively [52]. The focus of this modelling study is on those geologic conditions
where the behavior of the engineering of interest is governed by continuum failure and
damage of intact rock material rather than by deformation in distinct fragmented features.
In other words, assuming deep rockmass of EGS-E is initially intact or massively jointed,
i.e., its GSI index belongs to more than 75.

3.3. Model Geometry, Gridding, Initial and Boundary Conditions

As shown in Figure 8, a numerical model with scale 90 m× 90 m× 1 m was established.
The excavation model was composed of 81,600 elements and radially defined as total three
categories of unstructured meshing regions. Facing to the cross section, as innermost
densified is a circular ring region with radii from 2.0 m to 7.6 m, which was evenly
divided into 100 zones along radial direction and 640 zones along circumferential direction.
Surrounding that is the transition region from a 7.6 m-radius circle to a square with side
20 m long, which was divided into 20 proportional enlarging zones along radial direction
at ratio 1.1 and along circumferential direction 160 even zones. Then the outmost square
stripe was divided into 30 zones along radial direction at proportion ratio 1.1 from half-side
10 to 45 m and on the other hand 160 zones along circumferential direction. Along thickness
direction, no further discretization was undertaken so there is only one layer of zones. The
normal displacements were fixed at the front and the back as well as the bottom, after
vertical stress was applied to the top and the corresponding value Kx times of vertical
stress to the both lateral sides, the model was run up to the first balance. In term of the
inner boundary, the circular wall was at first applied with normal and shearing stresses
exactly reaching the initial balance. Next, the tunneling advance which is in actual three-
dimensional excavating process was virtually modelled as gradually relaxing both normal
and shearing stresses by the same small percent. From their original amount equivalent to
the in-situ stress effect, they were stepwise reduced to zero and at each step were applied
to the interior boundary, i.e., the wall of a circular opening [38].
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It was assumed that the buried depth of tunnels for EGS-E is 3000 m. Accordingly,
vertical stress due to pressure from overloading rocks can be calculated as 78 MPa in case
that gravitational acceleration is taken as 10 m/s2 and mass density of rocks is averagely
taken as 2600 kg/m3. Horizontal stress is calculated through multiplying a lateral pressure
coefficient Kx to this vertical stress. Thus compressive 78 MPa were initially set along
vertical direction. A few values of Kx timing 78 MPa were initially set as evenly compressive
along horizontal direction.

3.4. Dependency of Material Mechanical Properties on Temperature Condition

According to the relevant experimental results [24,53], the temperature-dependent
physical and mechanical parameters of granite as shown in Table 1 were incorporated
into the advanced finite difference modelling workflows using FLAC3D via an in-built
interpolation routine. So, the strength, elastic deformation and plastic failure of Fujian
Granite could be predicted over a wide range of temperature conditions. Accordingly, it
can be applicable to studying deep geothermal energy extraction.

Table 1. Some key temperature-dependent mechanical properties of Fujian granite.

(a) peak strength, strain and elastic modulus [24];

T
(◦C)

σc
(MPa)

E
(GPa) Peak Strain (10−3)

RT 164.25 52.0 4.00
150 165.58 51.2 4.35
300 155.25 44.0 4.36
450 131.25 40.8 4.57

(b) tensile strength and Poisson ratio [53].

T
(◦C)

Tensile Strength
(MPa) Poisson’s Ratio

RT 11.63 0.20
100 11.44 0.19
200 11.18 0.19
300 10.57 0.21
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The peak cohesion value can be calculated as [41]:

cPeak =
σin-situ · (1− sin ϕi)

2 · cos ϕi
(3)

where σin-situ represents the unconfined strength of the in-situ rock. Typical values of σin-situ
range between 30% and 50% of the laboratory measured unconfined compressive strength
(UCS). In the modelling, suggested value 41% was accordingly adopted [41]. In addition to
the above parameters, as shown in Table 2, referring to the numerical simulations study
on AECL-URL [38], both the friction angle for spalling limit and the friction angle of
damage initiation were set unvarying under the various temperature conditions. This is
because friction angles are not strikingly different when granite is under 400 ◦C [27,31].
Both cohesion and tensile strength were set to the minimum value 0.1 kPa. The three
plastic strain limits for cohesion weakening, tension weakening and friction strengthening,
respectively, came from the numerical simulation of AECL-URL as well.

Table 2. Rock mechanical parameters under various temperatures adopted in modelling.

Parameters Notation Unit Room
Temperature 150 ◦C 200 ◦C 250 ◦C

Young’s modulus E GPa 52 51.2 48.8 46.4
Poisson’s ratio ν - 0.2 0.19 0.19 0.2

friction angle of damage initiation ϕi
◦ 16 16 16 16

friction angle of spalling limit ϕm
◦ 50 50 50 50

cohesion of damage initiation cpeak Mpa 25.37 25.58 25.05 24.51
tensile strength of damage initiation tpeak Mpa 11.63 11.31 11.18 10.87

cohesion/tensile strength of spalling limit cr/tr kPa 0.1 0.1 0.1 0.1
plastic strain limit for cohesion/tension weakening ε

p
c /ε

p
t % 0.3 0.3 0.3 0.3

plastic strain limit for friction strengthening ε
p
f % 0.4 0.4 0.4 0.4

4. Studying Tunneling Induced Excavation Damaged Zone (EDZ) in Depths

The partition of rock failure region surrounding a tunnel hole is based on how to
switch friction angle to distinguish Highly Damaged Zone (HDZ) from Excavation Damage
Zone. When ϕ of damaged rock falls into between ϕi and ϕm, inside the space defined by
the principal stresses the corresponding state is between the following two envelops: the
Damage Initiation (DI) one and the Spalling Limit (SL) one. The situation of material at
this position belongs to EDZ. When ϕ attains to equal to ϕm, the stress state intersects the
SL envelope and the surrounding rock there belongs to HDZ.

In order to understand the scale and mechanism of surrounding rock failures caused by
tunnel excavation during a EGS-E project, in addition to choosing the material parameters
at 200 ◦C according to Table 2, the numerical modelling under three configurations of initial
stresses was first performed. In these configurations, to represent the tectonic stress effect,
the vertical stress as both initial condition and top boundary condition is kept constant and
the lateral pressure coefficient Kx applicable to initial condition as well as the left and right
lateral boundaries were defined as 0.8, 1.0 and 1.2, respectively. This is to consider one
hydrostatic initial stress case as well as two anisotropic ones, because the in-situ state is
close to the hydrostatic pressure state when the depth is greater than 3000 m [54].

As shown in Figure 9, in term of hydrostatic initial stress case, i.e., Kx = 1.0, the upper
row shows four enlarged views of distribution of HDZ, EDZ and Excavation Influence
Zone (EIZ). The former dark and middle blue represent different extent of rock failures and
the light grey one represents the rock distinct elastic deformation. These contours were
plotted by distinguishing the state of principle stresses at each nodes taking advantage of
the above mentioned criterion indicated by fraction angle envelops. The lower row shows
a series of enlarged views of quarter contours indicating progressive evolution of the major
principal stress. The normal pressure 10 MPa applied to the inner boundary meant that
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68 MPa had been unloaded out of the original 78 MPa. Similarly, inner pressure 6 MPa
is corresponding to 72 MPa unloaded; inner pressure 2 MPa corresponding to 76 MPa
unloaded and no inner pressure corresponding to the complete unloading.
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Figure 10. Stress state of surrounding rock along radial horizon.

As the inner confining stresses were reduced due to excavating, the circumferential
stress concentration was generated around the tunnel wall. When Mohr’s circle for the
stresses intersects the Damage Initiation envelope, the rock mass begins to yield, produce
plastic strain, which is shown in Figure 9a as damage initiation. Along with the confinement
was further reduced, strain localization occurs in some elements in vicinity of the tunnel
wall, resulting in HDZ being initiated there. Following that stage, some fractures start
mutually interacting. As shown in the fourth diagram within the upper row of Figure 9,
prominent log-spiral shearing sliding can be eventually observed at the end of modelling.
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Besides extensile fractures due to the loss of confinement, shear cracks propagate, and the
fractures coalesce and interact mutually. Around the tunnel, the partition rupture appears.
Figure 10 shows the phenomenon of intermittent compressive stress distributed along
radial horizontal direction within the surrounding rock of a tunnel.

As shown in Figure 11 is the effects of lateral pressure coefficient Kx on EDZ in the
aspects of distribution scale, failure pattern, the maximum plastic strain and the maximum
principal stress. It can be seen that Kx has distinct effects on the failure issues of surrounding
rock. Although the existence of a pair of intersecting shear zones were observed in all cases,
they mainly concentrated behand two sidewalls in case Kx = 0.8 and at the backs of roof and
floor in case Kx = 1.2. They both illustrated that the damage zones mainly focus along the
direction of the minimum principal stress according to their initial stress states. The case of
Kx = 0.8 belongs to the typical fracture pattern when hard rock is subjected to high stress in
depths, i.e., the two groups of intersecting fractures form a pair of V-shaped failures can be
observed at two sides, while relatively intact rock can be sustained at the roof and the floor.
At lateral pressure coefficient of Kx = 1.2, greater horizontal stress leads to the shear zones
closest to the side walls from where shearing slides continues to propagate until intersect
each other and then bend up and down, respectively.
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As shown in Figure 12, there had already been theoretical and laboratory modelled
studies on the log-spiral shear-failure sliding curves [55–57] surrounding a circular tunnel.
Tensile/extensional modes were not evident in these physical model studies, which might
be due to weak properties and low level of confinement.
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5. Temperature Distribution and Stress Field in EGS-E Tunnel after Ventilation Cooling

Since EGS-E engineering in depths is to be under high temperature environment, for
the sake of achieving eligible working temperature for personnel and equipment, it should
be necessary to take the initiative in cooling down the surrounding. According to the latest
relevant study [22], it was found that at the entrance the heat exchange from surrounding
rocks to inside tunnel airflow is the most intense. Due to the largest temperature difference
between the tunnel wall and surrounding rock, there is taken as the research objective.
Some basic assumptions were made as follows: (1) The thermophysical properties of the
surrounding rock as well as the insulation liner are assumed to be homogeneous and
isotropic constants; (2) The contribution of rock strain energy to temperature evolution is
ignored during cooling process. The coupling between thermal and mechanical simulations
is achieved through iterating mechanical calculations till converge after each sufficient
small thermal time step, i.e., 60 s in this paper.

In the modelling, the numerical discretization of surrounding rock was kept the
same as that in the previous section. As shown in Figure 13, a 10 cm thick thermal
insulation liner with its corresponding mesh was appended onto the tunnel wall. It
was evenly divided into two blocks along the radial direction and 640 blocks along
the circumferential direction.
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In the mechanical aspect, the initial and boundary conditions of this modelling were
inherited from the previous simulation in case Kx = 1.0. In the thermal aspect, the tem-
peratures of surrounding rock and the thermal insulation liner were initially set as 200 ◦C
and 30 ◦C, respectively. The airflow temperature is kept constant as Ta = 30 ◦C. The outer
boundary of the model is Dirichlet condition at fixed 200 ◦C and the heat exchange of the
inner boundary is Robin condition, i.e., between the tunnel and the airflow Equation (2)
was satisfied as follows

− λ
∂T
∂n

= h(Ta − Tr) (4)

where λ is thermal conductivity, Tr is the temperature of the surrounding rock at the tunnel
wall, h is convective heat transfer coefficient, i.e., 60 W/(m2·K) in this paper.

As shown in Table 3 are the thermophysical parameters of granite as the surrounding
rock [58] and the material made of manufacturing thermal insulation liner [22], respectively.
On the other hand, the mechanical parameters of CWFS model had been shown in Table
2. It was assumed that the supporting, lining and other constructive implementations are
completed during a period of 14 days. In term of modelling this procedure, the simulated
magnitude and covering area of EDZs were recorded once per physical hour.

Table 3. Thermophysical parameters of surrounding granite and the thermal insulation liner.

Thermal
Conductivity

[W/(m·K)]

Density
[kg/m3]

Constant Pressure
Heat Capacity

[J/(kg·K)]

Coefficient of
Thermal

Expansion [K−1]

Surrounding rock 2.7 2600 900 1.05 × 10−5

Thermal insulation
liner 0.1 50 500 -

As shown in Figure 14, the radial distributions of temperature across surrounding rock
are different with and without installing thermal insulation layer (TIL). Due to the influence
of low-temperature airflow inside the tunnel, temperature in surrounding rock continues
to descend with ventilating time, and the area of low-temperature disturbance gradually
expands. In case of no thermal insulation liner, the temperature of surrounding rock
decreases up to 35.5 ◦C when ventilation time reaches 300 h. In case of installing thermal
insulation liner, the temperature gradient within thermal insulation liner is much dramatic
than that of the surrounding rock in case of bare tunnel. Obviously the rather small heat
conductivity of thermal insulation liner makes it become a barrier. After 300 h of ventilation,
the lowest temperature of surrounding rock is still as high as 153.0 ◦C, indicating that the
insulation layer (TIL) can effectively mitigate the heat loss from surrounding rock during
the process of ventilation.
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Figure 14. Temperature radially distributed across ventilation entrance along with time.

At the end of ventilation cooling, the stress state of surrounding rock along the radial
but horizontal direction on the circular tunnel cross-section is exemplified in Figure 15.
The falling off of surrounding rock temperature causes additional tensile stress near the
tunnel. The reduction of minimum principal stress leads to further rock damages and
then descending of the compressive stress which can hold its burden. The rock in the
temperature lowered zone shrinks and is unloaded so the concentration of compressive
stress transfers to further zone.
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Figure 15. Stress state along the cross radial horizon of circular tunnel in the end of ventilation cooling.

Figure 16 shows the scales of EDZs and their evolution process along with ventilation
time. With the ventilation time passing by, EDZd, HDZd, EDZa and HDZa gradually grew.
Finally cooling as well had a significant impact on the development of fracture zones in
surrounding rock. Having undergone ventilation cooling for 14 days with and without TIL,
the breadth of EDZd increased by 0.87 m and 1.87 m, and the coverage of EDZa increased
by 27.7 m2 and 58.28 m2, respectively. The expansion of EDZ scales with cooling time
experienced three stages: (1) Slow expansion stage: in the very beginning, i.e., the initial
stage of cooling, the rock mass affected by temperature change was concentrated inside
HDZ in vicinity of circular boundary. The shrinkage of its volume only caused insignificant
stress changes but led to a slow growth of EDZs. Without TIL, this stage corresponds to
0–10 h. While with TIL, this stage was put off to 2 d. (2) Rapid expansion stage: further
cooling will reduce temperatures in EDZ as well as EIZ (Excavation Influence Zone) where
majority of compressive stresses were withstood, resulting in rock volume shrinkage and
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additional tensile stress. Thus, the concentration of compressive stress quickly transferred
to the further and EDZs rapidly grew into larger scales; (3) Attenuating expansion stage:
along with further ventilation and cooling inside the tunnel, the temperature gradient of
surrounding rock mitigated, displaying a relatively slow temperature decline. In the same
time, non-uniform in the volume shrinkage of EDZs turned to relax. Finally, the increasing
rate of EDZs scale slowed down.
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6. Conclusions

In this study, the surrounding rock failure mode and EDZs scale caused by excavation
under the conditions of near hydrostatic pressure is analysed, using the numerical simula-
tion method. Further evolution of EDZs at Kx = 1.0 induced by ventilation is studied by
coupling temperature field. The following conclu-sions can be drawn:

(1) The CWFS model can well represent the progressive failure of surrounding rock
from damage to complete loss of strength during unloading, and the initiation and
propagation of EDZs. Small confinement at tunnel wall plays an important role in
restraining failure.

(2) When the tunnel is excavated under near hydrostatic pressure (Kx = 0.8, 1.0 and 1.2)
in hard rock, shear fracture zone appears in all cases. Spalling failure occurs near
the tunnel wall and the deep surrounding rock is controlled by shear fracture, which
endan-ger the construction safety. Lateral pressure coefficients have a significant
effect on the fracture morphology and scale of surrounding rock. When Kx = 0.8,
1.2, damage concentrates in the direction of the minimum principal stress, while the
damage distribution is more uniform at Kx = 1.0, and when Kx = 1.0, 1.2, the EDZ
scale is larger.

(3) Due to the ventilation, the surrounding rock stress significantly changes. Addi-
tional tensile stress is generated in the shallow part of the surrounding rock, and
the maximum and minimum principal stresses decrease. The compressive stress
concentration transfers to the deep, which promotes the further expansion of EDZs,
and it experiences slow, rapid and deceleration stages with ventilation time. There-
fore, the influence of rock cooling volume shrinkage on EDZs must be consid-
ered in a High-Temperature Tunnel. In addition, thermal insulation layer prolongs
the slow growth stage.
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Abbreviations

EGS-E Enhanced Geothermal System based on Excavation
CWFS Cohesion-Weakening-Friction-Strengthening model
EDZs Excavation Damaged Zones, including EDZ and HDZ
EDZ Excavation Damage Zone
HDZ Highly Damaged Zone
DISL Damage Initiation–Spalling Limit
UCS Uniaxial Compressive Strength
EDZa the area of EDZ (m2)
EDZd the depth of EDZ (m)
HDZa the area of HDZ (m2)
HDZd the depth of HDZ (m)
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