The Potential of Vehicle-to-Grid to Support the Energy Transition: A Case Study on Switzerland
Abstract
:1. Introduction
1.1. The Mismatch between Electricity Production and Consumption
1.2. The Role of Electric Vehicles
1.3. Main Contributions
1.4. Structure of the Work
2. Background
2.1. Challenges of the Future Swiss Energy System
2.2. EV Charging Strategies
3. Methods
3.1. Data
3.1.1. Uncontrolled Supply and Demand Profiles
3.1.2. Electric Vehicles
3.2. Scenarios
3.3. Optimization Framework
3.3.1. The Virtual EV Battery
3.3.2. Implementation
4. Results and Discussion
4.1. Impact of the Optimization on the Power Flows
4.2. From Uncontrolled to Bidirectional EV Charging
4.3. Reductions of Imported GHG Emissions
4.4. Impact on the Net Demand Curve
4.5. Analysis of the Net Transfer Capacity
4.6. EV Battery Degradation Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BAU | Business-as-usual |
EBM | Electric-based-mobility |
EV | Electric vehicle |
GHG | Greenhouse gas |
HP | Heat pump |
HTS | Household travel survey |
LP | Linear program |
NEP | New-energy-policy |
NTC | Net transfer capacities |
PHS | Pumped hydropower plants / pumped hydro storage |
POI | Point of interest |
PV | Photovoltaic |
RES | Renewable energy sources |
RoR | Run-of-the-river |
SoC | State of charge |
TSO | Transmission system operator |
UC | Uncontrolled charging |
V1G | Controlled charging |
V2G | Vehicle-to-grid |
Appendix A. Details on the Wind Power Output Profiles
Appendix B. Power and Energy of Hydro-Based Powerplants
Year | Energy Capacity | Power Capacity | Ramping Capacity |
---|---|---|---|
Reservoir | |||
2018 | 8800 GW h | 8.2 GW | 755.6 MW/15 min |
2030 | 9835 GW h | 9.2 GW | 844.4 MW/15 min |
2035 | 10,353 GW h | 9.7 GW | 888.8 MW/15 min |
2050 | 11,503 GW h | 10.8 GW | 987.6 MW/15 min |
PHS | |||
2018 | 300 GW h | 3.1 GW | 2400 MW/15 min |
2030 | 335 GW h | 3.5 GW | 2400 MW/15 min |
2035 | 353 GW h | 3.7 GW | 2400 MW/15 min |
2050 | 392 GW h | 4.1 GW | 2400 MW/15 min |
Appendix C. EV Types
Model | Share | Energy | Power |
---|---|---|---|
Tesla Model S | % | 100 | 250 |
Renault Zoe | % | 41 | 50 |
Tesla Model 3 | % | 75 | 250 |
BMW i3 | % | 50 | |
Tesla Model X | % | 100 | 150 |
Nissan Leaf | % | 62 | 100 |
Audi e-tron | % | 95 | 150 |
Mitsubishi i-MiEV | % | 16 | 50 |
Jaguar I-Pace | % | 90 | 100 |
Citroën C-ZERO | % | 40 | |
Peugeot iOn | % | 16 | 40 |
Mercedes-Benz EQC | % | 100 | 110 |
Appendix D. Cross-Border Analysis in the BAU Scenario
References
- United Nations Framework Convention on Climate Change (UNFCCC). Paris Agreement to the United Nations Framework Convention on Climate Change. 2015. Available online: https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement (accessed on 5 May 2021).
- Prognos AG and INFRAS AG and TEP Energy GmbH and Ecoplan AG. ENERGIEPERSPEKTIVEN 2050+ Kurzbericht. 2020. Available online: https://www.newsd.admin.ch/newsd/message/attachments/64121.pdf (accessed on 12 May 2021).
- Coignard, J.; Saxena, S.; Greenblatt, J.; Wang, D. Clean vehicles as an enabler for a clean electricity grid. Environ. Res. Lett. 2018, 13, 054031. [Google Scholar] [CrossRef]
- Rüdisüli, M.; Teske, S.L.; Elber, U. Impacts of an Increased Substitution of Fossil Energy Carriers with Electricity-Based Technologies on the Swiss Electricity System. Energies 2019, 12, 2399. [Google Scholar] [CrossRef] [Green Version]
- Schlömer, S.; Bruckner, T.; Fulton, L.; Hertwich, E.M.A.; Perczyk, D.; Roy, J.; Schaeffer, R.; Sims, R.; Smith, P.; Wiser, R. Annex III: Technology-Specific Cost and Performance Parameters; Cambridge University Press: Cambrige, UK, 2014. [Google Scholar]
- Ding, N.; Duan, J.; Xue, S.; Zeng, M.; Shen, J. Overall review of peaking power in China: Status quo, barriers and solutions. Renew. Sustain. Energy Rev. 2015, 42, 503–516. [Google Scholar] [CrossRef]
- Korpås, M.; Wolfgang, O. Norwegian pumped hydro for providing peaking power in a low-carbon European power market—Cost comparison against OCGT and CCGT. In Proceedings of the 2015 12th International Conference on the European Energy Market (EEM), Lisbon, Portugal, 19–22 May 2015; pp. 1–5. [Google Scholar] [CrossRef] [Green Version]
- Dujardin, J.; Kahl, A.; Kruyt, B.; Bartlett, S.; Lehning, M. Interplay between photovoltaic, wind energy and storage hydropower in a fully renewable Switzerland. Energy 2017, 135, 513–525. [Google Scholar] [CrossRef]
- International Energy Agency (IEA). Global EV Outlook 2021. 2021. Available online: https://www.iea.org/reports/global-ev-outlook-2021?mode=overview (accessed on 19 May 2021).
- Boudina, R.; Wang, J.; Benbouzid, M.; Yao, G.; Zhou, L. A Review on Stochastic Approach for PHEV Integration Control in a Distribution System with an Optimized Battery Power Demand Model. Electronics 2020, 9, 139. [Google Scholar] [CrossRef] [Green Version]
- Ehsani, M.; Falahi, M.; Lotfifard, S. Vehicle to grid services: Potential and applications. Energies 2012, 5, 4076–4090. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Greenblatt, J.B.; MacDougall, P.; Saxena, S.; Prabhakar, A.J. Quantifying the benefits of electric vehicles on the future electricity grid in the midwestern United States. Appl. Energy 2020, 270, 115174. [Google Scholar] [CrossRef]
- Bhandari, V.; Sun, K.; Homans, F. The profitability of vehicle to grid for system participants-A case study from the Electricity Reliability Council of Texas. Energy 2018, 153, 278–286. [Google Scholar] [CrossRef]
- Fernandes, C.; Frías, P.; Latorre, J.M. Impact of vehicle-to-grid on power system operation costs: The Spanish case study. Appl. Energy 2012, 96, 194–202. [Google Scholar] [CrossRef]
- Kobashi, T.; Yoshida, T.; Yamagata, Y.; Naito, K.; Pfenninger, S.; Say, K.; Takeda, Y.; Ahl, A.; Yarime, M.; Hara, K. On the potential of “Photovoltaics+ Electric vehicles” for deep decarbonization of Kyoto’s power systems: Techno-economic-social considerations. Appl. Energy 2020, 275, 115419. [Google Scholar] [CrossRef]
- Brinkel, N.; Schram, W.; AlSkaif, T.; Lampropoulos, I.; van Sark, W. Should we reinforce the grid? Cost and emission optimization of electric vehicle charging under different transformer limits. Appl. Energy 2020, 276, 115285. [Google Scholar] [CrossRef]
- World Nuclear Association. Nuclear Power in Switzerland. 2021. Available online: https://world-nuclear.org/information-library/country-profiles/countries-o-s/switzerland.aspx (accessed on 5 May 2021).
- Swiss Federal Office of Energy (SFOE). Nuclear Energy. 2020. Available online: https://www.bfe.admin.ch/bfe/en/home/supply/nuclear-energy.html (accessed on 11 February 2021).
- Federal Office for the Environment (FOEN). Greenhouse Gas Inventory: Evolution of Switzerland’s Greenhouse Gas Emissions Since 1990. 2020. Available online: https://www.bafu.admin.ch/bafu/en/home/topics/climate/state/data/greenhouse-gas-inventory.html (accessed on 11 February 2021).
- Federal Statistical Office (FSO). Road Vehicles—Stock, Level of Motorisation. 2020. Available online: https://www.bfs.admin.ch/bfs/en/home/statistics/mobility-transport/transport-infrastructure-vehicles/vehicles/road-vehicles-stock-level-motorisation.html (accessed on 11 February 2021).
- Kirchner, A.; Bredow, D.; Ess, F.; Grebel, T.; Hofer, P.; Kemmler, A.; Ley, A.; Piégsa, A.; Schütz, N.; Strassburg, S.; et al. Energy Perspectives, Die Energieperspektiven für die Schweiz bis 2050; Prognos AG: Basel, Switzerland, 2012. [Google Scholar]
- Rüdisüli, M.; Bach, C.; Bauer, C.; Beloin-Saint-Pierre, D.; Elber, U.; Georges, G.; Limpach, R.; Pareschi, G.; Kannan, R.; Teske, S.L. Prospective life-cycle assessment of greenhouse gas emissions of electricity-based mobility options. Manuscr. Submitt. Appl. Energy 2021, submitted. [Google Scholar]
- Swiss Federal Office of Energy (SFOE). Electricity Statistics. 2020. Available online: https://www.bfe.admin.ch/bfe/en/home/supply/statistics-and-geodata/energy-statistics/electricity-statistics.html (accessed on 11 February 2021).
- Bundesversammlung der Schweizerischen Eidgenossenschaft (BSE). Bundesgesetz über die Reduktion der CO2-Emissionen. 2013. Available online: https://fedlex.data.admin.ch/filestore/fedlex.data.admin.ch/eli/cc/2012/855/20180101/de/pdf-a/fedlex-data-admin-ch-eli-cc-2012-855-20180101-de-pdf-a.pdf (accessed on 12 May 2021).
- Bartlett, S.; Dujardin, J.; Kahl, A.; Kruyt, B.; Manso, P.; Lehning, M. Charting the course: A possible route to a fully renewable Swiss power system. Energy 2018, 163, 942–955. [Google Scholar] [CrossRef]
- Abrell, J.; Eser, P.; Garrison, J.B.; Savelsberg, J.; Weigt, H. Integrating economic and engineering models for future electricity market evaluation: A Swiss case study. Energy Strategy Rev. 2019, 25, 86–106. [Google Scholar] [CrossRef]
- Muratori, M. Impact of uncoordinated plug-in electric vehicle charging on residential power demand. Nat. Energy 2018, 3, 193–201. [Google Scholar] [CrossRef]
- Forrest, K.E.; Tarroja, B.; Zhang, L.; Shaffer, B.; Samuelsen, S. Charging a renewable future: The impact of electric vehicle charging intelligence on energy storage requirements to meet renewable portfolio standards. J. Power Sources 2016, 336, 63–74. [Google Scholar] [CrossRef]
- Uddin, K.; Dubarry, M.; Glick, M.B. The viability of vehicle-to-grid operations from a battery technology and policy perspective. Energy Policy 2018, 113, 342–347. [Google Scholar] [CrossRef]
- Rüdisüli, M.; Romano, E.; Eggimann, S.; Patel, M. Marginal GHG content of electricity used for various demand and supply scenarios in Switzerland. Manuscr. Submitt. Energy Policy 2021, submitted. [Google Scholar]
- Staffell, I.; Pfenninger, S. Using bias-corrected reanalysis to simulate current and future wind power output. Energy 2016, 114, 1224–1239. [Google Scholar] [CrossRef] [Green Version]
- Bundesamt für Energie (BFE). Schweizerische Elektrizitätsstatistik 2018. Available online: https://www.bfe.admin.ch/bfe/de/home/versorgung/statistik-und-geodaten/energiestatistiken/elektrizitaetsstatistik.html (accessed on 4 August 2021).
- Swissgrid. Produktion und Verbrauch. 2020. Available online: https://www.swissgrid.ch/de/home/operation/grid-data/generation.html#downloads (accessed on 5 May 2021).
- Beer, M. Abschätzung des Potenzials der Schweizer Speicherseen zur Lastdeckung bei Importrestriktionen. Z. Energiewirtschaft 2018, 42, 1–12. [Google Scholar] [CrossRef]
- Pareschi, G.; Georges, G.; Boulouchos, K. Assessment of the Marginal Emission Factor associated with Electric Vehicle Charging. In Proceedings of the 1st E-Mobility Power System Integration Symposium, Berlin, Germany, 23 October 2017. [Google Scholar] [CrossRef]
- Pareschi, G.; Küng, L.; Georges, G.; Boulouchos, K. Are travel surveys a good basis for EV models? Validation of simulated charging profiles against empirical data. Appl. Energy 2020, 275, 115318. [Google Scholar] [CrossRef]
- Bundesamt für Raumentwicklung (ARE). Mikrozensus Mobilität und Verkehr. 2015. Available online: https://www.are.admin.ch/are/de/home/verkehr-und-infrastruktur/grundlagen-und-daten/verkehrsverhalten.html (accessed on 5 May 2021).
- Nicholas, M.; Wappelhorst, S. Regional Charging Infrastructure Requirements in Germany through 2030, White Paper. 2020. Available online: https://theicct.org/publications/regional-charging-infra-germany-oct2020 (accessed on 4 August 2021).
- de Tena Costales, L.D. Large Scale Renewable Power Integration with Electric Vehicles; OPUS - Online Publikationen der Universität Stuttgart: Stuttgart, Germany, 2014. [Google Scholar] [CrossRef]
- Bundesamt für Landestopografie Swisstopo (FOT). Ladestationen für Elektroautos. 2019. Available online: https://www.ich-tanke-strom.ch (accessed on 5 May 2021).
- Schram, W.; Brinkel, N.; Smink, G.; van Wijk, T.; van Sark, W. Empirical Evaluation of V2G Round-trip Efficiency. In Proceedings of the 2020 International Conference on Smart Energy Systems and Technologies (SEST), Istanbul, Turkey, 7–9 September 2020; pp. 1–6. [Google Scholar] [CrossRef]
- International Renewable Energy Agency (IRENA). Innovative Ancillary Services: Innovation Landscape Brief. 2019. Available online: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2019/Feb/IRENA_Innovative_ancillary_services_2019.pdf?la=en&hash=F3D83E86922DEED7AA3DE3091F3E49460C9EC1A0 (accessed on 12 May 2021).
- Vaya, M.G.; Andersson, G. Centralized and decentralized approaches to smart charging of plug-in vehicles. In Proceedings of the 2012 IEEE Power and Energy Society General Meeting, San Diego, CA, USA, 22–26 July 2012; pp. 1–8. [Google Scholar] [CrossRef]
- Al-Ogaili, A.S.; Hashim, T.J.T.; Rahmat, N.A.; Ramasamy, A.K.; Marsadek, M.B.; Faisal, M.; Hannan, M.A. Review on scheduling, clustering, and forecasting strategies for controlling electric vehicle charging: Challenges and recommendations. IEEE Access 2019, 7, 128353–128371. [Google Scholar] [CrossRef]
- Richardson, P.; Flynn, D.; Keane, A. Local versus centralized charging strategies for electric vehicles in low voltage distribution systems. IEEE Trans. Smart Grid 2012, 3, 1020–1028. [Google Scholar] [CrossRef]
- MATLAB. MATLAB Version 9.10.0.1602886 (R2021a); The MathWorks Inc.: Natick, MA, USA, 2021. [Google Scholar]
- Löfberg, J. YALMIP: A Toolbox for Modeling and Optimization in MATLAB. In Proceedings of the CACSD Conference, Taipei, Taiwan, 2–4 September 2004. [Google Scholar]
- Gurobi Optimization LLC. Gurobi Optimizer Reference Manual. 2021. Available online: http://www.gurobi.com (accessed on 5 May 2021).
- von Kupsch, B. Bericht zum Strategischen Netz 2025. 2015. Available online: https://www.swissgrid.ch/dam/swissgrid/projects/strategic-grid/sg2025-technical-report-de.pdf (accessed on 12 May 2021).
- Xu, B.; Oudalov, A.; Ulbig, A.; Andersson, G.; Kirschen, D.S. Modeling of lithium-ion battery degradation for cell life assessment. IEEE Trans. Smart Grid 2016, 9, 1131–1140. [Google Scholar] [CrossRef]
- Ecker, M.; Nieto, N.; Käbitz, S.; Schmalstieg, J.; Blanke, H.; Warnecke, A.; Sauer, D.U. Calendar and cycle life study of Li (NiMnCo) O2-based 18650 lithium-ion batteries. J. Power Sources 2014, 248, 839–851. [Google Scholar] [CrossRef]
- Rienecker, M.M.; Suarez, M.J.; Gelaro, R.; Todling, R.; Bacmeister, J.; Liu, E.; Bosilovich, M.G.; Schubert, S.D.; Takacs, L.; Kim, G.K.; et al. MERRA: NASA’s modern-era retrospective analysis for research and applications. J. Clim. 2011, 24, 3624–3648. [Google Scholar] [CrossRef]
- Molod, A.; Takacs, L.; Suarez, M.; Bacmeister, J. Development of the GEOS-5 atmospheric general circulation model: Evolution from MERRA to MERRA2. Geosci. Model Dev. 2015, 8, 1339–1356. [Google Scholar] [CrossRef] [Green Version]
- Swiss Federal Office of Energy (SFOE). Stand der Wasserkraftnutzung 31.12.2019; Swiss Federal Office of Energy (SFOE): Bern, Switzerland, 2020. [Google Scholar]
- Electric Vehicle Database. A Complete Overview of All Electric Vehicles in Europe. 2021. Available online: https://ev-database.org/ (accessed on 27 July 2021).
- Auto-Schweiz. PW-Zulassungen nach Modellen. 2021. Available online: https://www.auto.swiss (accessed on 12 May 2021).
Location | Probability of a Station | Power Rating |
---|---|---|
Home | 80% [38] | {, , 11} kW |
Work | 50% [39] | {11, 22} kW |
Point of Interest | 26% [37,39] | Distribution from [40] |
Other | 26% [37,39] | Distribution from [40] |
Control | Energy | EV | Optimization | ||
---|---|---|---|---|---|
Strategies | Scenarios | Scenarios | Horizon | ||
None | V1G | V2G | BAU | NEP | Week |
PHS | Reservoir | Combined | ZERO | EBM | Year |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Natale, L.; Funk, L.; Rüdisüli, M.; Svetozarevic, B.; Pareschi, G.; Heer, P.; Sansavini, G. The Potential of Vehicle-to-Grid to Support the Energy Transition: A Case Study on Switzerland. Energies 2021, 14, 4812. https://doi.org/10.3390/en14164812
Di Natale L, Funk L, Rüdisüli M, Svetozarevic B, Pareschi G, Heer P, Sansavini G. The Potential of Vehicle-to-Grid to Support the Energy Transition: A Case Study on Switzerland. Energies. 2021; 14(16):4812. https://doi.org/10.3390/en14164812
Chicago/Turabian StyleDi Natale, Loris, Luca Funk, Martin Rüdisüli, Bratislav Svetozarevic, Giacomo Pareschi, Philipp Heer, and Giovanni Sansavini. 2021. "The Potential of Vehicle-to-Grid to Support the Energy Transition: A Case Study on Switzerland" Energies 14, no. 16: 4812. https://doi.org/10.3390/en14164812
APA StyleDi Natale, L., Funk, L., Rüdisüli, M., Svetozarevic, B., Pareschi, G., Heer, P., & Sansavini, G. (2021). The Potential of Vehicle-to-Grid to Support the Energy Transition: A Case Study on Switzerland. Energies, 14(16), 4812. https://doi.org/10.3390/en14164812