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Abstract: Balancing in a distributed generation network is an increasingly difficult task because of the
increasing number of residential prosumers on the power network. This paper proposes a framework
for the estimation, as well as the prediction of the power flexibility of residential prosumers. In
order to quantify the residential buildings’ demand flexibility, a thermoelectric simulation model
of a typical residential house was developed based on first engineering principles. Based on the
calculated flexibility values, a simple prediction method was used to give a short-term forecast of the
prosumer flexibility. The results were validated by simulation experiments incorporating real data
for four different scenarios.

Keywords: flexibility; demand response; distributed generation

1. Introduction

In the past, conventional power systems were characterized by large generation
sources that injected power into the transmission grid, which was transported to distri-
bution networks and then delivered to the end-users. Power flowed one way from the
high-voltage transmission grid to the end-user at low-voltage networks. Centralized, dis-
patchable, and predictable generation provided flexibility at the transmission level to the
electric system to balance generation and demand, implementing a generation-follows-load
paradigm [1].

The increasing amount of distributed and renewable generation (from around a 21%
share of net power generation in 2010 to 44% in 2030 [2]) transforms the generation side into
a more variable and intermittent source of energy, so the forecast and control of the solar [3]
and wind [4] energy production represent a handful of problems. With the emergence and
significant increase of the distributed and intermittent generation share, the generation-
follows-load paradigm has become unsustainable. The integration of renewable resources
poses new challenges for both the TSO responsible for frequency regulation and the DSO
responsible for the operation of the distribution network. Progress has been made to
increase the predictability [5] and controllability [6,7] of renewables, but the involvement of
the demand-side and load-follows-generation models are inevitable. On the one hand, the
penetration of intermittent generation and distributed energy resources has already forced
TSOs (transmission system operators) to increase the volume of balancing capabilities and
start procuring services for system balancing, not only from the transmission grids, but
also from the distribution grids. On the other hand, DSOs have also been empowered to
acquire flexibility services, to control the production and consumption of system users. In
addition to the quantitative reason, the voltage level, power flow direction, and network
congestion problems arising in medium- and low-voltage networks can be handled locally,
so the network location becomes more important.

Flexibility is the modification of generation injection and/or consumption patterns
in reaction to an external signal (price signal or activation) in order to provide a service
within the energy system [8,9]. It is the active management of an asset that can impact
system balance or grid power flows on a short-term basis. The proper management of
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available flexibility, both on generation and the demand-side, can help to compensate for
the lack of certainty of renewable sources. As variable renewable energy sources constitute
a larger fraction of electricity supply, interest in flexible resources [10], including demand
response, dispatchable generation, transmission interconnection, and storage technologies,
is growing. In the near future, demand-side flexibility would be required for managing
power grids. Buffered heat pumps (HPs) are examples of domestic hot water (DHW)
systems and stationary batteries for flexible residential loads that can store energy from
the grid and local generators (e.g., solar panels). Both forms of stored energy (thermal or
chemical) can be used to support self-consumption.

Building energy systems will serve as one possible source of demand-side energy
flexibility. Traditionally, buildings have been consumers of energy, but they are responsible
for a large share of energy demand and therefore may play a key role in improving the
flexibility in the demand-side of the entire energy system.

The size of a residential household does not reach the volume to be able to bid on
energy markets independently, so prosumers may share their flexibility with a pool. The
flexibility pool is managed by an aggregator [11], which can be a DSO, a TSO, or an in-
dependent intermediary entity. Whatever market design is implemented, the prosumer
receives a premium as compensation for the provided flexibility from the aggregator [12].
The results of [13] showed that the aggregator is able to find a match between the flexibility
provisioned and the flexibility procured by the DSO. The aggregator reduces the remu-
neration costs paid to users for the flexibility at the same time. The aggregator bids on
energy markets aggregating prosumers’ flexibility, so it needs to have information about
the flexibility volume of the pool. Either the prosumer provides a bid or the aggregator
bears the risk; therefore, the amount of flexibility must therefore be quantified, and a
function has to exist to predict the available flexibility.

1.1. Literature Review

In the example of [14], extrapolating the Belgian national level implied that domestic
flexibility could equal 1.8% (upward) and 12.1% (downward) of installed generation
capacity. The results presented by the authors of [15] forecast that the household sector will
be able to contribute significantly to the distribution system stabilization with an average
potential of 30 GW downwards and 3 GW upwards flexibility in the year 2025. Paper [15]
analyzed the potential that is made possible by technology for the provision of system
services by households. Single-family and twin homes were the main focus, since those
are the types of households in which all system components are available. The Electric
Power Research Institute (EPRI) estimated a technical potential summer peak reduction
of 175GW from demand response by 2030 in the USA [16]. The Clean Energy for All
Europeans Package (CEP) [17] empowers prosumers in the EU to offer their flexibility. The
volume necessary for energy markets requires a large number of prosumers to participate
in energy services. Energy companies require digitalization and the utilization of advanced
technologies [18], as well as market models [19] to involve prosumers in the electricity
markets. Using blockchain technology can simplify the management of microgrid power
transactions and realize peer-to-peer power transactions [20].

The technical potential of demand modification profiles was presented for different
regions in the USA in [16]. There are six different load curves of the demands of residential
users [21], for which the demand-side management (DSM) techniques are the following:
peak clipping, valley filling, load shifting, load reduction, load growth, and flexible load
shape. The flexible load shape technique was assumed in this paper.

Paper [22] proposed an energy storage system as a possible flexibility resource and its
potential role in the future smart grid network. The potential benefits of energy storage as
the flexibility resource can facilitate increased participation of storage in different electricity
markets and improve the flexibility of smart grid operation with a high penetration of
renewable energy sources. Paper [23] analyzed the potential of grid flexibility supply
by combined heat and power systems installed at business facilities. Simulations were
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performed for a representative day in each season and four types of facilities. Prosumer
systems can operate both an autonomous (off-grid) and grid-connected (on-grid) systems.
While the energy generated in autonomous systems is consumed by the system’s own
consumption devices, the energy produced in grid-connected systems can be consumed by
the system internally, or if there is energy surplus, it can supply the grid [24].

The flexibility of industrial prosumers is a widely researched area with several out-
standing results and papers [25,26]; however, with the advent of the smart grid, this is
increasingly complemented by the flexibility of residential actors. Residential prosumers
form a promising source of flexibility due to their distributed location and substantial share
of the electricity market. Home energy management (HEM) systems can reduce electricity
consumption by scheduling electrical appliances [27]. There are several control strategies
and methods for HEM: AI-based control (predictive control, optimization control), linear
online control, and storage systems.

Quantifying flexibility is challenging due to its complex electrothermal dynamics and
time delay effects in general. Methodologies to quantify the energy flexibility of buildings
are affected by the definition of flexibility followed by the respective research. A summary
of quantification methods for the energy flexibility of buildings was provided by [28], in
which the characterization of energy flexibility was a demand increase/generation decrease
as negative flexibility and a demand decrease/generation increase as positive flexibility.
The methodology proposed by [29] considers the flexibility of a specific system as the ability
to shift the consumption of a certain amount of electrical power in time. Reference [30]
defined flexibility as the possibility to change the electricity consumption of a building
from the reference scenario at a specific point in time and during a certain time span. The
quantification of flexibility from a district heating system point of view was given in [31].
The district heating system was firstly decomposed into multiple parallel subsystems
with simpler topological structures. The maximum flexibility of each subsystem was then
formulated as a delayed optimal control problem, and finally, the available flexibility from
the original system was estimated by aggregating the flexibility of all subsystems.

In [32], household devices were categorized as shifted, but not varied, shifted and
varied, and not shifted, but varied. The simulation results showed that the flexibility
of houses under testing had maximum power values of 200–500 W. The authors of [33]
described the customer-side time flexibility with respect to white goods (washing machine,
dryer, dish washer) with two parameters: configuration time and deadline. The paper
modeled customer flexibility behavior with finite mixture models.

1.2. Aim and Contribution

The research question of our study is whether it is possible to calculate and forecast the
up and down flexibility of a residential house based on measurable quantities. A model-
based approach was applied to simulate the energy processes of a residential building,
in which the electrical devices were modeled and power consumption/generation was
calculated for each device, so that the consumption/generation modification opportunities
could be defined as the prosumer’s flexibility. By configuring the external parameters of the
model, the energy consumption of the house and the available flexibility could be simulated
for different scenarios. A supervised prediction could be built on it, in which the simulation
produced flexibility as a dependent variable. The prosumer model could be scaled to a
pool of prosumers that could provide flexibility inputs for an aggregator function.

The contribution of this paper can be summarized in three main points. First of all, a
dynamic model of a typical residential building energy system is developed based on first
engineering principles. The simulation model was implemented in the MATLAB Simulink
environment. On the other hand, a calculation scheme is given for determining the flexibil-
ity of residential houses. Finally, a prediction method was developed and implemented in
the Python environment to provide a 15 min forecast of the prosumer flexibility.
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1.3. Structure of the Paper

The structure of the paper is as follows. After assessing the state-of-the-art in the
proposed research area in the present section, the modeling assumptions and the structure
of the proposed residential prosumer model are detailed in Section 2, and based on it, a
simulation-based case study is presented in Section 3. This is followed by Section 4, which
summarizes and concludes the paper.

2. Modeling and System Structure

For the study of demand flexibility, a residential building was assumed that is located
in Hungary. The building is equipped with an electric heating system, a separate water
heater, a home energy storage system, and rooftop PV panels (see Figure 1).

Figure 1. High-level model of the system. Line segments without arrow heads represent bidirectional
power flow.

The prosumer model consisted of energy consumers (space heater, hot water, and
noncontrollable load), a producer (PV), and a battery. The house was connected to the grid
(on-grid mode), and power flow was available in both directions. All the energy needs of
the house were supplied by the PV panels and the grid, and there was no other source of
power (e.g., gas, central heating). Besides using energy from the grid, the PV panels and
the battery can also supply the consumers. When available, self-consumption is preferred.
Instantaneous flexibility was calculated for all the devices in both directions and summed
to provide a time series of the available flexibility.

A thermal model was developed for the space heating and hot water system. Not ev-
ery electrical appliance can be controlled without inconveniencing consumers, so there are
some appliances that consumers may always need access to. The flexibility of these appli-
ances (e.g., lights, water, kitchen devices, other household appliances) was not considered
in this study; their consumption is referred to as noncontrollable load. Power was supplied
from the PV system, energy storage, or the grid. A conventional greedy algorithm was
implemented to control energy storage operation when no external flexibility regulation
was applied. The objective was to minimize grid usage.

There was no need for a separate flexibility control block in the case of the default
operation scenario, when no external flexibility activation occurs. All the dispatchable
devices could operate autonomously, and the greedy implementation of battery operation
required no central control logic. Flexibility was calculated for each device, and the
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sum represents the available flexibility of the house for both the up and down direction.
Flexibility followed the interpretation proposed by the authors of [28], i.e., it was assumed
to be a signed value, positive when generation can be increased or consumption can be
decreased and negative in the case when generation can be decreased or consumption can
be increased.

The residential house of the case study has the parameters presented in Table 1.

Table 1. Exogenous variables of the system.

Parameter Description Unit

mwater mass of water in the tank kg
Twater(0) initial water temperature ◦C

Tsp
water water temperature setpoint ◦C

Tth
water water temperature threshold ◦C

dmcons
water(t)/dt water consumption kg/s
Cwater heat capacity of air (273 K) J/(kg·K)
ηwater efficiency of the water heater -
Pmax

water power capacity of the water heater W
hlwater heat loss rate W/(kg · K)

lH length of the house m
wH width of the house m
hH height of the house m
nW number of windows -
wW width of a window m
hW height of a window m

λBrick thermal conductivity of brick W/(m·K)
λEPS thermal conductivity of EPS insulation W/(m·K)
dBrick brick thickness m
dInsW insulation thickness of the walls m
dInsS insulation thickness of the slab m

UWindows heat transfer coefficient of the windows W/(m2·K)
Tindoor

air (0) initial indoor air temperature ◦C
Toutdoor

air (t) outdoor temperature ◦C
Tsp

air air temperature setpoint ◦C
Tth

air air temperature threshold ◦C
Theating temperature of air exiting the heater ◦C

dmair(t)/dt air flow rate of the heater kg/s
Cair heat capacity of air (273 K) J/(kg·K)
ρair density of air at sea level kg/m3

Pmax
heating maximum power capacity of the heater W

copheating heating system’s coefficient of performance -
SoC(0) battery initial state-of-charge %
MinSoC battery minimum state-of-charge %
MaxSoC battery maximum state-of-charge %
Pmax

battery maximum power of the battery W
ηbattery efficiency of the battery -
Ppv(t) power generation of the PV panels W

Pload(t) power consumption of the noncontrollable load W

2.1. Hot Water

Hot water is supplied by an electric water tank containing mwater kilograms of water.
A setpoint (Tsp

water) specifies the maximum temperature of the water, and a thermostat
controls the heating cycles. The thermostat switches the heater off at the setpoint and turns
it on (Equation (2)) when the temperature drops below the setpoint by a threshold value
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(Tth
water). When the heater is on, a heating wire warms up the water by ηwater efficiently

consuming a constant level of power (Pwater).
A water tank model calculates the water temperature dynamics (Equation (1)). The

water temperature change ( dTwater(t)
dt ) has three main inputs: heat provided by the heater

( dQgain
water(t)
dt ), hot water consumption ( dQcons

water(t)
dt ), and heat losses ( dQheatloss

water (t)
dt ). When hot water

is consumed, the same amount of cold water ( dmcons
water(t)
dt ) fills the tank. The inflow water

temperature is the same as the outside temperature (Toutdoor
air (t)); thus, consumption cools

the tank. The heat outflow is proportional to the temperature difference between the cold
and the tank water (Twater(t)). Heat loss is calculated considering a heat loss parameter
(hlwater) [34] and the difference between water and room temperature (Tindoor

air ). The room
temperature is an output signal of the heating subsystem.

The energy balance of the hot water subsystem is expressed by the following equations:

Conswater(t) = Pmax
water · Regwater(t)

dQgain
water(t)
dt

= Conswater(t) · ηwater

dQcons
water(t)
dt

= (Twater(t)− Toutdoor
air (t)) · dmcons

water(t)
dt

· Cwater (1)

dQheatloss
water (t)

dt
= (Twater(t)− Tindoor

air ) ·mwater · hlwater

dTwater(t)
dt

=

(
dQgain

water(t)
dt

− dQcons
water(t)
dt

− dQheatloss
water (t)

dt

)
1

mwater · Cwater

where Conswater(t) stands for the actual water consumption of the house.

Regwater(t) =

{
1 , when the water heater is on,
0 , when the water heater is off.

(2)

Power is a signed value. Pwater(t) is negative (consumption) when the heater is on
(Regwater(t)):

Pwater(t) = −Conswater(t). (3)

The calculated flexibility can be defined for both the up and down direction between
current power consumption and the maximum power capacity (down) or 0 (up) using
(Equation (4)) below.

Fup
water(t) = Conswater(t) (4)

Fdown
water (t) = Conswater(t)− Pmax

water

2.2. Heating

The thermal model of a house calculates the power consumption of the heating
system that keeps the indoor temperature around a defined setpoint. The heating system
is equipped with a thermostat and an electric heater. Similar to the water heater, the
thermostat switches the heater on and off (Equation (9)) when the temperature drops below
and above the setpoint (Tsp

air) by a predefined threshold (Tth
air). An air-to-air heat pump

supplies warm air for the house, operating at an average COP ratio (copheating).
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Total thermal resistance (Rtot) is calculated from the geometry and the material prop-
erties of the house (Equation (5)). The walls of the house are made of bricks, and EPS
insulation is used on the walls and the slab.

AWindows = nW · hW · wW

AWalls = 2 · lH · hH + 2 · wH · hH − AWindows (5)

ASlab = wH · lH

A = AWindows + AWalls + ASlab

The thermal resistance of thermally homogeneous components is calculated using
(Equation (6)).

RWindows = 1/UWindows

RWalls = dBrick/λBrick + dInsW/λEPS (6)

RSlab = dInsS/λEPS

The total thermal resistance (Rtot) is determined by assuming one-dimensional heat
flow perpendicular to the walls. It is given (Equation (7)) by the method in the ISO
6946/2007 standard [35].

Rtot =
A

AWalls/RWalls + AWindows/RWindows + ASlab/RSlab
(7)

A thermal model calculates the indoor air temperature dynamics of the house. Its two
main inputs are the heat provided by the heating system and heat losses. Contrary to the

water heater, heat gain (
dQgain

heating(t)
dt ) is not persistent, but proportional to the temperature

difference between the room (Tindoor
air ) and the constant heated air temperature (Theating).

Heat loss (
dQheatloss

heating (t)
dt ) is proportional to the temperature difference between the room

and outdoor temperature (Toutdoor
air ). The indoor temperature time derivative ( dTindoor

air (t)
dt ) is

expressed by the following equations:

dQgain
heating(t)

dt
= min

(
(Theating − Tindoor

air (t))
dmair(t)

dt
Cair, Pmax

hp copheating

)
Regheating(t)

dQheatloss
heating (t)

dt
=
(

Tindoor
air (t)− Toutdoor

air (t)
) 1

Rtot
A (8)

dTindoor
air (t)

dt
=

dQgain
heating(t)

dt
−

dQheatloss
heating (t)

dt

 1
(lH · wH · hH) · ρair · Cair

Regheating(t) =

{
1 , when the heater is on,
0 , when the heater is off.

(9)

Consheating(t) denotes a theoretical power consumption that is necessary to warm the
indoor air up to the constant heated air temperature.

Consheating(t) = min

(
(Theating − Tindoor

air (t)) dmair(t)
dt Cair

copheating
, Pmax

hp

)
(10)
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Power is a signed value. Pheating(t) is negative (consumption) when the heater is on:

Pheating(t) = −Consheating(t)Regheating(t). (11)

The available flexibility quantity from the heating system is calculated for both direc-
tions (Equation (12)). When the heater is on, its power consumption can be decreased, and
the maximum upward flexibility is the difference between instantaneous power and zero.
When it is off, downward regulation is available by turning the heater on.

Fup
heating(t) = Consheating(t)Regheating(t) (12)

Fdown
heating(t) = −Consheating(t)(1− Regheating(t))

2.3. Storage

Storage provides the flexibility of shifting energy over time. A conventional greedy
algorithm was implemented to control the storage operation when no external flexibility
regulation was applied [36] in order to prefer self-consumption and reduce feed-in power.
If there is a higher consumption by the household than generation by the PV, the storage is
discharged until a minimum charge level. When generation surplus occurs, the storage is
charged until it is full.

The storage model (Equations (13)–(16)) processes the power requirement (Regbattery(t)),

determines the default storage operation (charge: Conscharge
battery(t)/discharge: Consdischarge

battery (t)),
and calculates current state-of-charge (SoC(t)) taking into consideration the power limits
(Pmax

battery), capacity limits (MinSoC, MaxSoC), and efficiency ratio (ηbattery).

Regbattery(t) = Pwater(t) + Pheating(t) + Pload(t) + Ppv(t) (13)

Conscharge
battery(t) =

{
min(max(0, Regbattery(t)), Pmax

battery), when SoC(t) < MaxSoC,

0, otherwise
(14)

Consdischarge
battery (t) =

{
max(min(0, Regbattery(t)),−Pmax

battery), SoC(t) > MinSoC,

0, otherwise
(15)

dSoC(t)
dt

=
Conscharge

battery(t)·ηbattery + Consdischarge
battery (t)·(2− ηbattery)

Cap
(16)

The battery’s contribution to the net power balance of the house (Pbattery(t)) has the
opposite sign of battery consumption.

Pbattery(t) = −Conscharge
battery(t)− Consdischarge

battery (t) (17)

Given the maximum charge (Pmax
battery) and discharge (Pmin

battery) power of the energy
storage and the instantaneous power output, both up and down regulation capacity can be
calculated (Fup

battery(t), Fdown
battery(t)) when the state-of-charge is between the charge limits.

Fup
battery(t) = Pmax

battery − Pbattery(t) (18)

Fdown
battery(t) = −Pmax

battery − Pbattery(t)
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2.4. Noncontrollable Load

The consumption of the household is made up of controllable and noncontrollable
loads. While the controllable load was presented in the previous sections, the measured
data were used for the noncontrollable load time series (Pload(t)). No flexibility was
available for the noncontrollable load.

2.5. PV Generation

PV generation (Ppv(t)) depends only on solar radiation. When no flexibility control
was applied, it was assumed that the panels always generated the maximum power, and
no upward regulation was available. The PV can offer downward flexibility (Fdown

pv (t))
between 0 and its current generation.

Fdown
pv (t) = −Ppv(t) (19)

2.6. Power Balance and Total Flexibility

The power balance of the house is calculated by summarizing the signed values of
each component.

Pbalance(t) = Pwater(t) + Pheating(t) + Pbattery(t) + Pload(t) + Ppv(t) (20)

The total flexibility is calculated separately for the up and down direction:

Fup
total(t) = Fup

water(t) + Fup
heating(t) + Fup

battery(t)

Fdown
total (t) = Fdown

water (t) + Fdown
heating(t) + Fdown

battery(t) + Fdown
pv (t) (21)

2.7. Model Verification

The simulation parameters were configured taking the geometry and materials used
in the well-insulated, single-story residential house built in 2015 in Hungary. The building
has a ground floor area of 172 m2, made of insulated brick (38 + 15 cm). The ceiling has
a concrete structure with 30 cm of insulation. The windows have three-pane thermal
insulated glazing.

The parameters and calculated variables were compared to the values of the single-
family house involved in the IEA EBC Annex 58 project [37]. The referenced building
area is 100 m2; its brick walls are insulated, and double-pane windows were built in. The
benchmark building has slightly worse U-values [38], but the total conductance is lower,
because of the difference in size. Interior walls were also considered in the thermodynamic
calculations. The comparisons of the heat transfer coefficients are given in Table 2.

Table 2. Calculated heat transfer coefficients.

Component Building in the Building in the Unit of Measure
Present Study IEA EBC Annex 58 Project

External walls 0.16 0.2 W/(m2·K)
Windows 0.9 1.12 W/(m2·K)

Slab 0.12 0.17 W/(m2·K)
Total envelope conductance 57 36.6 W/K

The model was tested with manual inputs. Figure 2 shows the model response for an
arbitrarily chosen input set. In the beginning, there was no consumption. PV generation
ramped up to 4 kW. It charged the battery and supplied the load between one and two.
The power balance of the house remained zero until the battery was full. At Hour 5, the
outdoor temperature dropped to −2 ◦C from 24 ◦C, making the space heater turn on after
40 min. Between Hours 6 and 8, 6 L/min hot water was also used. The battery supplied
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the noncontrollable load and the consumption of both heaters until the SoC reached its
minimum level. The building was fed from the grid after Hour 8. It can be concluded that
the proposed simulation model corresponded to the engineering expectations.
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Figure 2. Power of the devices for the verification inputs.

2.8. Flexibility Prediction

The quantification of the flexibility provides instant volumes of the up and down
regulation capabilities. Instantaneous values are not valuable for flexibility buyers such as
system operators, so forecasts need to be calculated. It was not a primary objective of this
paper to study the prediction methods and evaluate the results; however, a simple forecast
model was built to show the short-term prediction opportunities.

A linear model was fit to minimize the residual sum of squares between the observed
features and the values predicted by the linear approximation. Ridge regression was
used, which kept all predictors in the model, but performed an L2-norm regularization,
reducing the impact of correlated predictors. Ridge regression is a regularized version of
linear regression where a regularization term is added to the cost function. This forces
the learning algorithm to not only fit the data, but also keep the model weights smaller in
magnitude [39]. The objective function of RR is defined as follows [40]:

min
w

1
2

n

∑
i=1
||wTxi − yi||22 + λ||w||22, (22)

where xi is the feature vector of the i-th sample and yi is the independent variable’s
true value. λ is a regularization parameter. Weight vector w is calculated by taking the
derivative of Equation (22) and setting it to zero.

w = (XXT + λI)−1XyT (23)

A 15 min interval is the typical market time unit for settlement in the energy sector
in Europe. The calculation of a 15 min forecast of upward flexibility assumes that it has
a linear relationship between upward flexibility (yi) and the predictor variables (xi). PV
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generation, heating system/water heater consumption, power, and the state-of-charge of
the battery were selected as the explanatory variables. There was no prediction of the
features, so 15 min lags were applied to construct the predictor set (Equation (25)). A 15
min average of the target variable was calculated and lagged by 15 min (Equation (24)).

Flexup
rolling(i) =

∑i−900300
t=i−18001200 Fup

total(t)
900

(24)

xi =



Pwater(i− 900)
Pheating(i− 900)
Pbattery(i− 900)

Ppv(i− 900)
SoC(i− 900)
Flexup

rolling(i)


(25)

Ridge regression puts constraints on the size of the coefficients associated with each
variable. These values depend on the magnitude of each variable. If a variable is measured
at a higher scale than the other variables and not centered around zero, they do not give
an equal contribution to the analysis. Both the training and test set must be standardized
based on the mean and standard deviation learned from the training set by removing the
mean and scaling data to unit variance as follows:

z =
x− µ

σ
, (26)

where µ is the mean, σ is the standard deviation of x, and z is the scaled predictors.
The coefficient of variation of the root-mean-squared error (CVRMSE) and the coeffi-

cient of determination (R2 score) were used as a set of criteria to evaluate the prediction.
The CVRMSE (Equation (27)) measures the variability of errors between true and predicted
values. It gives an indication of the model’s ability to predict the overall load shape that is
reflected in the data [41].

CVRMSE(y, ŷ) =
1

1
n ∑n

i=1 yi

√
1
n

n

∑
i=1

(yi − ŷi)2100 (27)

R2 ( 28) represents the proportion of variance that has been explained by the indepen-
dent variables in the model. It provides an indication of the goodness of fit and therefore a
measure of how well unseen samples are likely to be predicted by the model, through the
proportion of explained variance [42].

R2(y, ŷ) = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − ȳ)2 , (28)

where:

• n: number of samples;
• yi: true value;
• ŷi: predicted value of the i-th sample;
• ȳ = 1

n ∑n
i=1 yi.

3. Case Study and Results
3.1. Scenarios

The energy model of the house in Section 2 was implemented in MATLAB Simulink.
It calculated the total power consumption/generation and available flexibility that it could
offer. Four simulations were performed to analyze flexibility under different weather
conditions and patterns for a 24 h period. The scenarios differed in the PV generation and
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outer temperature time series data, and it was assumed that the noncontrollable load and
water consumption patterns were the same in each scenario. Please refer to Appendix A to
review additional parameter values.

Figure 3 shows the difference between the solar generation profile for the different
scenarios. The 1 min measurements from a 400 kVA PV park were collected and normalized
by the peak power capacity. The relative production of each scenario was multiplied by
the capacity of the modeled rooftop panels to obtain the PV generation time series (Ppv(t)).
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Figure 3. PV generation profiles for the four scenarios. The higher generation at 8 a.m. on a cloudy
summer day (red line) compared to a sunny summer day (orange, dashed) comes from the efficiency
increase caused by the cooling (a possible cloud passing by) at 7 a.m.

Figure 4 shows the environmental temperature (Tout) for the different scenarios. Tem-
perature data were collected from the PV site (Toutdoor

air (t)).
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Figure 4. Outer temperature profiles for the four scenarios.

The Almanac of Minutely Power dataset (AMPds) [43] contains electricity, water, and
natural gas measurements at one minute intervals for two years of monitoring. There
is a total of twenty-one power meters and two water meters installed in a residential
house similar to the one analyzed in this study. The 21 electronic submeters were assigned
to groups: controllable and noncontrollable devices. Controllable devices consist of the
HVAC, heat pump, and hot water heater, and noncontrollable group contains bedroom,
basement, dining room plugs and lights, clothes washer and dryer, dishwasher, kitchen
fridge and oven, garage, home office, entertainment, utility room, and outside plugs. All
noncontrollable measurements were added, and a typical 1 d time series was created by
calculating the average value of the same minute for every day of the two-year monitoring
period. Figure 5 shows the noncontrollable consumption for all the scenarios (Pload(t)).
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Figure 5. Noncontrollable electrical load for the four different scenarios.
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Hot water consumption (Figure 6) was calculated by the same method as the non-
controllable load. The Almanac of Minutely Power dataset was the source of the 1 min
consumption data. The mean value was calculated for every minute of the day to generate
a 1 d normal water consumption (dmcons

water(t)/dt).
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Figure 6. Hot water consumption for the four different scenarios.

3.2. Simulation Results for the Scenarios
3.2.1. Winter—Sunny Day

Figure 7 shows the power consumption and generation of the simulated devices.
Supply from the grid and PV generation was the primary sources of energy. Net power
is the balance of the house; it is the volume of power consumption from or fed to the
grid. When the PV generates sufficient power to feed all consumption units, the energy
surplus charges the battery. The greedy battery control method discharges the storage
when the PV is low. After 8 p.m., the house is supplied from the grid again, after the battery
becomes empty.

The band of flexibility was not symmetric: although the house was a prosumer,
generation and storage capacity was limited, and consumption was intermittent. There
was more time when a consumption device could be turned on than off, so the downward
flexibility was higher. PV generation increased the upward flexibility by charging the
battery: the battery consumption could always be switched to production.
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Figure 7. Power consumption/generation of devices for the winter sunny day scenario.
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The upward and downward flexibility capabilities of each device were added, result-
ing in the building’s maximum flexible power (Figure 8).

4 6 8 10 12 14 16 18 20 22 24
−10

−5

0

5

Time [h]

P
ow

er
[k

W
]

Upper bound of flexibility
Lower bound of flexibility

Flexibility region

Figure 8. Available upward and downward flexibility for the winter sunny day scenario.

3.2.2. Winter—Cloudy

Figure 9 shows the power consumption and generation of the simulated devices. On
a cloudy winter day, the effect of self-generation was limited, and upward flexibility was
confined to the short periods when consumption devices operate or the PV is able to supply
the house and charge the battery. The downward direction was not affected.
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Figure 9. Power consumption/generation of devices for the winter cloudy day scenario.

The upward and downward flexibility capabilities of each device were added, result-
ing in the building’s maximum flexible power (Figure 10).
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Figure 10. Available upward and downward flexibility for the winter cloudy day scenario.

3.2.3. Summer—Sunny

Figure 11 shows the power consumption and generation of the simulated devices.
On a sunny summer day, the PV generation had a major effect: together with the storage,
self-production was sufficient to supply the instantaneous power consumption of the house.
After noon, the generation surplus was fed back to the grid.
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Figure 11. Power consumption/generation of devices for the summer sunny day scenario.

The upward and downward flexibility capabilities of each device were added, result-
ing in the building’s maximum flexible power (Figure 12).

3.2.4. Summer—Cloudy

Figure 13 shows the power consumption and generation of the simulated devices.
A cloudy summer day resulted in a more variable upward flexibility in the positive direc-
tion. The energy of PV production was not enough to supply the house all day, but 90% of
the time, so there was no grid usage.
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Figure 12. Available upward and downward flexibility for the summer sunny day scenario.
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Figure 13. Power consumption/generation of devices for the summer cloudy day scenario.

The upward and downward flexibility capabilities of each device were added, result-
ing in the building’s maximum flexible power (Figure 14).
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Figure 14. Available upward and downward flexibility for the summer cloudy day scenario.
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3.2.5. Prediction

The previous sections presented prosumer flexibility in different environmental condi-
tions for 1 d. Here, the results of the forecast model (Section 2.8) are shown based on one
month of one-minute resolution input data for the upward direction. The simulation of
the flexibility represents the true value of the target variable. One-third of the one-month
input interval was held back as a test to provide an unbiased evaluation of the model fit on
the training dataset.

The ridge regression model generates the target variable of the linear forecast model,
that is the 15 min forecast of up and down flexibility. Prediction on the test set provided a
25.5% CVRMSE and a 0.89 R2 score. Figure 15 shows a 4 h sample of the prediction.
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Predicted upward flexibility

Figure 15. Sample from the upward flexibility prediction between 17:20 and 20:45.

The predictors explained the target variable well; however, the variability of the errors
was high given the short forecast interval.

3.3. Discussion of the Results

Applying measured weather and load data, the experiments were performed along
four different, but typical scenarios. The results showed that the highest range of flexibility
was available in the summer time, when there was no heating and the solar generation was
maximal. It was also clear that the battery usage was higher in the summer, when the solar
generation was not being consumed instantly. It is important to note that a properly sized
air conditioner unit would balance the load between the summer and winter periods.

4. Conclusions

Demand-side flexibility can be a valuable source for system operators; however,
residential prosumers do not follow a well-defined schedule, so a firm volume of available
flexibility cannot be planned, but predicted. A flexibility framework was proposed in this
paper for residential prosumers in a distributed generation setup. The residential prosumer
of the case study was parameterized so that it described a usual residential actor of the
system. To quantify building demand flexibility, the thermoelectric dynamic response of
the building energy system was modeled and implemented in MATLAB Simulink. Power
consumption and generation were modeled. Simulations were performed based on real
world data, and the flexibility potential was calculated for both up and down flexibility.
The simulation of four scenarios was executed, which covered one day in different seasons.
Power consumption and generation were calculated, as well as upward and downward
instantaneous flexibility.

A ridge-regression-based prediction method was designed, and the short-term forecast
was calculated. The simulation and prediction experiments showed that the proposed
method could serve as the basis of a state estimator or prediction unit. The accuracy of
the forecast was moderate, but by assessing different prediction methods on the prosumer
flexibility model, we could choose the right tool to improve accuracy and confidence of
the prediction.
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The aggregation of prosumers’ flexibility is necessary to reach the volume that a system
operator can utilize. The framework presented forms a basis to analyze the flexibility
prediction opportunities on aggregated prosumer portfolios.

The future research directions include the generalization of the method to a higher
number of households, for example a local transformer area, in order to give an estimate of
the flexibility of a group of prosumers. Another step in the development of the proposed
method is to use novel prediction methods from the field of data science to enhance the
short-term prediction performance for flexibility.
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Appendix A

The simulation parameters were taken from the energy audit of a residential building
located in Hungary. Together with the house geometry, they are referred to as the “house
parameters”. The authors determined additional simulation values considering the typical
configuration or characteristics of the devices.

https://doi.org/10.7910/DVN/FIE0S4
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Table A1. Simulation parameters.

Parameter Value Unit of Measure Source

lH 22 m House parameter
wH 10 m House parameter
hH 3 m House parameter
nW 7 m House parameter
wW 1 m House parameter
hW 1.6 m House parameter

λBrick 0.179 W/(m·K) House parameter
λEPS 0.035 W/(m·K) House parameter
dBrick 0.38 m House parameter
dInsW 0.15 m House parameter
dInsS 0.3 m House parameter

UWindows 0.9 W/(m2*K) House parameter
mwater 120 kg Determined by the authors

Twater(0) 55 ◦C Determined by the authors
Tsp

water 65 ◦C Determined by the authors
Tth

water 15 ◦C Determined by the authors
Cwater 4181 J/(kg·K) Physical constant
ηwater 0.9 - Determined by the authors
Pmax

water 2300 W Determined by the authors
hlwater 0.0069 W/(kg·K) Derived from the results of [34]

Tindoor
air (0) 24 ◦C Determined by the authors

Tsp
air 22 ◦C Determined by the authors

Tth
air 3 ◦C Determined by the authors

Theating 50 ◦C Determined by the authors
dmair(t)/dt Constant 0.2 kg/s Determined by the authors

Cair 1005.4 J/(kg·K) Physical constant
ρair 1.225 kg/m3 Physical constant

Pmax
heating 10,000 W Determined by the authors

copheating 3.6 - Determined by the authors
SoC(0) 15 % Determined by the authors
MinSoC 15 % Determined by the authors
MaxSoC 85 % Determined by the authors
Pmax

battery 4000 W Determined by the authors
ηbattery 0.9 - Determined by the authors
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