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Received: 23 July 2021

Accepted: 17 August 2021

Published: 19 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan; yyguo@iis.u-tokyo.ac.jp (Y.G.);
nomura@iis.u-tokyo.ac.jp (M.N.); volz@iis.u-tokyo.ac.jp (S.V.)

2 LIMMS, CNRS-IIS UMI 2820, The University of Tokyo, Tokyo 153-8505, Japan
* Correspondence: ordonez@iis.u-tokyo.ac.jp; Tel.: +81-8081-07-5282

Abstract: Heat transport guided by the combined dynamics of surface phonon-polaritons (SPhPs)
and phonons propagating in a polar nanowire is theoretically modeled and analyzed. This is achieved
by solving numerically and analytically the Boltzmann transport equation for SPhPs and the Fourier’s
heat diffusion equation for phonons. An explicit expression for the SPhP thermal conductance is
derived and its predictions are found to be in excellent agreement with its numerical counterparts
obtained for a SiN nanowire at different lengths and temperatures. It is shown that the SPhP heat
transport is characterized by two fingerprints: (i) The characteristic quantum of SPhP thermal
conductance independent of the material properties. This quantization appears in SiN nanowires
shorter than 1 µm supporting the ballistic propagation of SPhPs. (ii) The deviation of the temperature
profile from its typical linear behavior predicted by the Fourier’s law in absence of heat sources. For a
150 µm-long SiN nanowire maintaining a quasi-ballistic SPhP propagation, this deviation can be as
large as 1 K, which is measurable by the current state-of-the-art infrared thermometers.

Keywords: surface phonon-polaritons; polar nanowire; thermal conductance; ballistic heat transport;
quantum of thermal conductance

1. Introduction

One-dimensional (1D) heat conduction at low temperatures has been extensively
investigated due to the existence of a quantum of thermal conductance. This quantization
is related to the heat flux carried by ballistic phonons or electrons in a single polarization
and is given by G0 = π2k2

BT/3h, where kB and h are the respective Boltzmann and Planck
constants, and T is the temperature [1–5]. This minimal and universal amount of heat, for
a given T, holds for both electrons and phonons, as was theoretically predicted [6,7] and
experimentally validated [8,9]. Given that the mean free paths of electrons and phonons
are typically smaller than 1 µm at room temperature, with lower temperatures leading to
longer mean free paths, the observation of this quantization in the ballistic regime typically
requires the utilization of nanostructures at temperatures lower than 1 K [8,9].

The limitations of phonons and electrons to exhibit 1D ballistic heat conduction at
temperatures comparable to room temperature, can be overcome with surface phonon-
polaritons (SPhPs), which are evanescent electromagnetic waves generated by the hy-
bridization of photons and phonons at the interface of polar materials [10–18]. This ballistic
behavior appears due to the huge SPhP propagation length that was found to be as long
as 1 m [19–22] and is hence orders of magnitude longer than the typical mean free paths
of electrons and phonons. The spectral values of this propagation length is mainly deter-
mined by the material permittivity, which is nearly independent of temperature, within a
wide range of temperatures lower and higher than room temperature [23]. Therefore, the
ballistic heat transport of SPhPs is not necessarily restricted to low temperatures, as is the
case of electrons and phonons. On the other hand, the wavelength of SPhPs propagating
along nanowires can be much longer than the nanowire diameter [21] and hence these
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energy carriers can be considered as a 1D quantum gas. As a result of these relatively
long values of the propagation length and wavelength of SPhPs, their contribution to
the axial heat transport was predicted to be comparable to or even higher than that of
phonons. In fact, in the pure ballistic regime, the quantum of thermal conductance G0
due to phonons and electrons in a nanowire at cryogenic temperature also holds for the
SPhPs at room temperature [21]. Even though the phonon, electron, and SPhP quantum of
thermal conductance of nanowires were already quantified separately, the heat transport
driven by the simultaneous propagation of phonons and SPhPs along a polar dielectric
nanowire has been not explored yet.

The purpose of this work is to theoretically study the temperature and heat flux
profiles generated by the coupling of SPhPs and phonons along the surface of a polar
nanowire at a temperature comparable to or lower than room temperature. This is achieved
by solving, numerically and analytically, the Boltzmann transport Equation (BTE) and
combining its prediction for the SPhP heat flux with the principle of energy conservation.
An explicit expression for the SPhP thermal conductance valid for both the ballistic and
diffusive regimes is derived and analyzed. The critical nanowire length at which the
quantization of the thermal conductance appears is thus determined.

2. Theoretical Models

Let us consider a polar nanowire supporting the simultaneous propagation of SPhPs
and phonons due to the temperature difference Th > Tc set by two thermal baths, as shown
in Figure 1. The resulting steady-state heat transport along the z axis is thus driven by the
heat fluxes generated by these two types of energy carriers.

l

SPhPs

Th z Tc

 
Nanowire

Phonon

Figure 1. Scheme of a polar nanowire supporting the propagation of both SPhPs and phonons due to
the temperature difference Th > Tc imposed by two thermal baths.

Considering that the phonon heat conduction can be described by an effective thermal
conductivity kph [24], the principle of energy conservation along with the Fourier’s law
establishes that the temperature T inside the nanowire is given by

− kph
∂T
∂z

+ q(z) = qt, (1)

where q is the SPhP heat flux and qt is the total heat flux, a constant independent of position
z (i.e., ∂qt/∂z = 0), which yields the following heat diffusion equation:

kph
∂2T
∂z2 + S(z) = 0, (2)

with S(z) = −∂q/∂z being an effective heat source term that stands for the coupling be-
tween SPhPs and phonons. Physically, S(z) > 0 (< 0) represents the heat source (sink) due
to the thermal absorption (emission) of SPhPs at the nanowire surface. Taking into account
that SPhPs can be treated like bosonic particles [20,25], q can be determined by means of
the BTE under the relaxation time approximation in the intensity representation [26,27].
The validity of BTE for describing the energy transport by SPhPs still remains under debate
as its predictions showed mixed results with respect to the fluctuational electrodynamic
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theory [28,29]. In thin films, the predictions of the BTE for the SPhP thermal conductivity
showed a good agreement with the corresponding ones of this theory [28] and, therefore, in
this work, we assume its validity for describing the propagation of SPhPs along a nanowire.
For the steady-state heat transport along the z axis shown in Figure 1, the BTE for the 1D
SPhP gas takes the two-component form:

∂I+

∂z
=

I0(T)− I+

Λ
, (3a)

−∂I−

∂z
=

I0(T)− I−

Λ
, (3b)

where the SPhP intensity and its equilibrium counterpart are defined by I± = Vh̄ω f±D(ω)/2
and I0(T) = Vh̄ω f0(T)D(ω)/2, respectively, the superscript “+(−)” stands for the SPhP
propagation along +z(−z) direction, while the SPhP distribution function, group speed
and propagation length are respectively denoted by f , V and Λ, with 2πh̄, f0, and D(ω)
being the Planck constant, Bose–Einstein equilibrium distribution function and SPhP
density of states per unit frequency interval per unit length, respectively. The group
speed and propagation length are determined by the dispersion relation of SPhP and
generally depends on frequency, as shown below. Since SPhPs propagate along the surface
of the nanowire and span over its surface, their 1D density of states is given by [30]:
D(ω) = 1/(πV). After solving Equation (3a,b) for the intensity distribution I±, the SPhP
heat flux can be determined by

q =
1

πa2

∫
(I+ − I−)dω, (4)

where a is the radius of the nanowire. According to Figure 1, Equations (1)–(3) are going to
be solved either numerically or analytically under the following boundary conditions:{

z = 0, T = Th, I+ = I0(Th),
z = l, T = Tc, I− = I0(Tc).

(5)

2.1. Numerical Approach

To numerically solve Equations (1)–(4), which are coupled, for the heat transport
driven by SPhPs and phonons in a polar nanowire, the discrete-ordinate method (DOM)
(see, for instance, [27,31]) and the finite difference method (FDM) are adopted for the SPhP
BTE and the heat diffusion equation, respectively. This FDM scheme is exactly the same as
that in our previous work [32]. The DOM scheme for the 1D SPhP BTE will be introduced
here. Under this approach, the numerical integration for the SPhP heat flux in Equation (4)
can be written as follows

q =
1

πa2

∫
(I+ − I−)dω =

∆ω

πa2 ∑
n
(I+n − I−n ), (6)

where the rectangular scheme is adopted with a uniform frequency interval ∆ω and the
index of discrete frequency points n = 1, 2, ..., Nm. The spectral discretization of the SPhP
BTE in Equation (3) then takes the form

∂I+n
∂z

=
(I0)n − I+n

Λn
, (7a)

−∂I−n
∂z

=
(I0)n − I−n

Λn
. (7b)
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The step scheme is adopted for the spatial discretization of the SPhP BTE to ensure
both efficiency and accuracy. For the positive (+z) propagation, the forward difference
scheme is applied to Equation (7a):

I+n,i − I+n,i−1

∆z
=

(I0)n,i − I+n,i

Λn
, (8)

where i = 1, 2, ..., Nz denotes the index of spatial nodes, with the spatial step ∆z. For the
negative (−z) propagation, on the other hand, the backward difference scheme is applied
to Equation (7b):

−
I−n,i+1 − I−n,i

∆z
=

(I0)n,i − I−n,i

Λn
. (9)

The evolution equations of the discrete SPhP intensity can then be obtained from
Equations (8) and (9), as follows

I+n,i =
Mn I+n,i−1 + (I0)n,i

Mn + 1
, (10a)

I−n,i =
Mn I−n,i+1 + (I0)n,i

Mn + 1
, (10b)

where Mn ≡ Λn/∆z is introduced for short notation. The positive component in Equation (10a)
is updated from the left-hand hot (Th) boundary, whereas the negative component in
Equation (10b) is updated from the right-hand cold (Tc) boundary.

Once the discrete SPhP intensity distribution is resolved, the SPhP heat flux distribu-
tion is computed based on Equation (6). The temperature distribution is then calculated
through a numerical solution of the heat diffusion Equation (2) by the FDM scheme. The
equilibrium SPhP intensity is thus updated and the SPhP BTE is solved again. The solution
of the coupled model is obtained through an iterative procedure until the solutions of the
SPhP BTE and the heat diffusion equation are consistent with each other. More details of
the solution procedure can be found in our previous work [32].

2.2. Analytical Approach

The analytical solutions of the BTE in Equation (3a,b) for the intensities I+ and I− of
the SPhPs leaving the surfaces z = 0 and z = l are given by

I+(ξ) = I0(0)e−ξ +
∫ ξ

0
I0(ξ

′)e−(ξ
′−ξ)dξ ′, (11a)

I−(ξ) = I0(λ)e−(λ−ξ) +
∫ λ

ξ
I0(ξ

′)e−(ξ−ξ ′)dξ ′, (11b)

where ξ = z/Λ, λ = l/Λ. In writing Equation (11a,b), we have used the boundary
conditions in Equation (5): I+(0) = I0(0) ≡ I0(Th) and I−(λ) = I0(λ) ≡ I0(Tc) established
by the thermal equilibrium of the external surfaces ξ = 0 and ξ = λ set at the temperatures
Th and Tc, respectively. After inserting Equation (11a,b) into Equation (4), one obtains

q =
1

πa2

∫ (
I0(0)e−ξ − I0(λ)e−(λ−ξ) − d

dξ

∫ λ

0
I0(ξ

′)e−|ξ
′−ξ|dξ ′

)
dω. (12)

For simplicity, Equation (12) can be rewritten in terms of the normalized equilibrium
intensity U(ξ) = [I0(ξ)− I0(λ)]/[(I0(0)− I0(λ)], as follows

q(ξ) =
1

πa2

∫
[I0(0)− I0(λ)]

(
e−ξ − d

dξ

∫ λ

0
U(ξ ′)e−|ξ

′−ξ|dξ ′
)

dω, (13)

which indicates that the SPhP heat flux q results from the intensity difference I0(0)− I0(λ)
driven by the temperature difference Th − Tc, as expected. Considering that the nanowire



Energies 2021, 14, 5110 5 of 11

undergoes small temperature gradients (Th − Tc � (Th + Tc)/2 = T), the temperature
dependence of the equilibrium intensity I0 can be linearized. In addition, given that the
temperature profile exhibits a nearly linear dependence on position, as shown below, the
first-order approximation of the equilibrium intensity can be written as I0(ξ) ≈ α(β− ξ),
with α and β being two parameters independent of position. Under this approximation,
U(ξ) = 1− ξ/λ and Equation (13) takes the form

q(ξ) =
1

πa2

∫
[I0(0)− I0(λ)]

(
2− e−ξ − e−(λ−ξ)

λ

)
dω. (14)

Note that the SPhP heat flux at two equidistant positions from the external nanowire
surfaces (ξ = 0; λ) takes the same value (q(ξ) = q(λ− ξ)), such that its maximum appears at
the middle of the nanowire (ξ = λ/2). This behavior arises from the non-local dependence
of the heat flux on the temperature profile, as established by Equation (12). The integration
of Equation (1) for the SPhP heat flux in Equation (14) yields the following temperature
profile and total heat flux qt

T(ξ) = Th − ∆T
z
l
+

∆T
kph

∫
kω

[
2ξ + ψ(ξ)− ψ(0)

2(λ− ψ(0))
− ξ

λ

]
dω, (15a)

qt =
(

kpol + kph

)∆T
l

, (15b)

where ∆T = Th − Tc, ψ(ξ) = e−ξ − e−(λ−ξ) and the spectral SPhP thermal conductivity kω

is defined in terms of its integrated counterpart kpol =
∫

kωdω given by

kpol =
1

(πa)2

∫ (
1− ψ(0)

λ

)
h̄ωΛ

∂ f0

∂T
dω. (16)

Equation (16) was derived by considering that the average temperature T = (Th +
Tc)/2 � ∆T, such that f0(Th)− f0(Tc) = ∆T∂ f0/∂T. According to Equation (15a), the
deviation of the temperature profile from the usual linear dependence (first two terms)
on position is driven by the ratio kpol/kph between the SPhP and phonon thermal conduc-
tivities. Interestingly, regardless of the values of this ratio, the SPhP contribution to the
temperature profile disappears at the middle of the nanowire (ξ = λ/2). This behavior is
related to the symmetry of the SPhP heat flux around this position and is well confirmed
by accurate numerical results, as shown below. As a result of this symmetry, the sum of
temperatures at two equidistant points from the external nanowire surfaces is an invariant
of heat conduction given by T(ξ) + T(λ− ξ) = Th − Tc, as established by Equation (15a).
This feature of temperature is generated by the non-local behavior of the heat conduc-
tion and is analogous to the characteristic temperature profiles found in radiative heat
transfer [33].

As the heat transport in a polar nanowire is driven by both phonons and SPhPs, the
total heat flux is determined by the sum of thermal conductivities related to these two
energy carriers, as established by Equation (15b). This fact indicates that, as the nanowire
radius a scales down, the usual reduction in kph could be offset by the increasing values
of kpol , due to the predominant surface effects driving the propagation of SPhPs. In the
SPhP diffusive approximation (λ = l/Λ � 1), the ratio ψ(0)/λ → 0 and Equation (16)
becomes independent of the nanowire length l defining the parameter λ. In the ballistic
limit (λ � 1), on the other hand, 1− ψ(0)/λ ≈ λ/2 and the SPhP thermal conductivity
becomes independent of the propagation length Λ. For both cases, Equation (16) can conve-
niently be rewritten as the following Landauer formula for the SPhP thermal conductance
G = πa2kpol/l of the nanowire

G =
1

2π

∫
h̄ω

∂ f0

∂T
τ(ω)dω, (17)
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where τ = 2[1 − ψ(0)/λ]/λ is the probability of SPhPs to transmit from one thermal
bath to the other through the nanowire (Figure 1). For long nanowires (λ � 1), the
transmission probability goes to zero (τ → 0) and therefore G vanishes. By contrast, for
short nanowires (λ � 1), τ ≈ 1− λ/3 ≈ 1 and Equation (17) reduces to the quantum of
thermal conductance (G0) of nanowires supporting the ballistic propagation of SPhPs [21],
as expected. The ratio λ = l/Λ between the nanowire length and SPhP propagation length
thus drives the SPhP thermal conductance G, which takes higher values for shorter wires.

3. Results and Discussions

The propagation and heat transport of the SPhPs along a SiN nanowire is quantified
and analyzed in this section. SiN is a typical polar material able to support the propagation
of SPhPs in a wide frequency range [23,34] and therefore can be considered as a good SPhP
conductor. By solving the Maxwell equations under proper boundary conditions for the
transverse magnetic polarization required for the existence of SPhPs [12,25], the following
dispersion relation for the SPhP wavevector β along the wire axis is obtained [35]

ε0

p0

I′n(p0a)
In(p0a)

=
ε

p
K′n(pa)
Kn(pa)

, (18)

where In and Kn are the modified Bessel functions, the prime (′) indicates derivative with
respect to their arguments, n = 1, 2, ... accounts for the contribution of the azimuthal
modes, ε and ε0 are the relative permittivity of the respective wire and its surrounding

medium, and p0 =
√

β2 − ε0k2
0 and p =

√
β2 − εk2

0 are the corresponding radial wavevec-
tors, with k0 = ω/c and c being the speed of light in vacuum. For thin enough wires
(| pj | a << 1), which is of interest in this work to enhance the SPhP propagation along
the wire, Equation (18) becomes independent of the radius a and branch n, as follows
p2

0/ε0 + p2/ε = 0. For nanowires of SiN, this condition is well satisfied for a ≤ 200 nm [21]
and establishes that the azimuthal modes does not contribute to the thermal transport
through nanowires. The solution of this symmetric relation for β is

β = k0

√
2εε0

ε + ε0
, (19)

Equation (19) differs from the dispersion relation of the single plane interface [12] by
just a factor of

√
2, due to the geometry effect.

The frequency spectrum of the real (εR) and imaginary (ε I) parts of the SiN relative
permittivity are shown in Figure 2. The main resonance peak of ε I at 155 Trad/s indicates
that SiN absorbs a significant amount of energy from the electromagnetic field and therefore
limits the propagation of SPhPs, at that frequency. By contrast, the dip of εR occurs at
175 Trad/s, which represents the frequency at which the SPhPs exhibit the strongest
confinement to the interface [23]. The yellow zone (εR < 0), on the other hand, stands
for the Reststrahlen band determined by the frequency interval (167.0; 199.5) Trad/s that
contains the range of frequencies (εR < −ε0) that would support the propagation of SPhPs
in absence of absorption (ε I = 0), as established by Equation (18). However, given that SiN
is an absorbing material (ε I > 0), SPhPs are expected to propagate with frequencies inside
and outside of this band, as reported in the literature [34] for nanofilms and is shown in
Figure 3 for a SiN nanowire.

The wavevector Re(β) and propagation length Λ =[2Im(β)]−1 of SPhPs propagating
along the surface of a SiN nanowire suspended in air are shown in Figure 3, as functions
of frequency. Note that Re(β) increases almost linearly with frequency, through values
generally higher than those of the light line (k0 = ω/c). The deviations from this behavior
characterized by a SPhP group velocity V = ∂ω/∂Re(β) close to but smaller than c, show
up around 200.2 Trad/s, which is close to the frequency (199.5 Trad/s) where εR changes
its sign. The relatively weak absorption of the thin nanowire (a < 300 nm) enables SPhPs
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to propagate distances as long as 2.7 cm at high frequency (500 Trad/s), as shown in
Figure 3. The dip of Λ is related to the maximum of energy absorption driven by ε I and
negligible value of εR at 200.2 Trad/s, as shown in Figure 2. In addition, the fact that
Λ > 1 µm, indicates that SPhPs propagate ballistically along a SiN nanowire shorter than
1 µm, which is a condition to reach the 1D quantum of thermal conductance G0 reported in
the literature [21].
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Figure 2. Real and imaginary parts of the relative permittivity ε = εR + iε I of SiN, as a function of
frequency [23]. The yellow zone stands for the band in which εR < 0.
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Figure 3. Frequency spectrum of the wavevector and propagation length of SPhPs propagating along
a SiN nanowire suspended in air (ε0 = 1). The blue dashed line stands for the wavevector of light
in vacuum.

The temperature and heat flux profiles along a SiN nanowire supporting the simultane-
ous propagation of SPhPs and phonons are shown in Figure 4a and Figure 4b, respectively,
for three nanowire lengths. For the shortest nanowire with a length (l =10 µm) much
smaller than the propagation length of most SPhPs (see Figure 3), SPhPs propagate bal-
listically with weak adsorption and low energy exchange with phonons. The SPhP heat
generation inside the nanowire is therefore small and T exhibits pretty much the same
linear behavior predicted by the heat diffusion Equation (2), without a heat source term.
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This is confirmed by the relatively low SPhP heat flux shown in Figure 4b via the blue
lines, which are nearly independent of position due to the independence of the phonon
and SPhP heat transport. On the other hand, for longer nanowires with a length (l = 80
and 150 µm) comparable to the propagation length of some SPhPs, the quasi-ballistic
propagation of SPhPs fosters their energy exchange with phonons, which generates a
non-linear temperature profile similar to that predicted by the heat diffusion equation
with a heat sink for z/l ≤ 0.5 and a heat source for z/l ≥ 0.5, as seen in Figure 4a. The
apparent heat sink and heat source terms in the nanowire arise from the predominant
emission and adsorption of SPhPs near its hot and cold sides, respectively. Therefore, the
SPhP heat flux increases with position until z/l = 0.5 and decreases afterwards, while the
phonon counterpart shows the opposite trend, as established by the principle of energy
conservation in Equation (1). The increase in the SPhP heat flux with the nanowire length
provides a pathway to enhance the heat transport along polar nanowires by means of
the coupling of SPhPs and phonons, as is the case in polar nanofilms [32]. Furthermore,
as the non-linearity of the temperature profile represents the fingerprints of SPhPs, its
experimental observation can provide an intuitive and conclusive way to detect the SPhP
heat transport. For instance, for the 150 µm-long SiN nanowire shown in Figure 4a, the
largest temperature deviation from the linear profile is about 1 K, which is measurable by
the current state-of-the-art infrared thermometers.

Figure 4. (a) Temperature and (b) heat flux profiles in a SiN nanowire with representative lengths l.
The solid and dashed-dot lines in (b) represent the respective SPhP and phonon heat fluxes, whereas
the dashed one stands for the total heat flux qt. Calculations were carried out for a SiN nanowire
with a radius a = 50 nm and a typical phonon thermal conductivity of kph = 1 W/m·K.

Figure 5 shows the frequency spectrum of the SPhP transmission probability τ for four
SiN nanowire lengths. Note that shorter nanowires exhibit a higher transmissivity, whose
lowest value at 201.6 Trad/s is related to the minimum value of the SPhP propagation length
shown in Figure 3. By contrast, for other sufficiently low and high frequencies, τ tends to
unity as a result of the long propagation lengths of SPhPs. According to Equation (17), these
lowest and highest values of the SPhP transmissivity drive the behavior of the thermal
conductivity spectrum, which takes higher values for shorter nanowires, as shown in
Figure 6a. At high enough frequencies, this spectrum becomes independent of the nanowire
length and decays exponentially due to the insufficient thermal energy required to excite
them, as established by the Bose–Einstein distribution function involved in Equation (17).
At very low frequencies, on the other hand, the thermal conductance spectrum takes its
highest values due to the high transmissivity of SPhPs. The integration of the spectra in
Figure 6a yields the SPhP thermal conductance G shown in Figure 6b,c, as a function of
the nanowire length and temperature, respectively. As a result of the predominance of
ballistic regime characterized by a high transmissivity, shorter nanowires exhibit a higher
G, whose values increase with temperature. The analytical (solid lines) and numerical
(dots) predictions exhibit a very good agreement for the three temperatures and lengths,
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which confirms the high accuracy of Equation (17) for predicting the thermal conductance
of SPhPs. More importantly, the upper bound of G, in the ballistic regime (l < 1 µm), is
well confirmed by the analytical and numerical solutions and its values coincide with the
quantum of thermal conductance G0. Even though the transmissivity of a 1 µm-long SiN
nanowire is not unity over the full frequency spectrum (see Figure 5), the corresponding
SPhP thermal conductance is pretty much equal to G0. The quantization of the SPhP
thermal conductance is thus expected to be observed in SiN nanowires with a length
comparable to or shorter than 1 µm.
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Figure 6. (a) SPhP thermal conductance spectrum along with its integrated counterpart as a function
of the (b) length and (c) temperature of a SiN nanowire suspended in air with a radius a = 50 nm.
The solid lines represent the predictions of Equation (17) and the dots the stand for the numerical
results obtained with the DOM+FDM described in Section 2.1. Calculations in (a) were carried out
for T = 300 K.
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4. Conclusions

Based on the Boltzmann transport equation, we have theoretically demonstrated
that the heat transport by surface phonon-polaritons propagating along a nanowire is
characterized by two fingerprints: (i) The characteristic quantum of thermal conductance
independent of the material properties. This quantization appears in SiN nanowires shorter
than 1 µm, supporting the ballistic propagation of polaritons. (ii) The deviation of the
temperature profile from its typical linear behavior predicted by Fourier’s law of heat
conduction in the absence of heat sources. For a 150 µm-long SiN nanowire keeping up
a quasi-ballistic polariton propagation, this deviation can be as large as 1 K, which can
be observed by the current state-of-the-art infrared thermometers. Furthermore, we have
derived an explicit formula for the polariton thermal conductance that is able to accurately
predict the energy transport of polaritons for different lengths and temperatures of a polar
nanowire. The obtained results can thus be useful for understanding and quantifying the
thermal performance of surface phonon-polaritons in 1D structures.
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