Productivity Analysis of Fuyu Oil Shale In-Situ Pyrolysis by Injecting Hot Nitrogen
Abstract
:1. Introduction
2. Materials and Methods
2.1. Process Principle and Site Selection of Fuyu Oil Shale In-Situ Pyrolysis
2.2. Modelling of Fuyu Oil Shale In-Situ Pyrolysis
2.3. The Parameters of Fuyu Oil Shale In-Situ Pyrolysis
3. Heat Injection Simulation of Oil Shale In-Situ Pyrolysis
3.1. Heat Transfer Simulation
3.2. Influence Range of Pressure
4. Result and Discussion of Shale Oil and Gas Production
4.1. Effect of Gas Injection Flow on Productivity
4.2. Effect of Mining Flow Pressure on Productivity
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Martins, M.F.; Salvador, S.; Thovert, J.F.; Debenest, G. Co-current combustion of oil shale—Part 1: Characterization of the solid and gaseous products. Fuel 2010, 89, 144–151. [Google Scholar] [CrossRef] [Green Version]
- Na, J.-G.; Im, C.H.; Chung, S.H.; Lee, K.B. Effect of oil shale retorting temperature on shale oil yield and properties. Fuel 2012, 95, 131–135. [Google Scholar] [CrossRef]
- Guo, H.; Peng, S.; Lin, J.; Chang, J.; Lei, S.; Fan, T.; Liu, Y. Retorting Oil Shale by a Self-Heating Route. Energy Fuels 2013, 27, 2445–2451. [Google Scholar] [CrossRef]
- Ma, C.; Jiang, Y.; Xing, H.; Li, T. Numerical modelling of fracturing effect stimulated by pulsating hydraulic fracturing in coal seam gas reservoir. J. Nat. Gas Sci. Eng. 2017, 46, 651–663. [Google Scholar] [CrossRef]
- Davletbaev, A.; Kovaleva, L.; Babadagli, T. Heavy Oil Production by Electromagnetic Heating in Hydraulically Fractured Wells. Energy Fuels 2014, 28, 5737–5744. [Google Scholar] [CrossRef]
- Abbasi, J.; Raji, B.; Riazi, M.; Kalantariasl, A. A simulation investigation of performance of polymer injection in hydraulically fractured heterogeneous reservoirs. J. Pet. Explor. Prod. Technol. 2017, 7, 813–820. [Google Scholar] [CrossRef] [Green Version]
- Friesen, O.J.; Dashtgard, S.E.; Miller, J.; Schmitt, L.; Baldwin, C. Permeability heterogeneity in bioturbated sediments and implications for waterflooding of tight-oil reservoirs, Cardium Formation, Pembina Field, Alberta, Canada. Mar. Pet. Geol. 2017, 82, 371–387. [Google Scholar] [CrossRef]
- Wei, W.; Rezazadeh, A.; Wang, J.; Gates, I.D. An analysis of toe-to-heel air injection for heavy oil production using machine learning. J. Pet. Sci. Eng. 2021, 197, 108109. [Google Scholar] [CrossRef]
- Sun, F.; Li, C.; Cheng, L.; Huang, S.; Zou, M.; Sun, Q.; Wu, X. Production performance analysis of heavy oil recovery by cyclic superheated steam stimulation. Energy 2017, 121, 356–371. [Google Scholar] [CrossRef]
- Zhou, K.; Hou, J.; Yu, B.; Du, Q.; Liu, Y. Production analysis of sequential multi-well cyclic steam stimulation in heterogeneous heavy oil reservoir. Int. J. Oil Gas Coal Technol. 2017, 16, 311–328. [Google Scholar] [CrossRef]
- Zhang, J.; Bian, X. Numerical simulation of hydraulic fracturing coalbed methane reservoir with independent fracture grid. Fuel 2015, 143, 543–554. [Google Scholar] [CrossRef]
- Tang, H.; Winterfeld, P.H.; Wu, Y.S.; Huang, Z.Q.; Di, Y.; Pan, Z.; Zhang, J. Integrated simulation of multi-stage hydraulic fracturing in unconventional reservoirs. J. Nat. Gas Sci. Eng. 2016, 36, 875–892. [Google Scholar] [CrossRef]
- Chen, C.; Gu, M. Investigation of cyclic CO2 huff-and-puff recovery in shale oil reservoirs using reservoir simulation and sensitivity analysis. Fuel 2017, 188, 102–111. [Google Scholar] [CrossRef]
- Zhao, S.; Sun, Y.; Wang, H.; Li, Q.; Guo, W. Modeling and field-testing of fracturing fluid back-flow after acid fracturing in unconventional reservoirs. J. Pet. Sci. Eng. 2019, 176, 494–501. [Google Scholar] [CrossRef]
- Shuai, Z.; Xiaoshu, L.; Qiang, L.; Youhong, S. Thermal-fluid coupling analysis of oil shale pyrolysis and displacement by heat-carrying supercritical carbon dioxide. Chem. Eng. J. 2020, 394, 125037. [Google Scholar] [CrossRef]
- Zhao, S.; Lü, X.; Sun, Y.; Huang, J. Thermodynamic mechanism evaluate the feasibility of oil shale pyrolysis by topochemical heat. Sci. Rep. 2021, 11, 1–15. [Google Scholar]
- Jiang, P.F.; Sun, Y.H.; Guo, W.; Li, Q. Heating Technology and Heat Transfer Simulation for Oil Shale of In-situ Pyrolysis by Fracturing and Nitrogen Injection. J. Northeast. Univ. 2015, 36, 1353–1357. [Google Scholar]
- Wang, B. Convective Heat and Mass Transfer in Porous Media. J. Xi’an Jiaotong Univ. 1994, 28, 51–59. [Google Scholar]
- Wang, B. On the Modelling of Fluid Flow in Porous Media. J. Shanghai Jiaotong Univ. 1999, 8, 966–969. [Google Scholar]
- Ding, F.; Wang, J.; Ruan, Z. Study on Pyrolysis of oil shale under pressure. Acta Pet. Sin. 1991, 7, 75–82. [Google Scholar]
- Beskok, A.; Karniadakis, C.A.E. Report: A model for flows in channels, pipes, and ducts at micro and nano scales. Microscale Thermophys. Eng. 1999, 3, 43–77. [Google Scholar]
- Lee, K.; Moridis, G.J.; Ehlig-Economides, C.A. A Comprehensive Simulation Model of Kerogen Pyrolysis for the In-Situ Upgrading of Oil Shales. SPE J. 2016, 21, 1612–1630. [Google Scholar] [CrossRef] [Green Version]
- Cheng, W.-L.; Li, T.-T.; Nian, Y.-L.; Wang, C.-L. Studies on geothermal power generation using abandoned oil wells. Energy 2013, 59, 248–254. [Google Scholar] [CrossRef]
- Pei, S.; Wang, Y.; Zhang, L.; Huang, L.; Cui, G.; Zhang, P.; Ren, S. An innovative nitrogen injection assisted in-situ conversion process for oil shale recovery: Mechanism and reservoir simulation study. J. Pet. Sci. Eng. 2018, 171, 507–515. [Google Scholar] [CrossRef]
Region | Moisture/wt.% | Ash/wt.% | Volatiles/wt.% | Fixed Carbon/wt.% |
---|---|---|---|---|
Sample1 | 3.75 | 69.63 | 21.37 | 5.25 |
Sample2 | 3.68 | 70.07 | 20.99 | 5.26 |
Region | Shale Oil/wt.% | Water/wt.% | Residue/wt.% | Gas/wt.% |
---|---|---|---|---|
Sample1 | 4.16 | 8.85 | 83.32 | 3.67 |
Sample2 | 3.97 | 8.36 | 84.08 | 3.59 |
Region | H/wt.% | C/wt.% | N/wt.% | S/wt.% |
---|---|---|---|---|
Sample1 | 7.27 | 4.96 | 0.34 | 1.09 |
Sample2 | 7.02 | 4.86 | 0.32 | 1.12 |
Nature | Anisotropy Constants | Thermal Conductivity (W/m·°C) | Specific Heat Capacity (J/kg·°C) | Porosity | ||
---|---|---|---|---|---|---|
Temperature/°C | Parallel Bedding | Vertical Bedding | ||||
25 | 1.233067 | 0.6317 | 0.5123 | 2119.0 | 0.0246 | |
150 | 1.275774 | 0.7004 | 0.5490 | 1994.0 | 0.0476 | |
250 | 1.299021 | 0.4379 | 0.3371 | 1731.0 | 0.0653 | |
350 | 1.124811 | 0.3722 | 0.3309 | 1443.2 | 0.0879 | |
450 | 1.057045 | 0.3391 | 0.3208 | 1211.0 | 0.1053 | |
500 | 1.090135 | 0.2177 | 0.1997 | 997.0 | 0.1089 | |
550 | 1.065898 | 0.1941 | 0.1821 | 833.0 | 0.1189 |
Parameter Name | Unit | Symbol | Value |
---|---|---|---|
Constant pressure ratio heat capacity | kJ/(kg∙K) | Cp | 1.038 |
Constant volume ratio heat capacity | kJ/(kg∙K) | Cv | 0.741 |
Density | g/cm3 | Ρ | 1.16 |
Gas viscosity | Pa∙s | Μ | |
Thermal conductivity | W/(m∙K) | Λ | 0.02475 |
Input temperature | K | T | 773 |
Gas constant | J/(mol∙K) | R | 8.3144 |
Flow | m3/min | Q | 1–11 |
Input pressure | MPa | P | 9.5–12 |
Average thermal expansion coefficient | 1/K | Β | 0.00753 |
Compression coefficient | - | Z | 0.292 |
Mean molar mass | g/mol | M | 28 |
Parameter Name | Unit | Symbol | Value |
---|---|---|---|
Rock layer temperature | K | T0 | 288 |
Particle average diameter | Pm | dp | 110.05 |
Fracture length of FK-1 | m | L0 | 15 |
Fracture length of FK-2 | m | L1 | 25 |
Fracture width | mm | α | 0.5 |
Reservoir thickness | m | h | 9 |
Reservoir permeability | mD | ke | 3.4 × 10−3 |
External diameter of gas injection well | mm | rh | 385 |
Proppant size | mm | δ | 0.5 |
Density | g/cm3 | ρo | 1.80 |
Formation pressure | MPa | P0 | 9.2 |
Gravitational acceleration | m/s2 | g | 9.80 |
Parameter Name | Unit | Symbol | Value |
---|---|---|---|
Sediment content | - | Sc | 7–14% |
Viscosity of shale oil | Ps | μ | 10.9 |
Radius of oil well | Mm | rw | 385 |
Oil discharge radius | M | re | 15–25 m |
Reservoir pressure | MPa | Pe | 9.4 |
Bottom hole flow pressure | MPa | pf | 9.5–12.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, S.; Li, Q.; Lü, X.; Sun, Y. Productivity Analysis of Fuyu Oil Shale In-Situ Pyrolysis by Injecting Hot Nitrogen. Energies 2021, 14, 5114. https://doi.org/10.3390/en14165114
Zhao S, Li Q, Lü X, Sun Y. Productivity Analysis of Fuyu Oil Shale In-Situ Pyrolysis by Injecting Hot Nitrogen. Energies. 2021; 14(16):5114. https://doi.org/10.3390/en14165114
Chicago/Turabian StyleZhao, Shuai, Qiang Li, Xiaoshu Lü, and Youhong Sun. 2021. "Productivity Analysis of Fuyu Oil Shale In-Situ Pyrolysis by Injecting Hot Nitrogen" Energies 14, no. 16: 5114. https://doi.org/10.3390/en14165114
APA StyleZhao, S., Li, Q., Lü, X., & Sun, Y. (2021). Productivity Analysis of Fuyu Oil Shale In-Situ Pyrolysis by Injecting Hot Nitrogen. Energies, 14(16), 5114. https://doi.org/10.3390/en14165114