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Abstract: Accurate forecasting of a building thermal performance can help to optimize its energy
consumption. In addition, obtaining the Heat Loss Coefficient (HLC) allows characterizing the
thermal envelope of the building under conditions of use. The aim of this work is to study the
thermal inertia of a building developing a new methodology based on Long Short-Term Memory
(LSTM) neural networks. This approach was applied to the Rectorate building of the University of
Basque Country (UPV/EHU), located in the north of Spain. A comparison of different time-lags
selected to catch the thermal inertia has been carried out using the CV(RMSE) and the MBE errors,
as advised by ASHRAE. The main contribution of this work lies in the analysis of thermal inertia
detection and its influence on the thermal behavior of the building, obtaining a model capable of
predicting the thermal demand with an error between 12 and 21%. Moreover, the viability of LSTM
neural networks to estimate the HLC of an in-use building with an error below 4% was demonstrated.

Keywords: building performance; HLC; LSTM; machine learning; thermal inertia

1. Introduction

The building sector is one of the largest energy consumers in the European Union, rep-
resenting more than 40% of the total energy consumption, with the associated greenhouse
gases emissions responsible for near 36% of total emissions [1]. From this energy, more
than 50% is consumed by HVAC (Heating, Ventilation and Air Conditioning) systems [1].
In this context, several institutions have established guidelines and directives to improve
energy efficiency of buildings, fixing an objective of nearly zero-energy buildings (nZEB).
To achieve this goal, the European Union, through the strategic program Horizon Europe,
is driving new initiatives, such as creating more than 100 climate-neutral cities by 2030 [2].

However, both actual buildings that are already designed to achieve this nearly zero
emissions objective and retrofitted buildings are failing during the process [3]. This is
because there is still a difference between real and theoretical performance that, in certain
occasions, even reaches from two to five times the design energy consumption [4–6].
This difference is commonly called performance gap. Different technologies have been
developed to reduce energy consumption and narrow this gap. Physics-based tools (also
called white-box models) such as dynamic simulation can help to make decisions about
the best measures to reduce energy demand and improve indoor thermal comfort [7–9].
However, the assignment to attain accurate simulation models can be complex as it depends
on many variables and parameters [10,11].
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On the other hand, district heating system (DHS) constitutes an often used solution in
the northern and the central-European cities and it is gaining presence in Spanish cities such
as Bilbao and Barcelona [12]. DHS is a building arrangement designed to generate and store
energy in a centralized location to later distribute it to the network of buildings according
to demand [13]. The main difficulty of this system, in addition to its dimensioning, is to
adjust the operation to avoid over-production or under-production of energy. The balance
between the heat production and the heat demand leads to a reduction of emissions and
an improvement in the system efficiency as a whole [14].

Under these circumstances, the use of data-driven tools (commonly known as black-
box models) have been consolidated as a flexible and efficient tool to achieve accurate
predictions [15–17]. The requirements to construct appropriate models consist of an ad-
equate structure and a healthy dataset (i.e., no empty fields or useless data) [18]. The
application of the technology of Internet of Things (IoT) provides a lot of information
about the building conditions that can be especially useful to characterize its functions and
construct a wide variety of scenarios [19,20].

However, forecasting heat demand implies dealing with a complex nonlinear problem
influenced by multiple factors such as weather conditions and thermal inertia of the
building. This term, applied to a building, means property that expresses the degree
of slowness with which its (indoor temperature in this case) temperature reaches that
of the environment (outdoor temperature). In this context, Long Short-Term Memory
neural networks (LSTM), a variation of deep Recurrent Neural Networks (RNN) originally
developed by Hochreiter et al. [21], provides a reliable option for modelling this type of
sequential data. This variety of neural network includes an internal structure designed to
deal with gradients and is especially useful to catch systems inertia.

In connection with this, HLC is introduced as one of the most useful Key Performance
Indicators (KPI) to characterize the building envelope energy efficiency. The envelope of
the building cannot maintain the same thermal efficiency in hot seasons as in cold seasons;
it always produces a loss of heat in winter and a gain in summer. Through HLC, the
rate of heat flow between indoor and outdoor air when a temperature difference exists is
determined. Using forecasting results from neural network avoids dealing with physical
building simulation, which requires the precise description of elements that compose the
thermal envelope of the building (insulation, wall thickness, etc.).

The aim of this work is to develop a methodology based on LSTM neural networks to
identify the building thermal inertia and obtain a precise prediction of building thermal de-
mands which will be used to estimate the HLC. This process will be applied to the Rectorate
building of the University of Basque Country (UPV/EHU), located in the north of Spain,
but the method could be used in other locations and climates, since it is only necessary
to know the temperature and radiation in the location of the building under study. The
dataset consists of hourly observations of indoor (temperature, relative humidity, and CO2
concentration) and outdoor variables (temperature, relative humidity, and solar radiation).
The accuracy of the models developed is quantified using the Coefficient of Variation of
the Root Mean Squared Error (CV(RMSE)) and the Mean Bias Error (MBE). These error
measures were both recommended by the American Society of Heating, Refrigerating and
Air-Conditioning engineers (ASHRAE) and validated on Guideline 14 [22].

2. Materials and Methods
2.1. LSTM Architecture

Long Short-Term Memory (LSTM) is a variety of Recurrent Neural Network (RNN)
architecture created to avoid the problem of the vanishing (or exploding) gradient that
classic RNN presents when using back propagation. LTSM is characterized for being able
to learn long-term dependencies, which allows it to model time sequences more accurately
than conventional RNNs. These characteristics make it a very appropriate approach to
long-term dependency problems. The solution presented by LSTM cells is based on its
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gates and how each affects the information that comes from the cell state. Figure 1 shows
the different gates of the cell.
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Sigmoid and tanh (Figure 1) are activation functions used in neural networks to define
how the weighted sum of the input is transformed into an output from a node or nodes in
a layer of the network.

The key on LSTM neural networks is the cell state. This cell is updated every time step
based on the input gate, the forget gate and the output gate. The input gate determines
how much new information is stored on the cell state. The forget gate decides how much
information will drop out the cell state. The output gate selects which information will be
sent out the cell state. Through the dynamic interaction of these gates with the coming
information over the cell state, LSTM neural networks are capable of retaining information
for many time steps. LSTM input structure is a three-dimensional array. The meaning of
the three input dimensions are samples, time-lags and features. The time-lags denote the
number of previous time steps considered to obtain the prediction. Each sample contains
x time-lags so, for example, on a 1000 row dataset, with a time-lag of 10, we will have
100 samples. Depending on the number of time-lags selected the neural network structure
will be different, because while incrementing the time-lags, the amount of information to
process raises, which makes it necessary to adapt the layers’ structure. This configuration
will be discussed in Section 3.3.

2.2. Heat Loss Coefficient (HLC)

The Heat Loss Coefficient (HLC) is an indicator of the performance of a building
envelope. It represents the rate of heat flow through a building’s envelope when indoor
and outdoor temperatures differ. The method used in this work to obtain the HLC was
described by Uriarte et al. [23].

HLC = (UA + Cv) =
(Q + K) + SaVsol

Tin − Tout

[
kW
K

]
(1)
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In the Equation (1) HLC represents the addition of the two coefficients, one that
represents the heat losses through the whole building envelope (UA) and a second that
means the infiltration heat losses (Cv). On the right part of the expression, Q are all energy
inputs of the building (heating and ventilation systems) [kW], K includes passive heat
gains, such as lighting and heat due to occupation (metabolic heat gains) [kW], Tin − Tout
is the difference between indoor and outdoor temperature [K] and SaVsol represents the
solar radiation heat gains of the building.

In this work, to obtain the HLC, the right part of the expression was used. The equation
presents terms difficult to obtain (e.g., the solar gains). In addition, the requirement
of stationary conditions represents an additional issue when measuring the HLC of in-
use buildings.

To simplify this characterization, the component that includes the solar radiation heat
gains was not considered, this way obtaining the HLC simple. The requirement to apply
that simplification is to search for periods when solar radiation is below 10% of the rest of
the heat gains.

In order to have a reference to compare the results, periods 4 and 5 presented by
Uriarte et al. [23] were used to evaluate the precision of the results. Then, a third period
was selected to extrapolate the application.

2.3. Validation and Error Measurement

The performance of the forecast techniques applied in this article are measured using
the Coefficient of Variation of the Root Mean Squared Error (CV(RMSE)) and the Mean
Bias Error (MBE). CV(RMSE) is the RMSE, normalized by the mean of the measured values.
On the other hand, MBE detects if the model is producing an overestimation (MBE < 0) or
an underestimation (MBE > 0) and its magnitude. Both measurements are referred to in
Equations (2) and (3), respectively:

CV(RMSE) = 100· 1
Y

√
∑N

i=1
(
Yi − Ŷi

)2

N
(2)

MBE =
∑N

i=1
(
Yi − Ŷi

)
∑N

i=1(Yi)
(3)

where N is the number of samples, Y is the real value, Y is the mean of the measured values
and Ŷ is the predicted value.

The CV(RMSE) was used to select the best model on every validation iteration. This
error is also used to determine if the model is calibrated, based on the criteria established
by the ASHRAE in Guideline 14, according to which a model is calibrated if CV(RMSE) is
below 30% hourly.

Both errors were used to compare the different models with the test samples.

3. Experimental Case of Study
3.1. Building and Heating System Description

The case of study of this work is the Rectorate building of the University of the Basque
Country (Spain). The building consists of three blocks, west, central, and east, as shown in
Figure 2a. The building was constructed in the 1970s and it was refurbished in the summer
of 2016 on the ground floor and in the summer of 2017 in the rest of the building to reduce
its energy consumption. The actual façade is shown in Figure 2b. More information about
the refurbishment is detailed in [23].
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The west block was the only block considered. It is an office building, and the ground
floor includes a nursery. It has four floors; on one hand, the Ground Floor (GF) and the
Second Floor (2F) consist of rooms, on the other hand, the First Floor (1F) and the Third
Floor (3F) are mainly open spaces. It is occupied only during weekdays, being reduced
during summer.

A centralized campus district heating system provides heat to the building heating
system to meet its heating loads. This heat is managed by a centralized system and
distributed by hot water radiators. The heating works the whole year following a control
program according to a schedule from 6 a.m. to 7 p.m. except in July and August, when
the heating remains off [24]. There was no air conditioning system operating during the
studied period.

The monitored variables include outdoor conditions, indoor conditions and building
heating. Indoor conditions are monitored by several points of the floor while electrical
consumption and heating consumption are provided per floor. Figure 3 shows the sensor
distribution for each floor.

More information about the building monitoring system can be found in the work
carried out by Erkoreka et al. [25].

Outdoor conditions come from two sources. The first source is the building itself,
which includes a set of sensors to measure weather conditions, but only temperature,
relative humidity and solar radiation have been considered. The second source is a weather
station C039-Deusto (Longitude: −2.99932—Latitude: 43.3463) located at 2.5 km straight
line from the building. This source was used to fill long “gaps” on the first source. The
meteorological data tables have been obtained with a ten-minute frequency.
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3.2. Pre-Processing Data

The data used to train the model were observations between 29 November 2018 to
31 May 2019 while for the validation, the period was from 15 June 2018 to 11 February
2018, for the variables indicated in Figure 4. In the case of building data, the values were
obtained using the mean value of the sensors placed on the floor, except for the electricity
consumption. Weather data was resampled to obtain hourly frequency values. Time
variables are extracted from the date of measurements. In this category, the hour of the day
and the weekday are used to catch the influence of the weekday schedule while the month
and the day of the year are used to add information about the moment of the year. Four
categorical variables were also created to represent the season.
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Due to the way LSTM works with time delays, it was necessary to have a continuous
sample, without large missing values. There are “outliers” and “gaps” in the building
dataset due to sensor errors. “Outliers” have been identified using the values listed in
Table 1 as a filter and they have been replaced by “gaps”. Subsequently, the “gaps” have
been filled by second degree polynomial interpolation, for a maximum of three consecutive
“gaps”. The same proceeding was applied to the weather dataset.

Table 1. Filters applied to the dataset values.

Variable Lower Filter Upper Filter

Indoor TA 15 ◦C 32 ◦C
Indoor RH 0% 100%

CO2 200 ppm 1000 ppm
Elec. consumption 25 W 5000 W

Outdoor TA −15 ◦C 45 ◦C
Outdoor RH 0% 100%

Radiation 3.5 W/m2 1500 W/m2

Through this process the percentage of missing values has been reduced by approxi-
mately 12.2%.

3.3. Neural Network Setup

In the case of the thermal demands of the building, the demand for the next hour
depends not only on the current state of the building but also on what it had hours ago.
This allows the network to differentiate between a building heating or cooling cycle or
temperature stabilization, hence, a model based on LSTM is a good choice to predict the
heat demand [16]. This inertia is captured using the time-lags previously described in
Section 2.1. To catch the thermal inertia of the building, a preselection of the time-lags was
developed. A set of time-lags of 3, 6, 12 and 24 h have been simulated to determine which
one is the most suitable for this building. In parallel with this, each time-lag selection has a
different neural network architecture, changing the relation between the number of LSTM
layers and hidden layers. The relations of LSTM-hidden layers were 3-2, 4-2, 5-3 and 5-4.
These relations were based on the work carried out by Martínez et al. [16].
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The rest of the hyperparameters of the network were tested using a grid to determine
the optimum for each floor. The number of neurons in the hidden layers were 50, 100
and 150. The number of epochs was stablished to 100, 150 and 300. To prevent overfitting
problems, the network was trained with an early stop parameter of 20% of the maximum
epochs, defined using “patience” (limit of epochs without any performance improve).

Moreover, the activation function set was Rectified Linear Unit (ReLU) [26]. The kernel
initializer was normal, the optimizing algorithm was the Adaptive Moment Estimation
(Adam) [27] and the batch size was equal to 64 [28].

4. Results and Discussion
4.1. Time-Lag Selection

This section compares the results of several trainings to determine the influence of the
time delay on the capture of the building thermal inertia. An optimized neural network
was applied for each floor, changing only the time-lag. Results are shown on Table 2.

Table 2. Error comparison of the time-lag change using CV(RMSE) [%].

Time-Lag GF 1F 2F 3F

3 h 42.43 15.54 28.39 22.64
6 h 39.74 14.37 19.94 20.65
12 h 21.12 12.71 15.92 19.50
24 h 33.95 13.13 20.19 25.32

Results show that a low time-lag makes it difficult for the network to capture the
inertia, while as it increases the error trends to be lower. This is notable in the fact that
the results obtained with a time-lag of 3 h, with the exception of the 3F, has the largest
error. It is worth noting the case of the 3F, which differs from the rest by presenting the
largest error for the 24 time-lag. This may be caused due to the fact that this floor is the
most sensitive to the influence of changes in solar radiation, adding greater variability due
to weather changes.

Practically for all floors, time-lags of 6 and 12 h are those with the lowest error. On
this, it should be noted how the difference in the error between the interval of 3 and 6 h for
the GF is very low, in contrast to the rest. This result suggests that this floor has a larger
inertia than the others, which may be caused by better insulation.

It is remarkable how the changes in the time-lag have less effect on the results of the 1F,
while for the GF the choice of 12 h as time-lag value manages to halve the error provided
by the result obtained using 3 h. This implies that the 1F maintains a more stable situation
than the rest over time.

Based on the CV(RMSE) result for every floor changing the time-lags used to estimate
the heat demand, the best result is provided in the model with a time lag of 12 h. Addition-
ally, results for 6 h and 24 h delay have good results, while for 3 h the model does not have
enough information of the building conditions, i.e., the model does not capture the heating
and cooling cycles of the building.

4.2. Error Measurement and Performance Analysis

The prediction sample covered four working weeks. Forecasting techniques were ap-
plied to the entire period but only working hours were taken into account in the calculation
of the error, due to the need of LSTM networks to work with continuous periods of time
and the fact that error calculation using constant values of zero does not provide actual
information on the accuracy of the model. For each floor, the average temperature was
maintained around 21.7 ◦C, except for the 3F, where it reached 23.8 ◦C.

To avoid plotting large series, a comparison of CV(RMSE) by week was done between
each of the four complete weeks and the monthly value. The selected week for every floor
plot was the one with the closest CV(RMSE) to the mean value. Figure 5 illustrates the
result of applying this criterion.
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The results show that LSTM models were capable of replicating the trend of the
thermal demand of the building. The model catches the initial peak of each day with high
accuracy, especially on the 1F and 2F. The main characteristic that distinguishes these floors
from the two others is that they are not so influenced by a source of heat or cold, which
happens on the 3F with solar radiation or on the GF with the influence of air currents
caused by the racking of people in the building.

This has a consequence that the GF has the greatest difference between the initial peak
and the rear damping, with a difference of almost 20 kW. Graphics for the rest of the floors
have almost the same shape, with some exception for the 1F and 2F where the heat demand
grows during all the working hours.

As mentioned in Section 4.1, the 3F is more sensitive to weather changes, due to
having the largest surface in contact with the exterior. Observing the high thermal demand
in the initial peak, which is greater than for the 1F, it can be deduced that the heat losses
during the night are greater for this floor.

CV(RMSE) and MBE results are summarized in Table 3, including the value for the
entire working days prediction series and the Standard Deviation from it.
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Table 3. Monthly calculation (Mean) and Standard Deviation (SD) of CV(RMSE) and MBE errors for
heat demand prediction for each floor.

CV(RMSE) [%] MBE

Floor Mean SD Mean SD
GF 21.12 4.33 11.92 4.79
1F 12.71 4.13 3.65 5.21
2F 15.92 5.38 −1.04 8.81
3F 19.50 4.52 −5.01 11.96

The error results included in Table 3 are consistent with the graphics. The GF has the
biggest CV(RMSE) and a positive MBE higher than the rest of the floors, which means that
the model is producing an underestimation. For the CV the results maintain a Standard
Deviation very similar on each floor. Conversely, results for MBE show a very different
dispersion for each floor. The GF and the 1F present a low dispersion, with a SD close
to 5, while for the 2F and the 3F are close to 10%, below and above, respectively. These
two floors have a MBE < 0, which means an overestimation. As can be seen, the MBE
value for the 2F is very close to 0 but with a high dispersion, which means an equilibrium
around the mean. On the contrary, the 3F shows a clear tendency to overestimation, with a
negative MBE and a high Standard Deviation. It is also worth mentioning the effect the
horizontal distribution of each plant has on the error. The GF, having the sensors installed
in three rooms of low surface, means its profile is more sensitive to the accumulation of
heat, while the first and third, being composed of larger rooms, reduce the influence of
said accumulation.

To illustrate CV(RMSE) per floor Figure 6 was extracted. This figure was obtained
applying the CV(RMSE) formula to each day. Instead of using daily mean value, the mean
value of the entire series was used to obtain comparable magnitudes. As shown on the
figure, median value and the CV(RMSE) of each floor are practically coincident.
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The 1F and 2F have narrower boxes, but at the same time they have proportionally
wider whiskers and atypical values. Both also show the smallest error CV(RMSE) values
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while the GF and 3F present a broader and bigger quartile range but do not have outlier
values. For all floors, boxes have a size between 4% and 6.5%, which is synonymous with
good stability of the results.

On the other hand, to explain the MBE results of the predictions in the different thermal
demand segments, the results have been adimensionalized using the maximum allowable
thermal demand, 35 kW, and plotted facing the measured value with the forecasting value.
The four floors are plotted together using this method in Figure 7.
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The graph shows how thermal demand is generally below 70% of the maximum
capacity of the installation for all floors. Analysing in detail each floor, as seen in Figure 5,
the GF produces an underestimation of the highest and the lowest values, maintaining a
good accuracy of medium values. The 1F has a low dispersion with a few atypical values,
but generally remains closer to the mean value than the rest of the floors.

The 2F has the lowest heat demand, probably influenced by its placement between
two floors which means an energy contribution through horizontal enclosures. This graph
also shows the behavior explained previously, reflected on the 2F with a stacking of dots
around the mean. For the 3F, the overestimation is appreciable observing how the dots are
placed straight above the x = y.

4.3. HLC Comparison

HLC simple is obtained for a total of three periods. Two of them have been previously
obtained by Uriarte et al. [23] and will be used to evaluate the accuracy of our model.
Sample 1 comprises from 17 January 2018 4:00 to 20 January 2018 6:00 and Sample 2
includes from 6 February 2018 17:00 to 10 February 2018 7:00. Subsequently, a period
that meets the specifications indicated in Section 2.2 has been sought to extrapolate the
applied methodology. To obtain this period, solar radiation gains have been calculated
using solar radiation and the horizontal surface of the west block, 158.6 m2, provided
by Erkoreka et al. [25]. The thermal conditions of these three periods are summarized in
Table 4.
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Table 4. Thermal conditions for the three periods analyzed. All variables are averaged for the period.

Period T_In-T_Out [K] Q
[kW]

Q + K
[kW]

Rad/(Q + K)
[%]

Sample 1 14.98 33.72 49.53 9.73%
Sample 2 19.68 42.12 56.64 5.70%
Sample 3 17.70 26.55 41.54 9.79%

The conditions for the samples are very similar. The Sample 3, in comparison with
Sample 1 has a bigger temperature difference but a smaller heat demand, due to higher
solar heat gains. The same sample compared to Sample 2 shows a smaller magnitude on
every variable. The results for the HLC simple calculation on the periods are recorded on
Table 5.

Table 5. HLC simple obtained per floor and for the entire building.

Period GF
[kW/K] 1F [kW/K] 2F [kW/K] 3F [kW/K]

Building
(Predicted)

[kW/K]

Building
(Real)

[kW/K]

Sample 1 0.61 1.01 0.71 0.80 3.13 3.27
Sample 2 0.56 0.87 0.67 0.71 2.81 2.85
Sample 3 0.46 0.79 0.55 0.64 2.44 2.35

For the HLC calculated on each floor, the difference between the obtained value using
monitored data and using forecasting techniques moves in the interval ±0.03.

From these results, it can be deduced that in days with a higher temperature difference
the obtained HLC simple for the predicted values is closer to the real HLC simple. This is
because the days with a greater temperature difference present a higher thermal demand.
As a consequence, the terms of occupation and the solar gains are of lesser importance,
which are the factors that add variability. The opposite effect can be seen in the results of
Samples 1 and 3, where the Rad/Q + K ratio is higher.

Based on the results per plant, it should be noted that the GF is the one that contributes
the least to HLC, with the 1F being the one that has the greatest importance in obtaining this
coefficient. This result is in line with the fact that the 1F has the highest thermal demand
but also the highest contribution for occupation thermal loads.

5. Conclusions

This paper presents a new use of LSTM neural networks for thermal demands forecast-
ing on buildings, giving relevance to the accurate detection of the thermal inertia. At the
same time, it also demonstrates that it is feasible to estimate the HLC with great precision
using these forecasting techniques. The study was conducted by analysing monitored
data of the Rectorate building of UPV/EHU. In the study, the variables monitored in the
Rectorate building of UPV/EHU have been used, among which are included the interior
conditions, the exterior environmental conditions and the information provided by the
heating and electrical installation.

The results obtained show that LSTM neural networks models are capable of esti-
mating the thermal demands of in-use buildings with a CV(RMSE) of 21% for the worst
case and 12% for the best. These errors show that black-box models based on LSTM neu-
ral networks produce errors below the condition established by ASHRAE to consider a
model calibrated. To achieve those results, the detection of the appropriate time-lag for the
building for a correct treatment of the building under study is necessary.

The thermal demand values obtained by the created model are used to estimate the
HLC value. In this case, the error does not exceed 4%, which proves that the methodology is
valid to estimate this coefficient without the need to keep the building’s thermal conditions
controlled so that they are considered stationary.
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The main contribution of this paper is the development of a methodology for the
detection of thermal inertia, the prediction of thermal demands and the estimation of
the HLC that can be applicable to other types of buildings. The variables used in this
paper are commonly monitored in different types of buildings, and weather variables
are readily available. Therefore, the methodology described here can be extrapolated to
different buildings, such as residential, industrial, or educational, to assess their energy
and thermal performance.

On one hand, the limitations of this methodology are through the difficulties of
obtaining the conditions to calculate the HLC, which can restrict the obtained conditions
to short periods where the solar radiation gains are very small or the heat demand very
high, so that the relative solar influence is low. On the other hand, buildings without a
precise source of weather data may open a future work line to combine the methodology
described with meteorological data collection techniques to avoid expensive outdoor
monitoring systems.
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