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Abstract: In the last few years, several countries have accomplished their determined renewable
energy targets to achieve their future energy requirements with the foremost aim to encourage
sustainable growth with reduced emissions, mainly through the implementation of wind and solar
energy. In the present study, we propose and compare five optimized robust regression machine
learning methods, namely, random forest, gradient boosting machine (GBM), k-nearest neighbor
(kNN), decision-tree, and extra tree regression, which are applied to improve the forecasting accuracy
of short-term wind energy generation in the Turkish wind farms, situated in the west of Turkey,
on the basis of a historic data of the wind speed and direction. Polar diagrams are plotted and the
impacts of input variables such as the wind speed and direction on the wind energy generation
are examined. Scatter curves depicting relationships between the wind speed and the produced
turbine power are plotted for all of the methods and the predicted average wind power is compared
with the real average power from the turbine with the help of the plotted error curves. The results
demonstrate the superior forecasting performance of the algorithm incorporating gradient boosting
machine regression.

Keywords: renewable energy; sustainable energy; wind power generation; machine learning; smart
grid environment

1. Introduction

In recent years, renewable energy sources (RES) have become a center of exploration
due to the advantages they are providing to power systems. As the penetration of RES
intensifies, the associated challenges in power systems are also escalated. Among various
renewable energy resources, wind energy has gathered ample importance due to its sustain-
ability, non-polluting, and free nature [1,2]. Irrespective of the various advantages of wind
power, errorless power prediction for wind energy is a very difficult task. Both the climatic
and various seasonal effects are not only the factors influencing the generation of wind
power, but the intermittent nature of wind itself also makes it increasingly complicated
to forecast [3]. Wind energy is critically important for the social and economic growth of
any country. Considering this, reliable and precise wind power prediction is crucial for the
dispatch, unit commitment, and stable functioning of power systems. This makes it easier
for grid operators of the power system to support uniform power distribution, reduce
energy loses, and optimize power output [4,5]. Besides this, without the functionality of
forecasting, wind energy systems that are extremely disorganized can cause irregularities
and brings about great challenges to a power system. Consequently, the integration of
wind power globally relies on correct wind power prediction. It is necessary to develop
dedicated software in this regard, where weather forecast data and wind speed data are
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model inputs and would predict the power that a wind farm or a particular wind turbine
could produce on a particular day. Furthermore, forecasted outputs could be analyzed
in terms of a town’s actual per-day power demands [6–8]. When the forecasted power is
not sufficient to meet the daily requirements of the town, then adequate decisions could
be taken to arrange leftover power to be gathered from other sources. In the case that the
forecasted power exceeds the demand, then a suitable number of wind turbines could be
turned off to prevent surplus generation [9]. This approach has the capability of reduc-
ing repeated power outages and protecting generated power from being wasted. Many
researchers, e.g., Pathak et al. [10], Chaudhary et al. [11], and Zameer et al. [12], have
been performing research to develop optimized software models for forecasting power
generation via RES.

Many of these algorithms have not produced acceptable results for different wind
farm locations in which forecasting has been carried out with erratic and turbulent wind
conditions. Under these circumstances, the number of required input variables substantially
increases [13]. Nowadays, ML-based regression forecasting techniques such as support
vector regression models and auto-regression, among others, are very prominent [14,15].
These techniques are used in power generation and consumption, electric load forecasting,
solar irradiance prediction for photovoltaic systems, grid management, and wind energy
production. A reliable and accurate forecasting algorithm is essential for wind power
production [16,17].

Noman et al. [18] investigated a support vector machine (SVM)-based regression algo-
rithm for predicting wind power in Estonia one day in advance. Wu et al. [19] suggested a
new spatiotemporal correlation model (STCM) for ultrashort-term wind power prediction
based on convolutional neural networks and long short-term memory (CNN-LSTM). The
STCM based on CNN-LSTM has been used for the collection of metrological factors at
various places. The outcomes have shown that the proposed STCM based on CNN-LSTM
has a superior spatial and temporal characteristic extraction ability than traditional models.
Yang et al. [20] developed a fuzzy C-means (FCM) clustering algorithm for the forecasting
of wind energy one day in advance to reduce wind energy output differences. Li et al. [21]
proposed the combination of a support vector machine (SVM) with an enhanced drag-
onfly algorithm to predict short-term wind energy. The improved dragonfly algorithm
selected the optimal parameters of SVM. The dataset was collected from the La Haute Borne
wind farm in France. The developed model showed improved forecasting performance as
compared with Gaussian process and back propagation neural networks. Lin et al. [22]
constructed a deep learning neural network to forecast wind power based on SCADA data
with a sampling rate of 1 s. Initially, eleven input parameters were used, including four
wind speeds at varying heights, the ambient temperature, yaw error, nacelle orientation,
average blade pitch angle, and three measured pitch angles of each blade. A comparison
between various input parameters showed that the ambient temperature, yaw error, and
nacelle positioning could be areas for optimization in deep learning models. The simulation
outcome showed that the suggested technique could minimize the time and computational
costs and provide high accuracy for wind energy prediction.

Wang et al. [23] proposed an approach for wind power forecasting using a hybrid
Laguerre neural network and singular spectrum analysis. Wang et al. [24] presented a deep
belief network (DBN) with a k-means clustering algorithm to better deal with wind and
numerical prediction datasets to predict wind power generation. A numerical weather
prediction dataset was utilized as an input for the proposed model. Dolara et al. [25]
used a feedforward artificial neural network for the accurate forecasting of wind power.
Their results were compared with predictions provided by numerical weather prediction
(NWP) models. Abhinav et al. [26] presented a wavelet-based neural network (WNN)
for forecasting the wind power for all seasons of the year. The results showed better
accuracy for the model with less historic data. Yu et al. [27] suggested long- and short-term
memory-enriched forget gate network models for wind energy forecasting. Zheng et al. [28]
suggested a double-stage hierarchical ANFIS to forecast short-term wind energy.
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To predict the wind speed and turbine hub height, the ANFIS first stage employs
NWP, while the second stage employs actual power and wind speed relationships. Jiang
et al. [29] developed an approach to enhance the power prediction capabilities of a tradi-
tional ARMA model using a multi-step forecasting approach and a boosting algorithm.
Zhang et al. [30] evolved an autoregressive dynamic adaptive (ARDA) model by improving
the autoregressive (AR) model. In this approach, a fixed parameter estimation method for
the autoregressive model was enhanced to a dynamically adaptive stepwise parameter
estimation method. Later on, the results were compared with those of the ARIMA and
LSTM models. Qin et al. [31] developed a hybrid optimization technique which combined a
firefly algorithm, long short-term memory (LSTM) neural network, minimum redundancy
algorithm (MRA), and variational mode decomposition (VMD) to improve wind power
forecasting accuracy. Huang et al. [32] used an artificial recurrent neural network for fore-
casting. Recently, some researchers have developed their own optimization approaches,
such as in [33,34], where the authors developed sequence transfer correction and rolling
long short-term memory (R-LSTM) algorithms. Akhtar et al. [35] constructed a fuzzy logic
model by taking the air density and wind speed as input parameters for the fuzzy system
used for wind power forecasting.

Aly et al. [36] developed a model to forecast wind power and speed using various
combinations, including a wavelet neural network (WNN), artificial neural network (ANN),
Fourier series (FS) and recurrent Kalman filter (RKF). Bo et al. [37] proposed nonparametric
kernel density estimation (NPKDE), least square support vector machine (LSSVM), and
whale optimization approaches for predicting short-term wind power. Li el al. [38] devel-
oped an ensemble approach consisting of partial least squares regression (PLSR), wavelet
transformation, neural networks, and feature selection generation for forecasting at a wind
farm. Colak et al. [39] proposed the use of moving average (MA), autoregressive inte-
grated moving average (ARIMA), weighted moving average (WMA), and autoregressive
moving average (ARMA) models for the estimation of wind energy generation. Saman
et al. [40] proposed six distinct machine heuristic AI-based algorithms to forecast wind
speeds by utilizing meteorological variables. Yan et al. [41] investigated a two-step hybrid
model which used both data mining and a physical approach to predict wind energy three
months in advance for a wind farm. From the literature survey, it is clear that there have
been several research studies that have investigated the forecasting of wind energy by
employing various analytical approaches across several horizons, among which persistence
and statistical approaches have been used. Statistical approaches have not been suitable
approaches for forecasting wind power as they have not been able to handle huge datasets,
adapt to nonlinear wind dataset, or make long-term predictions [42–44].

Prior to our research, there have been many types of prediction models that have been
shaped to predict wind energy, namely, physical models, statistical models, and teaching
and learning-based models, which employ machine learning (ML) and artificial intelligence
(AI)-based algorithms. Current studies typically adopt machine learning algorithms (ML).
In particular, naive Bayes, SVM, logistic regression, and deep learning architectures of long
short-term memory networks are typically used.

In the present study, the primary reason for adopting ML algorithms is that they can
adapt themselves to changes with regards to the location of wind farms. Varying locations
can have more erratic and turbulent trends, and thus generating predictive models on
the basis of an input dataset instead of utilizing a generalized model is of importance.
The foremost contribution of this research is short-term wind power forecasting on the
basis of the historical values of wind speed, wind direction, and wind power by using
ML algorithms. Furthermore, short-term wind power forecasts are analyzed compared
to the forecasting of long-term wind power, as the algorithms and methods are unable
to deliver satisfying results at high precision with respect to wind speed forecasting in
this regard. In this study, regression algorithms such as random forest, k-nearest neighbor
(k-NN), gradient boosting machine (GBM), decision tree, and extra tree regression are
employed to enhance the forecasting accuracy for wind power production for a Turkish
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wind farm situated in the west of Turkey. Regression algorithms have been applied because
of forecasting problems encountered with continuous wind power values. Polar curves
have been plotted and the impacts of input variables such as the wind speed and direction
on wind energy generation is examined. Scatter curves depicting the relationships between
the wind speed and the produced turbine power are plotted for all of the methods here and
the predicted average wind power is compared with the real average power from a turbine
with the help of the plotted error curves. The results demonstrate the superior forecasting
performance of gradient boosting machine regression algorithm considered here.

The paper is organized in six sections. Section 2 describes the proposed model,
followed by the preprocessing of the SCADA data in Section 3. Section 4 presents the
machine learning techniques used to enhance the forecasting accuracy. Section 5 deliberates
upon the results and presents a discussion. Finally, the conclusions of this work are outlined
in Section 6.

2. Proposed Model
2.1. Input Metrological Parameters

This section is devoted to estimate suitable input parameters that will affect the active
power of wind turbine, considering the wind farm layout. The selected variables are the
exogenous inputs of the machine learning algorithms. The data analysis for forecasting
has been accomplished via a freely accessible dataset containing data for a northwestern
region of Turkey [45]. The wind farm considered in this study is the onshore Yalova wind
farm, featuring 36 wind turbines with total generation capacity of 54,000 kW according
to www.tureb.com.tr/bilgi-bankasi/turkiye-res-durumu (accessed on 18 May 2020). The
facility has been in operation since 2016.

2.2. Predictive Analysis

The steps involved in predictive analysis are illustrated in Figure 1. Data exploration
is the initial step in the analysis of data and is where users explore a large dataset in an
unstructured way to discover initial patterns, points of attention, and notable characteristics.
Data cleaning refers to identifying the irrelevant, inaccurate, incomplete, incorrect, or
missing parts of the data and then amending, replacing, and removing data in accordance
with the requirements. Modeling denotes training the machine learning algorithm to
forecast the levels from the structures and then tuning and validating for the holdout data.
The performance of machine learning algorithm is evaluated by different performance
metrics using training and testing datasets.
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Figure 1. Steps involved in the predictive analysis.

The proposed model for the data analysis and forecasting is illustrated in Figure 2. A
supervisory control and data acquisition (SCADA) system has been employed to measure
and save wind turbines dataset. The SCADA system captures the wind speed, wind
direction, produced power, and theoretical power based on the turbine’s power curve.
Every new line of the dataset is captured at a 10 min time interval and the time period
of the dataset is one year. The data are accessible in the CSV format. Table 1 presents the
dataset information for the wind turbine. The wind turbine technical specifications are
given in Table 2, although there are a quite few gaps and at some points generated output
power is absent, which may be due to wind turbine maintenance, malfunction, or lower
wind speed than the operation speed. The dataset contains a total of 50,530 observations,
and 3497 data points were considered as outliers because of zero power production. After
removing outliers or missing values, the rest of the dataset, i.e., 47,033 data points, were
considered for implementing the machine learning models. The dataset consisted of two

www.tureb.com.tr/bilgi-bankasi/turkiye-res-durumu
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parts, namely, the training set, containing the first 70% of the whole dataset, and the testing
set, containing the latter 30% of the dataset.
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Table 1. Information for the wind turbine (Yalova wind farm, Turkey).

Input Variables Wind Speed, Wind Direction, Theoretical Power, Active Power

Draft Frequency 10 min
Start Period 1 January 2018
End Period 31 December 2018

Table 2. Wind turbine technical specifications.

Characteristics Wind Turbine

SINOVEL (turbine manufacturer) SL1500/90 (Turbine model)
Rated Power 1.5 MW
Hub Height 100 m

Rotor Diameter 90 m
Swept Area 6362 m2

Blades 3
Cut-in Speed of Wind 3 m/s
Rated Speed of Wind 10 m/s

Cut-off Speed of Wind 22 m/s

As stated in [46,47], the power curves of a wind turbine, when plotted between the
cut-in speed, rated speed, and cut-out speed, can be established by an n degree algebraic
equation (Equation (1)) for forecasting the power output of a wind turbine.

Pi(v) =


0, v < vci(

anvn + an−1vn−1 + . . . + a1v + a0
)
, vci ≤ v < vR

PR vci ≤ v < vR
0, v ≥ vco

(1)

where Pi(v) is power produced from the relative wind speed and the regression constants
are given by an an−1 a1 and a0, vci is the cut-in speed, vR is the rated speed, and vco
is the cut-out speed. The energy output for a considered duration can be calculated by
Equation (2):

Ec = ∑N
i=1 P(vi)∆t (2)
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where N denotes the number of hours in the study period and ∆t is the time interval [48].
The energy produced with a given wind speed can be appraised by multiplying the power
produced by the wind turbine by wind speed v and the time period for which the wind
speed v prevails at the given site. The overall energy generated by the turbine over a given
period can be assessed by summing the energies corresponding to all possible wind speeds
with the related conditions at points where the system is functional.

Figure 3 shows a plot of wind speed power scatter curves where the theoretical power
generation curve usually fits with the real power generation. It may also be observed that
the power generation curve reaches the maximum level and continues in a straight line
when the wind speed reaches ~13 m/s. At wind speeds higher than 3 m/s (cut-in speed),
there are some points of zero power generation, and this could be due to maintenance,
sensor malfunction, degradation, and system processing errors.
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Closer examination of the wind turbine power highlighted three anomaly types in the
SCADA data of the wind turbine. Type-1 anomalies are displayed in the scatterplot via
a horizontal dense cluster of data where the generation of power is zero at a wind speed
higher than the cut-in speed. Such anomalies generally occur due to the turbine downtime
that can be cross-referenced when utilizing an operation log [49,50]. Type-2 anomalies are
shown by a dense cluster of data that fall below the ideal power curve of the wind turbine.
These anomalies can occur because of wind curtailment, where the turbine output power
is controlled by its operator to be lower than its operational capacity. Wind restriction can
be executed by operators of a wind farm due to various reasons, such as difficulty in the
storage of huge capacities of wind power, a lack of demand for power at several times, and
at times where volatile wind conditions cause the produced electricity to be unstable in
nature. Type-3 anomalies are arbitrarily dispersed around the curve and these are generally
the result of sensor degradation or malfunction, or they may be due to noise at the time
of signal processing [51,52]. It is also worth noting that a segment of type-2 and type-3
anomalies can also be illustrated by the dispersion produced on account of incoherent
wind speed measurements taken as a result of turbulence.

Figure 4 shows hourly average power production over a day, while the monthly
average power production is shown in Figure 5.



Energies 2021, 14, 5196 7 of 21

Energies 2021, 14, x FOR PEER REVIEW 7 of 23 
 

of type-2 and type-3 anomalies can also be illustrated by the dispersion produced on ac-
count of incoherent wind speed measurements taken as a result of turbulence. 

Figure 4 shows hourly average power production over a day, while the monthly av-
erage power production is shown in Figure 5.  

 
Figure 4. Hourly average power production throughout a day (kW). 

 
Figure 5. Monthly average power production (kW). 

Figure 6 shows paired scatter plots describing the relationship of each feature with 
each other feature. The plots with a diagonal shape represent histograms showing the 
probability distribution of each weather feature. The lower and upper triangles display 
the scatter plots representing the relationships between the features. It is also seen that 
each feature demonstrates the distribution with other features. The paired scatter plots 
show the changes for one feature in comparison to all other features. 

Figure 4. Hourly average power production throughout a day (kW).

Energies 2021, 14, x FOR PEER REVIEW 7 of 23 
 

of type-2 and type-3 anomalies can also be illustrated by the dispersion produced on ac-
count of incoherent wind speed measurements taken as a result of turbulence. 

Figure 4 shows hourly average power production over a day, while the monthly av-
erage power production is shown in Figure 5.  

 
Figure 4. Hourly average power production throughout a day (kW). 

 
Figure 5. Monthly average power production (kW). 

Figure 6 shows paired scatter plots describing the relationship of each feature with 
each other feature. The plots with a diagonal shape represent histograms showing the 
probability distribution of each weather feature. The lower and upper triangles display 
the scatter plots representing the relationships between the features. It is also seen that 
each feature demonstrates the distribution with other features. The paired scatter plots 
show the changes for one feature in comparison to all other features. 

Figure 5. Monthly average power production (kW).

Figure 6 shows paired scatter plots describing the relationship of each feature with
each other feature. The plots with a diagonal shape represent histograms showing the
probability distribution of each weather feature. The lower and upper triangles display the
scatter plots representing the relationships between the features. It is also seen that each
feature demonstrates the distribution with other features. The paired scatter plots show
the changes for one feature in comparison to all other features.

2.3. Analysis in Polar Coordinates

Figure 7 presents a polar diagram exhibiting the qualitative distribution of power
generation with wind speed and wind direction from the sample dataset. It is clear from
the polar diagram that the wind speed, wind direction, and power generation are vastly
correlated, as wind turbine generates maximum power if the wind blows from a direction
between 0–90 or 180–225 degrees. It is also seen from the polar diagram that there is
no power generation beyond the cut-out speed of 22 m/s. Also, from some directions,
very low power generation is taking place. The wind direction parameter is denoted by
the radius of the polar graph. In the polar graph, light color points represent low power
generation when the wind speed is below the cut-in speed (i.e., 3 m/s) of the wind turbine.
As the speed of wind increases beyond the cut-in speed, power production increases, as
represented by the dark and densely spaced points in the polar diagram.
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2.4. Analysis in Cartesian Coordinates

Figure 8 shows a three-dimensional quantitative visualization of the power generation
with the wind speed and wind direction in a Cartesian coordinate system for the whole year.
In Figure 8, it can be seen that the two regions that are dense contribute to the maximum
power generation. The first region is observed when the direction of the wind varies from
0◦ to 90◦ and the second region is observed when the wind direction varies from 180◦ to
230◦.
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3. SCADA Pre-Processing

1. Outlier removal: The procedure of cleaning and preparing the raw data to make
it compatible for training or developing machine learning models is called data
preprocessing. To limit the impact of noise and turbulence, a sampling rate of 10 min
was used when processing the SCADA data; however, deep analysis of individual
parameters identified certain errors in the SCADA data, such as, power production
being zero above the cut-in speed (i.e., 3 m/s), negative values of wind speed, or
active power and missing data at some timestamps. These results carry no practical
significance in terms of the generation of power. As such, to prevent a negative impact
on the forecasting, data points belonging to the same timestamp have been removed.
Such erroneous data points are commonly the result of wind farm maintenance,
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sensor malfunction, degradation, or system processing errors. It is crucial that the
SCADA data are pre-processed prior to developing the forecasting models.

2. Normalization of dataset: The input parameters of the wind power forecasting model
incorporate the wind speed and wind direction, but their dimensions are not of the
same order of magnitude. Hence, it is essential to regulate these input vectors to be
within in the same order of magnitude. As such, a min-max approach was used to
normalize the input vectors as follows:

x =
x− xmin

xmax − xmin
(3)

where the actual data is given by x and xmin and xmax represent the minimum and
maximum values of the dataset. The result x remains within the range of [0,1].

4. Machine Learning

Machine learning is a solicitation of AI (artificial intelligence) that offers automatically
learning capabilities for systems and the ability to learn from experiences without being
explicitly programmed to do so. Machine learning algorithms exhibit a dataset-based be-
havior and model input features corresponding to the desired output, thereby forecasting
output features by learning from a historic dataset. ML is essential for prediction here
due to the following reasons: Firstly, ML gives best performance when the input and
output relationship is not clear. It also improves in terms of decision making or predictive
accuracy over time. ML algorithms can easily identify changes in the environment and
adapt themselves according to the new environment; however, there are several machine
algorithms, each of which is specifically utilized for applications or problems. For instance,
regression and classification algorithms are mainly used for forecasting problems. ML also
has the ability to handle complex systems. We implemented five regression analysis algo-
rithms, namely random forest regression, k-nearest neighbor regression (k-NN), gradient
boosting machine regression (GBM), decision tree regression, and extra tree regression.
These algorithms were selected based on good performance and extensive usage in the
literature. These algorithms have distinct theoretical backgrounds in forecasting problems,
where they have provided results successfully. Additionally, these algorithms have various
parameters known as hyper-parameters which affect the runtime, generalization capability,
robustness, and predictive performance. We have adopted a trial-and-error approach to
select the best parameters for algorithms, and this is known as hyper-parameter tuning.
Also, for the best observed outputs, the values of these parameters for each regression
algorithm are placed at the bottom of the section for each algorithm.

4.1. Random Forest Regression

Random forest (RF) regression is a famous decision tree algorithm where multiple
decision trees are produced from a given input dataset. First, the algorithm divides the
dataset randomly into several sub-parts and for each subpart it builds multiple decision
trees. Then, it merges the predicted output of each decision tree to obtain a more stable and
accurate prediction. In RF regression, the output value of any input or subset is a mean of
the values predicted by several decision trees. The following process is performed:

1. Produce ntree bootstrap samples from the actual input dataset;
2. For individual bootstrap samples, expand an unpruned regression tree, including

subsequent alteration at every node, instead of selecting the best split among all
predictors. Arbitrarily sample mtry predictors and then select the best split from those
variables. (“Bagging” can be considered a special case of RF and where mtry = p
predictors. Bagging refers to bootstrap aggregating, i.e., building multiple distinct
decision trees from training dataset by frequently utilizing multiple bootstrapped
subsets of the dataset after averaging the models);
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3. Estimate new data values by averaging the predictions of the ntree, decision trees
(i.e., “average” in case of problems of regression and the “majority of votes” for
classification problems);

4. Based on the training data, the error rate can be anticipated using the following steps:

• At each bootstrap iteration, predict data not in the bootstrap sample (as Breiman
calls “out of bag” data) by utilizing the tree developed with the bootstrap sample.

• Averaging the out of bag predictions, on the aggregate, where each data value
would be out of bag around 36% of the times and hence averaging those predic-
tions.

• Compute the error rate and name it the “out of bag” estimate of the error rate.

In practice, we have observed that out of bag estimation of the error rate is fairly
truthful, provided that large numbers of trees are grown, otherwise the bias condition may
occur in the “out of bag” estimate. A complete flowchart for the process can be seen in
Figure 9. In this model, the random state was chosen as 40 and the number of trees was
selected as 100, as increasing the number of tress to larger than 100 did not significantly
improve the forecasting output. Also, an appropriate number of trees is required to be
chosen to optimize the forecasting performance and runtime. Figure 10a shows a scatter
plot depicting the relationship between the wind speed (m/s) and the power produced
(kW) by the turbine when using random forest regression. Figure 10b presents the predicted
average of wind power as compared with real average power from turbine (kW) when
using random forest regression.
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4.2. k-Nearest Neighbor Regression

k-Nearest Neighbor (k-NN) regression is one of the most simple, easy to implement,
non-parametric regression approaches used in machine learning. The main objective
behind k-nearest neighbor regression is that whenever a new data point is to be predicted,
the point’s k nearest neighbors are nominated from the training-dataset. Accordingly, the
prediction of a new data point will be the average of the values of the k-nearest neighbors.
The basis of the k-nearest neighbor algorithm can be outlined in three major steps:

1. Compute the predefined distance between the testing dataset and training dataset;
2. Select k-nearest neighbors with k-minimum distances from the training dataset;
3. Predict the final renewable energy output based on a weighted averaging approach.

A distance measure is needed to distinguish the similarity between two instances. The
Manhattan and Euclidean distances are widely used distance metrics in this regard [53]. In
the present study, the actual Manhattan distance was improved by the use of weighting.
The weighted Manhattan distance is determined by the following:

D
[

Xi, X j
]
=

r

∑
n=1

wn

∣∣∣x(i)n − x(j)
n

∣∣∣ (4)

where Xi and X j are two instances and there are r attributions for each instance, i.e.,
X = [x1, . . . , xn, . . . , xr] and wn is the weight allocated to nth attribution. The weight wn
equals 1 in the original Manhattan distance and denotes an equal contribution of each
attribute to distance D. The significance of each attribution is quite distinct in renewable
power generation forecasts. The wn weight considers the contribution of every variable
to the distance and would be computed by the process of optimization. Prediction is
performed based on the linked target values once the value of k-nearest neighbors is
determined. Consider that X1, . . . , XK indicates the k-nearest instances that are nearest to
testing instance X, and their power outputs are shown by p1, . . . , pK. The distance between
the k-nearest neighbor and X follows the ascending order of d1 ≤ . . . ≤ dK where dK =
D[X, Xk](k = 1,..., K). In terms of renewable power production, point prediction is estimated
with an average weighed through exponential function as follows:

︷︸︸︷
p =

K

∑
k=1

δk pk =
∑K

k=1 e−dk
.pk

∑K
k=1 e−dk (5)

where dk and pk are distances associated with the instance Xk and the renewable power
output, correspondingly. Figure 11 presents a flowchart of the k-nearest neighbor regression
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method. In this paper, k was selected as 7 and the Manhattan distance was chosen as the
distance measure.
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Figure 12a shows a scatter plot depicting the relationship between the wind speed
(m/s) and the power produced (kW) and Figure 12b presents the error curves, showing the
comparison of forecasted average power with the real average power (kW) when using
k-nearest neighbor regression.
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4.3. Gradient Boosting Trees

Gradient boosting regression tree algorithms involve an ensemble learning approach
where robust forecasting models are formed by integrating several individual regression
trees (decision trees) that are referred to as weak learners. Such an algorithm reduces the
error rate of weakly learned models (regressors or classifiers). Weakly learned models are
those which have a high bias regarding the training dataset, with low variance and regular-
ization, and whose outputs are considered only somewhat improved when compared with
arbitrary guesses. Generally, boosting algorithms contains three components, namely, an
additive model, weak learners, and a loss function. The algorithm can represent non-linear
relationships like wind power curves and uses a range of differentiable loss functions and
can inherently learn during iterations between input features [54]. GBM (gradient boosting
machines) operate by identifying the limitations of weak models via gradients. This is
attained with the help of an iterative approach, where the task is to finally join base learners
to decrease forecast errors, where decision trees are combined by means of an additive
model while reducing the loss function via gradient descent. The GBT (gradient boosting
tree) Fn(xt) can be defined as the summation of n regression-trees.

Fn(xt) = ∑n
i=1 fi(xt) (6)

where every fi(xt) is a decision tree (regression-tree). The ensemble of trees is constructed
sequentially by estimating the new decision tree fn+1(xt) with the help of the following
equation:

argmin ∑
t

L(yt.Fn(xt) + fn+1(xt)) (7)

where L(·) is differentiable for loss-function L(·). This optimization is solved by a steepest
descent method. In this study, a learning rate of 0.2 and estimator value of 100 were
selected. A smaller learning rate makes it easier to stop prior to over fitting. Figure 13a
presents a scatter plot depicting the relationship between the wind speed (m/s) and the
power production (kW) of the turbine, and Figure 13b presents the error curves of the
predicted average power in comparison with the real average power of the turbine (kW)
when using gradient boosting regression.
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4.4. Decision Regression Trees

A decision tree algorithm is an efficacious algorithm in machine learning which is
utilized in supervised learning. This algorithm can be used to solve both regression and
classification tasks. In decision analysis, it can be employed to explicitly and visually show
both decisions and decision making. The foremost objective of using the algorithm is to
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produce a training model which can be used to forecast the value of the target variable with
the help of learning modest judgment principles inferred from the training data [55]. As
the name goes, it has a simple tree-like structure of decisions. In a decision tree, each node
depicts a conditional statement and the branches of it show the outcome of the statement
shown by the nodes. The algorithm iterates from the root node (highest node) to leaf
nodes (bottom-most nodes). After executing all attributes in the nodes above, the leaf node
(terminal node) shows the decision formed. This approach is considerably more accurate
than SVM and ANN techniques.

The input to the algorithm includes training record E and attribute set F. The
algorithm functions by recursively selecting the best feature in order to split the data and
increases the leaf nodes of the tree until the ending criterion is encountered (Algorithm 1).

Algorithm 1. Tree Growth (E, F).

1. if stopping _cond (E, F) = true then
2. leaf = createNode()
3. lea f .label Classify(E)
4. return lea f
5. else
6. root = create Node()
7. root.test_cond = find_best_split(E, F)
8. let V = { v|v is a possible outcome of root.test_cond}
9. for each v ∈ V do
10. Ev = {e | root.test_cond(e) = v and e ∈ E}
11. child = TreeGrowth (EvF)
12. add child as descendent of root and label the edge ( root→ child ) as v
13. end for
14. end if
15. return root

In this study, the decision tree depth was selected as 17. In general, if the decision
tree depth is greater, then the complexity of the model increases as the number of splits
increases and contains more information about the dataset. This is the main reason for
overfitting with DTs, where the model is perfectly fit with the training dataset and will not
be able to generalize well with the testing dataset. In addition, a very low depth causes
model under-fitting. Figure 14a presents a scatter plot depicting the relationship between
the wind speed (m/s) and the power production (kW) of the turbine and Figure 14b shows
the predicted average power in comparison with real average power of the turbine (kW)
when using decision tree regression.
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4.5. Extra Tree Regression

Extra tree or extremely randomized tree regression algorithms involve an ensemble
machine learning technique. The algorithm has been evolved as an expansion of random
forest algorithm, but the main difference is that it randomly chooses cut points partly or
completely, with individual attributes, and selects splits. Extra tree regression utilizes the
same rule as the RF algorithm and uses a random subset of topographies to train each base
estimator. The nodes above the leaf node (the terminal node) show the decision that is
formed. This approach is considerably more accurate than SVM and ANN techniques [51].
This algorithm randomly selects the paramount features, along with the consistent value
for splitting a node; however, rather than selecting the most discriminative split in each
mode [56–58], the extra tree approach utilizes the whole training dataset to train each
regression tree. On the other hand, the RF algorithm utilizes a bootstrap replica to train
the forecast model. These significant differences makes extra tree regression less likely to
overfit a dataset, as there is better reported performance in the nodes above the leaf node
(terminal node).

In the present study, the number of trees was selected as 90 and the maximum depth
of trees was selected as 14. Generally, deeper tree sizes result in better performance. For
extra tree regression, trees deeper than 14 started to depreciate the model performance.
A maximum depth of six did not perform significantly better as the performance metrics
were approximately equal. At a maximum depth of two, the model became under-fitted,
resulting in lower R2 values and higher values for performance matrices. Figure 15a
presents a scatter plot depicting the relationship between the wind speed (m/s) and the
power production (kW) of the turbine and Figure 15b shows the predicted average power
in comparison with the real power of the turbine from turbine (kW) when using extra tree
regression.
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5. Results and Discussions

Based on the study performed in the above sections, the present section scrutinizes
the outcomes and the key observations accomplished from the performances of the various
regression models after programming for the forecasting of wind power. All models
mentioned and explained above were trained and tested on a machine featuring 12 GB of
16 MHz DDR3 RAM and a 1.6 GHz Intel Core i5 processor running in a Jupiter notebook
(Python 3.9.5 version) development environment.

Several hyper-parameters, such as the learning rate, size of trees (depth), and regular-
ization parameters stated with the various regression models were empirically selected
by a stepwise searching approach to find the optimal hyper-parameters for the regression
models. The performances of all algorithms were estimated based on the mean absolute
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error (MAE), mean absolute percent error (MAPE), root mean square error (RMSE), mean
square error (MSE), and coefficient of determination (R2). Algorithms with minimum errors
indicate the most desirable and accurate method. The MAE reflects the sum of absolute
differences between the actual and predicted variables. The MAPE estimates accuracy
in terms of the differences in the actual and predicted values. The RMSE is the standard
deviation of the prediction errors, and practically it can be generalized that the lower the
value of the RMSE, the better is the model considered to be. A model is considered to
be good and without overfitting if the RMSE values of the training and testing samples
are within a close range. The MSE is average square of the errors, and R2 checks how
well-the observed outputs are reproduced by the model. Among the five performance
indices estimated here, we are certain that we can suggest that the RMSE may be viewed
as the metric of primary focus, where the errors are squared prior to being averaged and
impose a high weight for large errors. As such, the minimum value of the RMSE inferred
the minimum error rate in reality. The values of the root mean square, being adjacent to
the mean absolute error, would imply that there is no significant variation between the
magnitudes of error, in turn signifying the effectiveness and generalization of the model.

Table 1 shows the MAE, MAPE, RMSE, MSE, and R2 results for the training and
testing dataset values for forecasting wind power. Generally, errors in the training dataset
present the suitability of the developed model, while errors in the testing data present
the generalization capabilities of the developed model. For optimizing model accuracy
and performance, the ML model parameters were tested using hundreds of runs for the
individual algorithms on the basis of the learning rate, number of trees, value of k, distance
measure, and random state, etc.

The various machine learning performances can be analyzed through the overlapping
scatter plots that depicts the relationships between the wind speed and power produced by
the turbine and from the graph between the forecasted average power values of the wind
power in comparison with actual average power produced by the wind turbine, which
graphically demonstrates the individual regression model performances as depicted in
Figures 10 and 12–15. Figure 10a represents the results of the RF regression. It is evident
from the figure that the RF algorithm could predict values of power positively; however,
its performance was better than the DT regression model, although, at high values of wind
speed, this algorithm could not produce correct forecasts. From Figure 10b, most of the
forecasted or predicted values are overlapping or close to the real average power values
and the model has a high R2 value. As such, the overall performance of the RF regression
model was better.

Figure 12 depicts the results of the k-NN regression model. As can be seen from
Figure 12a, the k-NN model could be seen to be more successful at predicting both high
and low values of wind speed with a lower training time and better handling of higher
values of wind speed in contrast with both the DT and RF models. As is clear from
Figure 12b, the majority of the values of predicted power are overlapping and close to the
real average power or active power. As such, it can be seen that the k-NN regression model
also performed satisfactorily. Figure 13 presents the outputs of the GBM regression model.
As is clear in Figure 13a, the GBM algorithm gave the best results for forecasting both low
and large values of wind speed and was successful at handling high values of wind speed,
which is in contrast to the other regression models.

Moreover, as can be seen from Figure 13b, the prediction curve successfully fits or
completely overlaps with the real average power curve. Hence, the performance of the
GBM algorithm can be observed to have the best performance when compared with the
other algorithms. Figure 14 shows the results of the DT regression model. As can be clearly
observed in Figure 14a, this algorithm could not predict correct power values. Among
the five regression algorithms, the DT algorithm exhibited poor performance and had a
high forecasting error, as is clearly visible from the given performance indices shown in
Table 1. In addition, this algorithm also had a lower R2 value than the other regression
algorithm. Figure 15 represents the results of the ET regression algorithm. As can be seen
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in Figure 15a, the ET algorithm performed well with both low and high values of wind
speed and the algorithm resulted in lower values for the MAE, RMSE, MSE, and MAPE,
but with a higher value of R2, though still demonstrating the good performance of ET
regression model. The model performances based on the MAE, MAPE, RMSE, MSE, and
R2 metrics are given in Table 3.

Table 3. Model performances based on the MAE, MAPE, RMSE, MSE, and R2 metrics. Italic and bold sections indicate
better performance.

Regression
Models

Performance Evaluation on Training Dataset Performance Evaluation on Testing Dataset Training Time
(s)MAE MAPE RMSE MSE R2 MAE MAPE RMSE MSE R2

Random Forest 0.0186 0.2966 0.0588 0.0040 0.9888 0.0277 0.3310 0.0672 0.0045 0.9651 11.9

K-NN 0.0278 0.2960 0.0580 0.0036 0.9742 0.0286 0.3248 0.0667 0.0044 0.9656 0.08

GBM 0.0260 0.0555 0.0228 0.0031 0.9897 0.0264 0.3012 0.0634 0.0040 0.9690 5.83

Decision Tree 0.0325 0.3213 0.0592 0.0055 0.9660 0.0336 0.3349 0.0884 0.0078 0.9497 0.22

Extra Tree 0.0274 0.2915 0.0522 0.0036 0.9782 0.0276 0.3243 0.0655 0.0041 0.9678 3.05

6. Conclusions

As the world is increasingly utilizing renewable energy sources like wind and solar
energy, forecasting such energy sources is becoming a crucial role, particularly when
considering smart electrical grids and integrating these resources into the main power
grid. At present, wind energy is being utilized on a massive scale as an alternate source
of energy. Because of the fluctuating nature of wind energy, forecasting is not an easier
task and consequently integration into primary power grids represents a big challenge. As
forecasting can never be considered free from error, this provokes us to create advanced
models to mitigate such errors. In this study, comparative analysis of various machine
learning methods has been carried out to forecast wind power based on wind speed and
wind direction data. To achieve this objective, Yalova wind farm, located in the west of
Turkey, was utilized as a case study. A SCADA system was used to collect experimental
data over the period of January 2018 through to December 2018 at a sampling rate of 10
min for training and testing ML models. To appraise the forecasting performance of the ML
models, different statistical measures were employed. The results show that the random
forest (RF), k-nearest neighbor (k-NN), gradient boosting machine (GBM), decision tree
(DT), and extra tree (ET) regression algorithms are powerful techniques for forecasting
short-term wind power. Among these algorithms, the capability of the gradient boosting
regression (GBM)-based ensemble algorithm, with a MAE value of 0.0277, MAPE value of
0.3310, RMSE value of 0.0672, MSE value of 0.0045 and R2 value of 0.9651 for forecasting
of wind power, has been verified with better accuracy in comparison with the RF, k-NN,
DT and ET algorithms. The performance of the DT algorithm was not satisfactory, with
a MAE of 0.0336, MAPE of 0.3309, RMSE of 0.0884, and MSE of 0.0078, although the R2

(0.9497) values of the DT algorithm were relatively acceptable, with a training time 0.22 s.
In gradient boosting, an ensemble of weak learners is used to improve the performance of
a machine learning model. The weak learners are usually decision trees. Combined, their
output results in better models.

In the case of regression, the final results are generated from the average of all weak
learners. In gradient boosting, weak learners work sequentially, where each model tries
to improve upon the error from the previous model. Furthermore, decision trees are
structurally unstable and not robust, and thus small changes in the training dataset can
lead to significant changes in the structures of the trees and different predictions for the
same validation examples.

The developed tree-based ensemble models can provide reliable and accurate hourly
forecasting and could be used for sustainable balancing and integration in power grids.
As described previously, it is extremely beneficial to provide predictions for wind power
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that can be produced in a day on the basis of input parameters (wind speed and wind
direction), and our machine learning models have been proven to be quite accurate for such
purposes. Future research areas for further analysis may be comprised of the exploration
of other deep learning methods, the improvement of machine learning algorithms for point
forecasts, forecasting combinations, forecast interval formation, and the amalgamation of
wind power for speed forecasting.
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