Energy Efficiency and Decarbonization in the Context of Macroeconomic Stabilization
Abstract
:1. Introduction
2. Conceptual Background
3. Research Methodology
- (1)
- Creation of indicators: we create the indicators: DCO2, EN, MSP, MSPI, MSPE by normalizing diagnostic variables,
- (2)
- Hypothesis verification:
- -
- we check the level of dependence between the analyzed variables using the t Pearson’s r, Spearman-s Rho, Gamma and Kendall rank correlation coefficients,
- -
- we create two types of models allowing for the assessment of relationships between variables (dependent variables are: DCO2 and EN):
- ○
- Model 1: the OLS estimation, explanatory variables: MSPI, MSPE MSPI(t−i), MSPE(t−i),
- ○
- Model 2: the SUR method, explanatory variables: A, A(t−1), B, B(t−1), C, C(t−1), D, D(t−1), E, E(t−1), DCO2, DCO2(t−1), EN, EN(t−1).
- (3)
- Conclusion and discussion.
- -
- We use the Gretl and Statistica to estimate our models.
- -
- ΔGDP—GDP growth rate (%),
- -
- U—unemployment rate (%),
- -
- CPI—inflation rate (%),
- -
- G—state budget balance as (%) of GDP,
- -
- CA—current account balance as (%) of GDP.
4. Research Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
A | the relation between the rate of economic growth and unemployment rate |
B | the unemployment rate and inflation rate |
C | inflation rate and the budget |
CA | current account balance as (%) of GDP |
CO2 | carbon dioxide emissions (millions of tonnes) |
CPI | inflation rate (consumer price index) (%), |
D | the budget and the current account balance |
DCO2 | decarbonization (normalized indicator of decarbonization) |
E | current account balance and economic growth |
EN | energy efficiency ((normalized indicator of energy efficiency) |
ENE | energy efficiency in i-year (million tonnes of oil equivalent) |
G | state budget balance as (%) of GDP |
MSP | macroeconomic stabilization |
MSPE | external dimension of macroeconomic stabilization |
MSPI | internal dimension of macroeconomic stabilization |
U | unemployment rate (%) |
ΔGDP | GDP growth rate (%) |
References
- Martinez, V.; Sanchez-Robles, B. Macroeconomic Stability and Growth in Eastern Europe; Macroeconomics and Beyond, Essays in Honour of Wim Meeusen: Antwerpen, Belgium, 2012; pp. 130–144. [Google Scholar]
- Vasylieva, T.; Lyeonov, S.; Oleksii, L.; Kyrychenko, K. Macroeconomic Stability and Its Impact on the Economic Growth of the Country. Montenegrin J. Econ. 2018, 14, 159–170. [Google Scholar] [CrossRef]
- Bilan, Y.; Lyeonov, S.; Lyulyov, O.; Pimonenkow, T. Brand management and macroeconomic stability of the country. Pol. J. Manag. Stud. 2019, 19, 61–74. [Google Scholar] [CrossRef]
- Umar, M.; Ji, X.; Kirikkaleli, D.; Shahbaz, M.; Zhou, X. Environmental cost of natural resources utilization and economic growth: Can China shift some burden through globalization for sustainable development? Sustain. Dev. 2020, 28, 6. [Google Scholar] [CrossRef]
- Mann, K. The EU, a Growth Engine? The Impact of European Integration on Economic Growth in Central Eastern Europe; FIW-Research Centre International Economics: Vienna, Austria, 2015. [Google Scholar]
- Hnatyshyn, M. Decomposition analysis of the impact of economic growth on ammonia and nitrogen oxides emissions in the European Union. J. Int. Stud. 2018, 11, 201–209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanif, I.; Gago-de-Santos, P. The importance of population control and macroeconomic stability to reducing environmental degradation: An empirical test of the environmental Kuznets curve for developing countries. Environ. Dev. 2017, 23, 1–9. [Google Scholar] [CrossRef]
- Kirikkaleli, D.; Ozun, A. Innovation capacity, business sophistication and macroeconomic stability: Empirical evidence from OECD countries. J. Bus. Econ. Manag. 2019, 20, 351–367. [Google Scholar] [CrossRef] [Green Version]
- Pieloch-Babiarz, A.; Misztal, A.; Kowalska, M. An impact of macroeconomic stabilization on the sustainable development of manufacturing enterprises: The case of Central and Eastern European Countries. Environ. Dev. Sustain. 2020, 23, 8669–8698. [Google Scholar] [CrossRef]
- Sirimaneetham, V.; Temple, J.R.W. Macroeconomic Stability and the Distribution of Growth Rates. World Bank Econ. Rev. 2009, 23, 443–479. [Google Scholar] [CrossRef] [Green Version]
- Vo, A.T.; Van, L.T.; Vo, D.H.; McAleer, M. Financial inclusion and macroeconomic stability in emerging and frontier markets. Ann. Financ. Econ. 2019, 14, 2. [Google Scholar] [CrossRef] [Green Version]
- Franke, R.; Westerhoff, F. Different compositions of aggregate sentiment and their impact on macroeconomic stability. Econ. Model. 2019, 76, 117–127. [Google Scholar] [CrossRef]
- de Mendonça, H.F.; Cunha Nascimento, N. Monetary policy efficiency and macroeconomic stability: Do financial openness and economic globalization matter? N. Am. J. Econ. Financ. 2020, 51, 100870. [Google Scholar] [CrossRef]
- Wójcik-Jurkiewicz, M.; Czarnecka, M.; Kinelski, G.; Sadowska, B.; Bilińska-Reformat, K. Determinants of Decarbonisation in the Transformation of the Energy Sector: The Case of Poland. Energies 2021, 14, 1217. [Google Scholar] [CrossRef]
- Adebayo, T.S.; Akinsola, G.D.; Kirikkaleli, D.; Bekun, F.V.; Umarbeyli, S.; Osemeahon, O.S. Economic performance of Indonesia amidst CO2 emissions and agriculture: A time series analysis. Environ. Sci. Pollut. Res. 2021, 1–15. [Google Scholar] [CrossRef]
- Udemba, E.N.; Güngör, H.; Bekun, F.V.; Kirikkaleli, D. Economic performance of India amidst high CO2 emissions. Sustain. Prod. Consum. 2021, 27, 52–60. [Google Scholar] [CrossRef]
- Berkowitz, P.; Monfort, P.; Pieńkowski, J. Unpacking the growth impacts of European Union Cohesion Policy: Transmission channels from Cohesion Policy into economic growth. Reg. Stud. 2020, 54, 60–71. [Google Scholar] [CrossRef]
- Månberger, A. Deep Decarbonization and Energy Security for Low-Carbon Societies. In Green Growth and Decarbonization of Energy Systems in a Changing World; Rocamora, A.R., Ishikawa, T., Eds.; Institute for Global Environmental Strategies (IGES): Hayama, Japan, 2018; pp. 14–16. [Google Scholar]
- Dahlström, H. Decarbonizing Development: 3 Steps to Decarbonizing Development for a Zero-Carbon Future; The World Bank: Washington, DC, USA, 2015. [Google Scholar]
- Afonso, A.; Blanco-Arana, C. Financial development and economic growth: A study for OECD countries in the context of crisis. In Proceedings of the MIRDEC-8th International Academic Conference on Social Sciences, Economics, Business and Finances Studies, Lisbon, Portugal, 29–31 May 2018. REM Working Paper 046-2018. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Jiang, R.; Zhan, L. Is decoupling economic growth from fuel consumption possible in developing countries?—A comparison of China and India. J. Clean. Prod. 2019, 229, 806–817. [Google Scholar] [CrossRef]
- Papadis, E.; Tsatsaronis, G. Challenges in the decarbonization of the energy sector. Energy 2020, 205, 18025. [Google Scholar] [CrossRef]
- Adebayo, T.S.; Awosusi, A.A.; Kirikkaleli, D.; Akinsola, G.D.; Mwamba, M.N. Can CO2 emissions and energy consumption determine the economic performance of South Korea? A time series analysis. Environ. Sci. Pollut. Res. 2021, 1–16. [Google Scholar] [CrossRef]
- Soylu, Ö.B.; Adebayo, T.S.; Kirikkaleli, D. The Imperativeness of Environmental Quality in China Amidst Renewable Energy Consumption and Trade Openness. Sustainability 2021, 13, 5054. [Google Scholar] [CrossRef]
- Zhang, L.; Li, Z.; Kirikkaleli, D.; Adebayo, T.S.; Adeshola, I.; Akinsola, G.D. Modeling CO2 emissions in Malaysia: An application of Maki cointegration and wavelet coherence tests. Environ. Sci. Pollut. Res. 2021, 28, 26030–26044. [Google Scholar] [CrossRef] [PubMed]
- Kirikkaleli, D.; Adebayo, T.S. Do renewable energy consumption and financial development matter for environmental sustainability? New global evidence. Sustain. Dev. 2020, 29, 583–594. [Google Scholar] [CrossRef]
- Adebayo, T.S.; Kirikkaleli, D. Impact of renewable energy consumption, globalization, and technological innovation on environmental degradation in Japan: Application of wavelet tools. Environ. Dev. Sustain. 2021, 1–26. [Google Scholar] [CrossRef]
- Kołodko, G.W. Kwadratura Pięciokąta Od Załamania Gospodarczego Do Trwałego Wzrostu; Poltext: Warsaw, Poland, 1993. [Google Scholar]
- Shkolnyk, I.; Kozmenko, S.; Kozmenko, O.; Mershchii, B. The impact of the economy financialization on the level of economic development of the associate EU member states. Econ. Sociol. 2019, 12, 4. [Google Scholar] [CrossRef] [PubMed]
- Cantiani, M.G.; Geitner, C.; Haida, C.; Maino, F.; Tattoni, C.; Vettorato, D.; Ciolli, M. Balancing Economic Development and Environmental Conservation for a New Governance of Alpine Areas. Sustainability 2016, 8, 802. [Google Scholar] [CrossRef] [Green Version]
- Komarnicka, A.; Murawska, A. Comparison of Consumption and Renewable Sources of Energy in European Union Countries—617 Sectoral Indicators, Economic Conditions and Environmental Impacts. Energies 2021, 14, 3714. [Google Scholar] [CrossRef]
- Geels, F.W.; Sovacool, B.C.; Schwanen, T.; Sorrell, S. Sociotechnical transitions for deep decarbonization. Science 2017, 357, 6357. [Google Scholar] [CrossRef] [PubMed]
- Simionescu, M.; Wojciechowski, A.; Tomczyk, A.; Rabe, M. Revised Environmental Kuznets Curve for V4 Countries and Baltic States. Energies 2021, 14, 3302. [Google Scholar] [CrossRef]
- Tvaronavičienė, M.; Prakapienė, D.; Garškaitė-Milvydienė, K.; Prakapas, R.; Nawrot, Ł. Energy Efficiency in the Long-Run in the Selected European Countries. Econ. Sociol. 2018, 11, 245–254. [Google Scholar] [CrossRef] [Green Version]
- Simionescu, M.; Bilan, Y.; Zawadzki, P.; Wojciechowski, A.; Rabe, M. GHG Emissions Mitigation in the European Union Based on Labor Market Changes. Energies 2021, 14, 465. [Google Scholar] [CrossRef]
- Štreimikienė, D. Externalities of power generation in Visegrad countries and their integration through support of renewables. Econ. Sociol. 2021, 14, 89–102. [Google Scholar] [CrossRef]
- Streimikiene, D. Ranking of Baltic States on progress towards the main energy security goals of European energy union strategy. J. Int. Stud. 2020, 13, 24–37. [Google Scholar] [CrossRef]
- Issah, M.; Antwi, S. Role of macroeconomic variables on firms’ performance: Evidence from the UK. Cogent Econ. Financ. 2017, 5, 1405581. [Google Scholar] [CrossRef]
- McKibbin, W.; Morris, A.; Panton, A.; Wilcoxen, P. Climate Change and Monetary Policy: Dealing with Disruption. CAMA Work. Pap. 2017, 77, 37. [Google Scholar] [CrossRef] [Green Version]
- Vo, H.D. Sustainable agriculture & energy in the U.S.: A link between ethanol production and the acreage for corn. Econ. Sociol. 2020, 13, 259–268. [Google Scholar] [CrossRef]
- Stavytskyy, A.; Kharlamova, G.; Giedraitis, V.; Šumskis, V. Estimating the interrelation between energy security and macroeconomic factors in European countries. J. Int. Stud. 2018, 11, 217–238. [Google Scholar] [CrossRef]
- Litavcová, E.; Chovancová, J. Economic Development, CO2 Emissions and Energy Use Nexus-Evidence from the Danube Region Countries. Energies 2021, 14, 3165. [Google Scholar] [CrossRef]
- Raveh, O. Monetary Policy, Natural Resources and Federal Redistribution. Environ. Resour. Econ. 2020, 75, 585–613. [Google Scholar] [CrossRef]
- Norton, T.A.; Zacher, H.; Ashkanasy, N.M. Organisational sustainability policies and employee green behaviour: The mediating role of work climate perceptions. J. Environ. Psychol. 2014, 38, 49–54. [Google Scholar] [CrossRef]
- Maroušek, J.; Maroušková, A. Economic Considerations on Nutrient Utilization in Wastewater Management. Energies 2021, 14, 3468. [Google Scholar] [CrossRef]
- Agliardi, E.; Xepapadeas, A. Introduction: Special Issue on the Economics of Climate Change and Sustainability. Environ. Resour. Econ. 2019, 72, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Papadopoulou, C.A.; Papadopoulou, M.P.; Laspidou, C.; Munaretto, S.; Brouwer, F. Towards a Low-Carbon Economy: A Nexus-Oriented Policy Coherence Analysis in Greece. Sustainability 2020, 12, 373. [Google Scholar] [CrossRef] [Green Version]
- Svazas, M.; Navickas, V.; Krajnakova, E.; Nakonieczny, J. Sustainable supply chain of the biomass cluster as a factor for preservation and enhancement of forests. J. Int. Stud. 2019, 12, 309–321. [Google Scholar] [CrossRef]
- Fajczak-Kowalska, A.; Misztal, A.; Kowalska, M. Energy, Pollution, and Transport Taxes as Instruments of Sustainable Development of Manufacturing Enterprises in Emerging Economies in the European Union. Eur. Res. Stud. J. 2021, 24, 724–742. [Google Scholar] [CrossRef]
- Mundell, R. A Theory of Optimum Currency Areas. Am. Econ. Rev. 1961, 51, 657–665. [Google Scholar]
- Phillips, A. The Relationship between Unemployment and the Rate of Change of Money Wage Rates in the UK 1862–1957. Economica 1958, 25, 283–299. [Google Scholar]
- Raykov, T.; Marcoulides, G.A. Basic Statistics: An. Introduction with R; Rowman & Littlefield: Lanham, MD, USA, 2012. [Google Scholar]
- Das, P. Linear Regression Model: Relaxing the Classical Assumptions. In Econometrics in Theory and Practice; Das, P., Ed.; Springer: Singapore, 2019; pp. 109–135. [Google Scholar] [CrossRef]
- Schmidheiny, K. The Multiple Linear Regression Model, Short Guides to Microeconometrics. 2019. Available online: https://wwwschmidheinyname/teaching/olspdf (accessed on 6 May 2021).
- Ernst, A.; Albers, C. Regression assumptions in clinical psychology research practice—A systematic review of common misconceptions. Peer J. 2017, 5, e3323. [Google Scholar] [CrossRef] [Green Version]
- Takeshi, A. Advanced Econometrics; Harvard University Press: Cambridge, MA, USA, 1985. [Google Scholar] [CrossRef]
- Baltagi, B.H. Chapter 18—Panel Data Forecasting. In Handbook of Economic Forecasting; Elliott, G., Timmermann, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2013; Volume 2, Part B. [Google Scholar] [CrossRef]
- Moon, H.R.; Perron, P. Efficient Estimation of SUR Cointegration Regression Model and Testing for Purchasing Power Parity. Econom. Rev. 2004, 23, 293–323. [Google Scholar] [CrossRef]
- Fiebig, D.G. Seemingly Unrelated Regression. In A Companion to Theoretical Econometrics; Baltagi, B., Ed.; Backwell Publishers: Hoboken, NJ, USA, 2001. [Google Scholar]
- DDPP. Pathways to Deep Decarbonization: 2014 Report; Sustainable Development Solutions. Network (SDSN) and Institute for Sustainable, Development and International Relations (IDDRI), September 2014. Available online: https://resources.unsdsn.org/pathways-to-deep-decarbonization-2014-report (accessed on 25 July 2021).
Country | Correlation | Pearson’s r | Spearman-s Rho | Gamma | Kendall Rank |
---|---|---|---|---|---|
France | DCO2/MSPI | −0.132050 | −0.179839 | −0.109677 | −0.109677 |
EN/MSPI | 0.437527 | 0.452419 | 0.311828 | 0.311828 | |
DCO2/MSPE | −0.623767 | −0.634677 | −0.427957 | −0.427957 | |
EN/MSPE | 0.219453 | 0.187903 | 0.122581 | 0.122581 | |
DCO2/MSP | −0.478232 | −0.488306 | −0.341935 | −0.341935 | |
EN/MSP | 0.36279 | 0.404032 | 0.268817 | 0.268817 | |
Germany | DCO2/MSPI | 0.803855 | 0.847984 | 0.664516 | 0.664516 |
EN/MSPI | −0.556481 | −0.568145 | −0.380645 | −0.380645 | |
DCO2/MSPE | 0.824615 | 0.840726 | 0.655914 | 0.655914 | |
EN/MSPE | −0.634847 | −0.595565 | −0.415054 | −0.415054 | |
DCO2/MSP | 0.856428 | 0.908871 | 0.75914 | 0.75914 | |
EN/MSP | −0.634992 | −0.63629 | −0.449462 | −0.449462 | |
Italy | DCO2/MSPI | −0.061814 | −0.213306 | −0.156989 | −0.156989 |
EN/MSPI | 0.608403 | 0.608468 | 0.419355 | 0.419355 | |
DCO2/MSPE | 0.429818 | 0.403629 | 0.303226 | 0.303226 | |
EN/MSPE | −0.779933 | −0.757258 | −0.539785 | −0.539785 | |
DCO2/MSP | 0.381587 | 0.206855 | 0.148387 | 0.148387 | |
EN/MSP | −0.342537 | −0.308468 | −0.221505 | −0.221505 | |
Poland | DCO2/MSPI | 0.257563 | 0.143548 | 0.131183 | 0.131183 |
EN/MSPI | 0.727692 | 0.699597 | 0.492473 | 0.492473 | |
DCO2/MSPE | −0.119046 | −0.003629 | −0.015054 | −0.015054 | |
EN/MSPE | 0.423710 | 0.332258 | 0.208602 | 0.208602 | |
DCO2/MSP | 0.089782 | −0.006048 | −0.027957 | −0.027957 | |
En/MSP | 0.730406 | 0.671371 | 0.505376 | 0.505376 | |
Spain | DCO2/MSPI | −0.753634 | −0.628629 | −0.466667 | −0.466667 |
EN/MSPI | 0.582826 | 0.516935 | 0.376344 | 0.376344 | |
DCO2/MSPE | 0.764991 | 0.689919 | 0.483871 | 0.483871 | |
EN/MSPE | −0.464228 | −0.543145 | −0.367742 | −0.367742 | |
DCO2/MSP | 0.007958 | −0.068548 | 0.010753 | 0.010753 | |
En/MSP | 0.122449 | 0.034274 | 0.053763 | 0.053763 |
Country | Coefficient | Std. Error | t-Ratio | p-Value | R-Squared | DW | |
---|---|---|---|---|---|---|---|
France (n = 29) | const | 0.209067 | 0.0974777 | 2.145 | 0.0415 | 0.91 | 2.38 |
MSPE(t−2) | −0.497262 | 0.209345 | −2.375 | 0.0252 | |||
DCO2(t−1) | 0.880989 | 0.0778818 | 11.31 | <0.0001 | |||
Germany (n = 30) | const | 0.0873249 | 0.0531576 | 1.643 | 0.1120 | 0.92 | 2.35 |
MSPI(t−1) | 0.363304 | 0.165038 | 2.201 | 0.0364 | |||
DCO2(t−1) | 0.782834 | 0.104701 | 7.477 | <0.0001 | |||
Italy (n = 28) | const | 0.0259761 | 0.0702087 | 0.3700 | 0.7149 | 0.97 | 1.89 |
MSPI | −0.490571 | 0.178142 | −2.754 | 0.0116 | |||
MSPI(t−2) | 0.779618 | 0.239724 | 3.252 | 0.0037 | |||
MSPE | 0.533344 | 0.230027 | 2.319 | 0.0301 | |||
MSPE(t−3) | −0.603974 | 0.156689 | −3.855 | 0.0009 | |||
DCO2(t−1) | 0.907178 | 0.0647742 | 14.01 | <0.0001 | |||
Poland (n = 30) | const | 0.249712 | 0.0774693 | 3.223 | 0.0034 | 0.82 | 1.54 |
MSPI(t−1) | 0.193631 | 0.0866838 | 2.234 | 0.0343 | |||
MSPE(t−1) | −0.277696 | 0.0924479 | −3.004 | 0.0058 | |||
DCO2(t−1) | 0.727109 | 0.0848544 | 8.569 | <0.0001 | |||
Spain (n = 28) | const | 0.905051 | 0.0211443 | 42.80 | <0.0001 | 0.902283 | 2.21 |
MSPI | −1.20308 | 0.0895414 | −13.44 | <0.0001 | |||
MSPE(t−3) | 0.852579 | 0.0976702 | 8.729 | <0.0001 |
Country | Coefficient | Std. Error | t-Ratio | p-Value | R-Squared | DW | |
---|---|---|---|---|---|---|---|
France (n = 28) | const | 0.160960 | 0.105249 | 1.529 | 0.1393 | 0.73 | 2.35 |
MSPE(t−2) | 0.503017 | 0.144673 | 3.477 | 0.0020 | |||
EN(t−1) | 0.388131 | 0.160760 | 2.414 | 0.0238 | |||
EN(t−3) | 0.333514 | 0.137262 | 2.430 | 0.0230 | |||
Germany (n = 27) | const | 2.23623 | 0.315281 | 7.093 | <0.0001 | 0.7 | 2.34 |
MSPE(t−1) | −0.139604 | 0.0797736 | −1.750 | 0.0947 | |||
MSPE(t−4) | −0.345930 | 0.0910329 | −3.800 | 0.0010 | |||
EN(t−1) | −0.500233 | 0.176305 | −2.837 | 0.0099 | |||
EN(t−3) | −0.318389 | 0.159726 | −1.993 | 0.0594 | |||
EN(t−4) | −0.401743 | 0.157102 | −2.557 | 0.0184 | |||
Italy (n = 28) | const | −0.0578149 | 0.0817915 | −0.7069 | 0.4862 | 0.89 | 2.5 |
MSPE(t−3) | 0.289626 | 0.114871 | 2.521 | 0.0184 | |||
EN(t−1) | 0.999371 | 0.0757507 | 13.19 | <0.0001 | |||
Poland (n = 30) | const | 0.206209 | 0.0894638 | 2.305 | 0.0294 | 0.82 | 1.5 |
MSPI | 0.256118 | 0.142415 | 1.798 | 0.0837 | |||
MSPE(t−1) | 0.301939 | 0.112175 | 2.692 | 0.0123 | |||
EN(t−1) | 0.648553 | 0.131086 | 4.948 | <0.0001 | |||
Spain (n = 30) | Const | 0.0833644 | 0.0233509 | 3.570 | 0.0014 | 0.98 | 2.04 |
MSPI | 0.312940 | 0.0570046 | 5.490 | <0.0001 | |||
EN(t−1) | 0.837665 | 0.0319211 | 26.24 | <0.0001 |
Country | Dependent Variable | Coefficient | Std. Error | t-Ratio | p-Value | |
---|---|---|---|---|---|---|
France | DCO2 | const | 0.301889 | 0.100638 | 3.000 | 0.0062 |
EN | −1.15549 | 0.0727256 | −15.89 | 3.08 × 10−14 | ||
EN(t−1) | 0.933010 | 0.0839767 | 11.11 | 6.05 × 10−11 | ||
C | 0.515877 | 0.204297 | 2.525 | 0.0186 | ||
E | −0.519249 | 0.20084 | −2.585 | 0.0162 | ||
DCO2(t−1) | 0.901591 | 0.0416820 | 21.63 | 3.00 × 10−17 | ||
EN | const | 0.263662 | 0.0828048 | 3.184 | 0.0040 | |
DCO2 | −0.853542 | 0.0537210 | −15.89 | 3.08 × 10−14 | ||
DCO2(t−1) | 0.768441 | 0.0641295 | 11.98 | 1.29 × 10−11 | ||
C | 0.445514 | 0.174042 | 2.560 | 0.0172 | ||
E | −0.444167 | 0.174158 | −2.550 | 0.0176 | ||
EN(t−1) | 0.804271 | 0.0641979 | 12.53 | 5.10 × 10−12 | ||
Germany | DCO2 | const | −0.385421 | 0.214783 | −1.794 | 0.0859 |
EN | −0.439135 | 0.117039 | −3.752 | 0.0010 | ||
EN(t−1) | 0.818629 | 0.123131 | 6.648 | 8.78 × 10−7 | ||
A | 0.387941 | 0.142926 | 2.714 | 0.0124 | ||
D | 1.14329 | 0.270021 | 4.234 | 0.0003 | ||
E | −0.813861 | 0.190388 | −4.275 | 0.0003 | ||
DCO2(t−1) | 0.968704 | 0.0619307 | 15.64 | 9.48 × 10−14 | ||
EN | const | 0.994042 | 0.0359537 | 27.65 | 8.31 × 10−21 | |
B | −1.04241 | 0.529784 | −1.968 | 0.0599 | ||
B(t−1) | 1.24424 | 0.546360 | 2.277 | 0.0312 | ||
D | −0.459927 | 0.0960344 | −4.789 | 5.86 × 10−5 | ||
Italy | DCO2 | const | 0.110196 | 0.110247 | 0.9995 | 0.3284 |
EN | −0.966125 | 0.116617 | −8.285 | 3.29 × 10−8 | ||
EN(t−1) | 0.861507 | 0.128524 | 6.703 | 9.74 × 10−7 | ||
B | −0.545374 | 0.283447 | −1.924 | 0.0674 | ||
C(t−1) | 0.617873 | 0.197165 | 3.134 | 0.0048 | ||
D | 1.45409 | 0.353229 | 4.117 | 0.0005 | ||
E(t−1) | −0.962638 | 0.223448 | −4.308 | 0.0003 | ||
DCO2(t−1) | 0.911533 | 0.0515806 | 17.67 | 1.74 × 10−14 | ||
EN | const | 0.342592 | 0.0662324 | 5.173 | 2.13 × 10−5 | |
DCO2 | −0.210239 | 0.0409018 | −5.140 | 2.32 × 10−5 | ||
B(t−1) | 0.976391 | 0.322379 | 3.029 | 0.0055 | ||
EN(t−1) | 0.733382 | 0.0571832 | 12.83 | 9.47 × 10−13 | ||
Poland | DCO2 | const | 0.689958 | 0.0887598 | 7.773 | 9.48 × 10−8 |
EN | −0.332678 | 0.0854303 | −3.894 | 0.0008 | ||
A | −0.429664 | 0.197754 | −2.173 | 0.0409 | ||
A(t−1) | 0.812529 | 0.152631 | 5.323 | 2.42 × 10−5 | ||
B | 1.44982 | 0.342529 | 4.233 | 0.0003 | ||
C(t−1) | 0.529627 | 0.203689 | 2.600 | 0.0163 | ||
D(t−1) | −0.433437 | 0.131594 | −3.294 | 0.0033 | ||
DCO2(t−1) | 0.418504 | 0.0929501 | 4.502 | 0.0002 | ||
EN | const | 0.278984 | 0.0959270 | 2.908 | 0.007 | |
DCO2 | −1.06202 | 0.104407 | −10.17 | 2.27 × 10−10 | ||
DCO2(t−1) | 0.966040 | 0.101350 | 9.532 | 8.36 × 10−10 | ||
A(t−1) | 0.443304 | 0.134076 | 3.306 | 0.0029 | ||
EN(t−1) | 0.754835 | 0.0856361 | 8.814 | 3.84 × 10−9 | ||
Spain | DCO2 | const | 1.07248 | 0.0428009 | 25.06 | 3.13 × 10−19 |
EN | −1.06698 | 0.259615 | −4.110 | 0.0004 | ||
EN(t−1) | 0.701472 | 0.236152 | 2.970 | 0.0065 | ||
C | −0.775191 | 0.195985 | −3.955 | 0.0006 | ||
D(t−1) | 1.77974 | 0.174263 | 10.21 | 2.09 × 10−10 | ||
EN | const | 0.441866 | 0.0700321 | 6.309 | 1.33 × 10−6 | |
A | 2.37998 | 0.392900 | 6.057 | 2.50 × 10−6 | ||
B(t−1) | 6.05398 | 1.19997 | 5.045 | 3.32 × 10−5 | ||
D(t−1) | 8.00043 | 2.47127 | 3.237 | 0.0034 | ||
E(t−1) | −7.27502 | 1.84395 | −3.945 | 0.0006 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Misztal, A.; Kowalska, M.; Fajczak-Kowalska, A.; Strunecky, O. Energy Efficiency and Decarbonization in the Context of Macroeconomic Stabilization. Energies 2021, 14, 5197. https://doi.org/10.3390/en14165197
Misztal A, Kowalska M, Fajczak-Kowalska A, Strunecky O. Energy Efficiency and Decarbonization in the Context of Macroeconomic Stabilization. Energies. 2021; 14(16):5197. https://doi.org/10.3390/en14165197
Chicago/Turabian StyleMisztal, Anna, Magdalena Kowalska, Anita Fajczak-Kowalska, and Otakar Strunecky. 2021. "Energy Efficiency and Decarbonization in the Context of Macroeconomic Stabilization" Energies 14, no. 16: 5197. https://doi.org/10.3390/en14165197
APA StyleMisztal, A., Kowalska, M., Fajczak-Kowalska, A., & Strunecky, O. (2021). Energy Efficiency and Decarbonization in the Context of Macroeconomic Stabilization. Energies, 14(16), 5197. https://doi.org/10.3390/en14165197