Experimental Investigation of Neat Biodiesels’ Saturation Level on Combustion and Emission Characteristics in a CI Engine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biodiesel Production
Characterisation of Biodiesel Fuel
2.2. Experimental Test Rig
3. Results and Discussions
3.1. Fuels Characteristics
3.2. Combustion Characteristics
3.2.1. Start and End of Combustion
3.2.2. In-Cylinder Pressure
3.2.3. The Rate of Pressure Rise
3.2.4. Heat Release Rate
3.2.5. Cumulative Heat Release Rate
3.3. Exhaust Gas Emissions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Nomenclature
bTDC | Before top-dead-center |
CN | Cetane number |
CD | Combustion duration |
CHRRmax | Maximum cumulative heat release rate |
CI | Compression ignition |
DU | Degree of unsaturation |
EoC | End of combustion |
FAME | Fatty acid methyl ester |
FAs | Fatty acids |
GC-MS | Gas chromatography and mass spectrometer |
HC | Hydrocarbon |
HRRmax | Maximum heat release rate |
ID | Ignition delay |
MUFA | Mono-unsaturated methyl ester |
MFB | Mass fraction burnt |
PUFA | Poly-unsaturated fatty acid |
Pmax | Maximum peak pressure |
RoPRmax | Maximum rate of pressure rise |
SFA | Saturated fatty acids |
SoC | Start of combustion |
VCR | Variable compression ratio |
WCOB | Waste cooking oil biodiesel |
References
- Manojkumar, N.; Muthukumaran, C.; Sharmila, G. A comprehensive review on the application of response surface methodology for optimization of biodiesel production using different oil sources. J. King Saud Univ. Eng. Sci. 2020. in Press. [Google Scholar] [CrossRef]
- Hossain, N.; Razali, A.N.; Mahlia, T.M.I.; Chowdhury, T.; Chowdhury, H.; Ong, H.C.; Shamsuddin, A.H.; Silitonga, A.S. Experimental investigation, techno-economic analysis and environmental impact of bioethanol production from banana stem. Energies 2019, 12, 3947. [Google Scholar] [CrossRef] [Green Version]
- Cavalcante, F.T.T.; Neto, F.S.; de Aguiar Falcão, I.R.; da Silva Souza, J.E.; de Moura Junior, L.S.; da Silva Sousa, P.; Rocha, T.G.; de Sousa, I.G.; de Lima Gomes, P.H.; de Souza, M.C.M.; et al. Opportunities for improving biodiesel production via lipase catalysis. Fuel 2021, 288, 119577. [Google Scholar] [CrossRef]
- Naveenkumar, R.; Baskar, G. Process optimization, green chemistry balance and technoeconomic analysis of biodiesel production from castor oil using heterogeneous nanocatalyst. Bioresour. Technol. 2021, 320, 124347. [Google Scholar] [CrossRef] [PubMed]
- Jacob, A.; Ashok, B.; Alagumalai, A.; Chyuan, O.H.; Le, P.T.K. Critical review on third generation micro algae biodiesel production and its feasibility as future bioenergy for IC engine applications. Energy Convers. Manag. 2021, 228, 113655. [Google Scholar] [CrossRef]
- Ewunie, G.A.; Morken, J.; Lekang, O.I.; Yigezu, Z.D. Factors affecting the potential of Jatropha curcas for sustainable biodiesel production: A critical review. Renew. Sustain. Energy Rev. 2021, 137, 110500. [Google Scholar] [CrossRef]
- Senave, M.; Roels, S.; Verbeke, S.; Lambie, E.; Saelens, D. Sensitivity of characterizing the heat loss coefficient through on-board monitoring: A case study analysis. Energies 2019, 12, 3322. [Google Scholar] [CrossRef] [Green Version]
- Syafiuddin, A.; Chong, J.H.; Yuniarto, A.; Hadibarata, T. The current scenario and challenges of biodiesel production in Asian countries: A review. Bioresour. Technol. Rep. 2020, 12, 100608. [Google Scholar] [CrossRef]
- Sakthivel, G.; Nagarajan, G.; Ilangkumaran, M.; Gaikwad, A.B. Comparative analysis of performance, emission and com-bustion parameters of diesel engine fuelled with ethyl ester of fish oil and its diesel blends. Fuel 2014, 132, 116–124. [Google Scholar] [CrossRef]
- Zhu, L.; Cheung, C.S.; Huang, Z. Impact of chemical structure of individual fatty acid esters on combustion and emission characteristics of diesel engine. Energy 2016, 107, 305–320. [Google Scholar] [CrossRef] [Green Version]
- Li, A.; Ji, W.; Huang, Z.; Zhu, L. Predictions of oxidation and autoignition of large methyl ester with small molecule fuels. Fuel 2019, 251, 162–174. [Google Scholar] [CrossRef]
- Puhan, S.; Saravanan, N.; Nagarajan, G.; Vedaraman, N. Effect of biodiesel unsaturated fatty acid on combustion character-istics of a DI compression ignition engine. Biomass Bioenergy 2010, 34, 1079–1088. [Google Scholar] [CrossRef]
- Schönborn, A.; Ladommatos, N.; Williams, J.; Allan, R.; Rogerson, J. The influence of molecular structure of fatty acid mon-oalkyl esters on diesel combustion. Combust. Flame 2009, 156, 1396–1412. [Google Scholar] [CrossRef]
- Kruczyński, S.W. Performance and emission of CI engine fueled with camelina sativa oil. Energy Convers. Manag. 2013, 65, 1–6. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, Y.; Boehman, A.L. Premixed ignition behavior of C9 fatty acid esters: A motored engine study. Combust. Flame 2009, 156, 1202–1213. [Google Scholar] [CrossRef]
- Selvan, T.; Nagarajan, G. Combustion and Emission Characteristics of a Diesel Engine Fuelled with Biodiesel Having Varying Saturated Fatty Acid Composition. Int. J. Green Energy 2013, 10, 952–965. [Google Scholar] [CrossRef]
- Sharma, V.; Duraisamy, G. Production and characterization of bio-mix fuel produced from a ternary and quaternary mixture of raw oil feedstock. J. Clean. Prod. 2019, 221, 271–285. [Google Scholar] [CrossRef]
- Alviso, D.; Artana, G.; Duriez, T. Prediction of biodiesel physico-chemical properties from its fatty acid composition using genetic programming. Fuel 2020, 264, 116844. [Google Scholar] [CrossRef]
- Dhar, A.; Kevin, R.; Agarwal, A.K. Production of biodiesel from high-FFA neem oil and its performance, emission and combustion characterization in a single cylinder DICI engine. Fuel Process. Technol. 2012, 97, 118–129. [Google Scholar] [CrossRef]
- Sharma, V.; Duraisamy, G.; Cho, H.M.; Arumugam, K.; Alosius, M.A. Production, combustion and emission impact of bio-mix methyl ester fuel on a stationary light duty diesel engine. J. Clean. Prod. 2019, 233, 147–159. [Google Scholar] [CrossRef]
- Jiaqiang, E.; Liu, T.; Yang, W.M.; Li, J.; Gong, J.; Deng, Y. Effects of fatty acid methyl esters proportion on combustion and emission characteristics of a biodiesel fueled diesel engine. Energy Convers. Manag. 2016, 117, 410–419. [Google Scholar] [CrossRef]
- Ruhul, M.A.; Abedin, M.J.; Rahman, S.M.A.; Masjuki, B.H.H.; Alabdulkarem, A.; Kalam, M.A.; Shancita, I. Impact of fatty acid composition and physicochemical properties of Jatropha and Alexandrian laurel biodiesel blends: An analysis of performance and emission characteristics. J. Clean. Prod. 2016, 133, 1181–1189. [Google Scholar] [CrossRef]
- Agarwal, A.K.; Dhar, A. Experimental investigations of performance, emission and combustion characteristics of Karanja oil blends fuelled DICI engine. Renew. Energy 2013, 52, 283–291. [Google Scholar] [CrossRef]
- Rajesh, K.; Natarajan, M.P.; Devan, P.K.; Ponnuvel, S. Coconut fatty acid distillate as novel feedstock for biodiesel production and its characterization as a fuel for diesel engine. Renew. Energy 2021, 164, 1424–1435. [Google Scholar] [CrossRef]
- Hossain, A.K.; Refahtalab, P.; Omran, A.; Smith, D.I.; Davies, P.A. An experimental study on performance and emission characteristics of an IDI diesel engine operating with neat oil-diesel blend emulsion. Renew. Energy 2020, 146, 1041–1050. [Google Scholar] [CrossRef]
- Thomas, J.J.; Manojkumar, C.V.; Sabu, V.R.; Nagarajan, G. Development and validation of a reduced chemical kinetic model for used vegetable oil biodiesel/1-Hexanol blend for engine application. Fuel 2020, 273, 117780. [Google Scholar] [CrossRef]
- Yi, P.; Long, W.; Feng, L.; Chen, L.; Cui, J.; Gong, W. Investigation of evaporation and auto-ignition of isolated lubricating oil droplets in natural gas engine in-cylinder conditions. Fuel 2019, 235, 1172–1183. [Google Scholar] [CrossRef]
- Can, Ö. Combustion characteristics, performance and exhaust emissions of a diesel engine fueled with a waste cooking oil biodiesel mixture. Energy Convers. Manag. 2014, 87, 676–686. [Google Scholar] [CrossRef]
- Hellier, P.; Jamil, F.; Zaglis-Tyraskis, E.; Al-Muhtaseb, A.H.; Al-Haj, L.; Ladommatos, N. Combustion and emissions characteristics of date pit methyl ester in a single cylinder direct injection diesel engine. Fuel 2019, 243, 162–171. [Google Scholar] [CrossRef]
- Garner, S.; Brezinsky, K. Biologically derived diesel fuel and NO formation: An experimental and chemical kinetic study, Part 1. Combust. Flame 2011, 158, 2289–2301. [Google Scholar] [CrossRef]
- Navaneeth, P.V.; Suraj, C.K.; Mehta, P.S.; Anand, K. Predicting the effect of biodiesel composition on the performance and emission of a compression ignition engine using a phenomenological model. Fuel 2021, 293, 120453. [Google Scholar] [CrossRef]
- San José, J.; Sanz-Tejedor, M.A.; Arroyo, Y.; Stoychev, P. Analysis of vegetable oil mixture combustion in a conventional 50 KW thermal energy installation. Renew. Energy 2021, 164, 1133–1142. [Google Scholar] [CrossRef]
- Dhar, A.; Agarwal, A.K. Experimental investigations of the effect of pilot injection on performance, emissions and combustion characteristics of Karanja biodiesel fuelled CRDI engine. Energy Convers. Manag. 2015, 93, 357–366. [Google Scholar] [CrossRef]
- Hosamani, B.R.; Katti, V.V. Experimental analysis of combustion characteristics of CI DI VCR engine using mixture of two biodiesel blend with diesel. Eng. Sci. Technol. Int. J. 2018, 21, 769–777. [Google Scholar] [CrossRef]
- Thomas, J.J.; Sabu, V.R.; Basrin, G.; Nagarajan, G. Hexanol: A renewable low reactivity fuel for RCCI combustion. Fuel 2021, 286, 119294. [Google Scholar] [CrossRef]
Fuel Properties | Name of the Instrument | Standards |
---|---|---|
Density | Hydrometer | BIS ISO1448 |
Kinematic viscosity | Redwood viscometer | BIS ISO1448 |
Calorific value | Bomb calorimeter | BIS ISO1448-6 |
Oxidation stability | Rancimat method | EN 14112 (AOCS Cd 12b-92) |
Iodine value | Titration method | EN 14111 |
Flash point | Closed cup | EN 3679 |
Acid value | Titration method | BIS ISO 7537 |
Rated Power | 5 HP @1500 rpm |
---|---|
Number of cylinder | 1 |
Stroke (mm) | 110 |
Compression ratio (variable) | 17.5:1 (12:1 to 22:1) |
Original displacement (cc) | 661.4 |
Combustion chamber volume (cc) | Variable |
Piston bowl diameter (mm) | 49.5 |
Piston bowl height (mm) | 23.5 |
Number of holes in injector | 3 |
Start of injection (SOI) | 23° bTDC |
Instrument | Measured Parameters | Range | Uncertainty |
---|---|---|---|
Horiba Gas Analyser (MAXA 584L) | CO | 0–10% vol | ±0.01% |
CO2 | 0–20% vol | ±0.17 | |
HC | 0–20,000 ppm | ±3.3 ppm | |
NO | 0–5000 ppm | ±0.5 ppm | |
O2 | 0–25% | ±0.5% | |
Smoke Meter (AVL 437) | Smoke opacity | 0–100 opacity | ±1% |
Pressure Sensor Kistler-6613CQ09 | Cylinder pressure | 0–100 bar | ±1% |
Autonics Encoder (Rotary Type) | Crank angle | 360° revolution | 5VDC-12VDC ± 0.5% |
K-type Thermocouple | Temperature | 0 °C–400 °C | 2.2 °C, or ±2% |
Biodiesel | Coconut | Palm | Karanja | WCOB | Jatropha | Castor | Biodiesel Standards | |
---|---|---|---|---|---|---|---|---|
EN 14214:2012 | ASTM D6751-12 | |||||||
Cetane number | 62 | 60 | 55.4 | 56.2 | 55.8 | 42.1 | min. 51 | min. 47 |
Density (kg/m3) | 868.8 | 874.7 | 882.9 | 880.6 | 878.7 | 917.6 | 860–900 | - |
HHV (KJ/kg) | 38,725 | 39,485 | 40,125 | 39,805 | 40,380 | 39,980 | - | - |
Viscosity (mm2/s) at 40 °C | 2.78 | 4.61 | 5.04 | 4.75 | 4.72 | 14.5 | 3.5–5.0 | 1.9–6.0 |
Flash point °C | 123 | 169 | 159 | 161 | 172 | 179 | min. 101 | min. 93 |
Iodine value (g Iod/100 g) | 7.8 | 52.7 | 85.5 | 85.1 | 99 | 85.2 | max. 120 | - |
Oxidation stability (h) | 11 | 11.4 | 4.1 | 5 | 5 | 12.9 | 8 h min. | 3 h min. |
Acid number (mgKOH/g) | 0.16 | 0.27 | 0.44 | 0.41 | 0.34 | 0.39 | max. 0.50 | max. 0.50 |
SFA (%) | 90.31 | 48.56 | 24.65 | 24.03 | 22.12 | 2.76 | - | - |
MUFA (%) | 6.45 | 41.22 | 52.30 | 44.58 | 42.28 | 91.84 | - | - |
PUFA (%) | 3.24 | 10.22 | 23.05 | 31.39 | 35.60 | 5.4 | - | - |
USFA (%) | 9.69 | 51.44 | 75.35 | 75.97 | 77.88 | 97.24 | - | - |
DU (%) | 12.93 | 61.66 | 98.4 | 107.36 | 113.48 | 102.64 | - | - |
Biodiesel Fatty Acids | Coconut | Palm | Karanja | WCOB | Jatropha | Castor | |
---|---|---|---|---|---|---|---|
C8:0 | Caprylic | 6.46 | 0.08 | 0 | 0 | 0 | 0 |
C10:0 | Capric | 5.62 | 0.06 | 0 | 0 | 0 | 0 |
C12:0 | Luric | 46.90 | 0.37 | 0 | 0.2 | 0 | 0 |
C14:0 | Myristic | 18.70 | 1.13 | 0 | 0.67 | 0.15 | 0 |
C16:0 | Palmitic | 9.69 | 42.39 | 10.89 | 15.69 | 14.40 | 1.38 |
C16:1 | Palmitoleic | 0.18 | 0.16 | 0 | 0.74 | 0.67 | 0 |
C17:0 | Margaric | 0 | 0.06 | 0 | 0.2 | 0.08 | 0 |
C18:0 | Stearic | 2.84 | 4.2 | 7.2 | 6.14 | 5.80 | 1.11 |
C18:1 | Oleic | 6.27 | 40.90 | 51.15 | 42.84 | 42.51 | 3.35 |
C18:2 | Linoleic | 3.24 | 9.95 | 21.01 | 29.36 | 35.37 | 4.84 |
C18:3 | Linolenic | 0 | 0.27 | 2.04 | 2.03 | 0.23 | 0.56 |
C20:0 | Arachidic | 0.1 | 0.22 | 1.12 | 0.39 | 0.08 | 0.26 |
C20:1 | Gadoleic | 0 | 0.16 | 1.15 | 0.75 | 0.1 | 0.42 |
C22:0 | Bahenic | 0 | 0 | 4.11 | 0.44 | 0.14 | 0 |
C22:1 | Erucic | 0 | 0 | 0 | 0.25 | 0 | 0 |
C24:0 | Lignoceric | 0 | 0.05 | 1.33 | 0.3 | 1.47 | 0 |
C18:1, OH | Ricinoleic | - | - | - | - | - | 88.06 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharma, V.; Hossain, A.K.; Duraisamy, G. Experimental Investigation of Neat Biodiesels’ Saturation Level on Combustion and Emission Characteristics in a CI Engine. Energies 2021, 14, 5203. https://doi.org/10.3390/en14165203
Sharma V, Hossain AK, Duraisamy G. Experimental Investigation of Neat Biodiesels’ Saturation Level on Combustion and Emission Characteristics in a CI Engine. Energies. 2021; 14(16):5203. https://doi.org/10.3390/en14165203
Chicago/Turabian StyleSharma, Vikas, Abul K. Hossain, and Ganesh Duraisamy. 2021. "Experimental Investigation of Neat Biodiesels’ Saturation Level on Combustion and Emission Characteristics in a CI Engine" Energies 14, no. 16: 5203. https://doi.org/10.3390/en14165203
APA StyleSharma, V., Hossain, A. K., & Duraisamy, G. (2021). Experimental Investigation of Neat Biodiesels’ Saturation Level on Combustion and Emission Characteristics in a CI Engine. Energies, 14(16), 5203. https://doi.org/10.3390/en14165203