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Abstract: In this paper, an adaptive cost function FCSMPC is derived from newly obtained results
concerning the distribution of figures of merits used for the assessment of stator current model-based
control of multi-phase induction machines. A parameter analysis of FCSMPC is carried out for the
case of a six-phase motor. After extensive simulation and Pareto screening, a new structure has
been discovered linking several figures of merit. This structure provides an simple explanation for
previously reported results concerning the difficulty of cost function tuning for FCSMPC. In addition,
the newly discovered link among figures of merit provides valuable insight that can be used for
control design. As an application, a new cost function design scheme is derived and tested. This new
method avoids the usual and cumbersome procedure of testing many different controller parameters.

Keywords: cost function design; model-based predictive control; multi-phase induction machine;
pareto dominance; titeica surface

1. Introduction

Multi-phase systems are preferred in some applications due to lower torque oscilla-
tions and harmonic content compared with conventional systems. Model-based control
has found a new niche in multi-phase drives, under different schemes. Among them, Finite
Control Set Model Predictive Control (FCSMPC) for stator current tracking is a popular
one. In FCSMPC current control stator current control is the objective, whereas additional
controllers are needed for flux and speed regulation [1]. The model-based controller com-
putes the best Voltage Source Inverter (VSI) state by minimizing a function referred to as
cost function.

The multi-phase VSI holds more configurations (switching states) than three-phase
ones. Usually, a decomposition into (α− β) and (x− y) subspaces is considered to ease
control design as these subspaces are related to different output variables such as torque
production and losses [2].

In addition to α − β current tracking and x − y current rejection, the FCSMPC for
current control can accommodate other objectives by an appropriate choice of the objective
function. For multi-phase IM, arguably the most sought-after trait is that of low switching
frequency. Such trait is, however, not easy to acquire as the tuning of the objective function
is not trivial [3].

In this paper and continuing with the seminal work of [4], a selected number of
variables for assessment (performance criteria) is used. The locus of these variables for
different tunings of the FCSMPC reveals a not previously reported structure that links them.
This finding means that a certain conservation law is in place, preventing the control system
from simultaneously improving more than one performance criteria. This has implications
for cost function design as will be discussed later. The methodology followed in the paper
is to produce a large number of experimental values for the performance criteria obtained
from different FCSMPC tunings; then, the data is fitted to a relatively simple mathematical
expression. This structure provides an simple explanation for reported results. In addition,
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the newly discovered links among figures of merit provides valuable insight for the task of
control design. An asymmetrical six-phase drive is considered for this study although the
analysis can be carried out for other topologies.

The next section provides a background on previous works that are related to this
one. In Section 3, the FCSMPC for current control is summarized to provide the basis for
the analysis of the figures of merit. The newly discovered link between figures of merit is
presented in Section 4, where Pareto analysis and cubic titeica approximation are shown.
The discovery is then applied, in Section 5, to derive a new FCSMPC cost function design
scheme that is experimentally tested.

2. Related Works

Control systems assessment is an important part of the engineering practice; however,
it seldom appears in most journals. In the case of FCSMPC for the broader field of electric
machines, assessment is reduced to a few operating points and a parameter analysis is
seldom performed. For instance, ref. [5] presents the surfaces of some figures of merit for a
distribution of operating points covering the speed and load range. Similarly, refs. [1,6]
presents a large set laboratory and simulated experiments enabling the assessment of the
FCSMPC using a five-phase IM. In [7], four current controllers for the six-phase IM are
thoroughly compared using the Root Mean Squared (RMS) value of tracking error and
Total Harmonic Distortion (THD) of the stator currents as performance indices. More
recently, ref. [8] presents an analysis of predictive current control for six-phase IM with
alternate winding configurations.

Another related topic is that of cost function design for FCSMPC systems. This topic
is mainly concerned with finding adequate cost function parameters so that the closed-loop
IM behavior meets requirements. This task is not easy as the cost function parameters
affect every aspect of the IM behavior. In particular, the design for current controllers must
face conflicting objectives. As an example consider that tracking in α− β leads to some
x − y content due to the use of voltage vectors with x − y projection. Of course, a high
x− y content is undesirable as copper losses increase. But, on the other hand, a poor α− β
tracking can produce speed ripple. This has been studied in the seminal paper [4] where
trade-offs are discussed and recently in [9] where Pareto analysis is used.

Instead of the cumbersome trial and error process, usually found in the above cited
works, other methods have been proposed such as neural approximations, changes in the
cost function to avoid weighting factors and replacement of the cost function by decision
making schemes such as fuzzy inference. For instance, in [2] an automated method is used
to select the weights of the cost function for the control of a Shunt Filter of Active Power.
In [3] the MPC formulation is used to include soft constraints for a nine-phase IM drive
and the effect of cost function parameters is discussed. In [10] a fuzzy adaptive speed
controller and adaptive weighting factors are used to reduce the speed, torque and flux
ripples. Other proposals can be found in the review of [11].

Regarding weighting factor elimination, in [12] a predictive direct torque control
without cost function weighting factors is presented. A multi-objective ranking is used
to decide the voltage vector to be applied from a limited set. AS a result the switching
frequency and computational effort can be ameliorated. In a different approach, ref. [13]
presents a dynamic virtual voltage vectors strategy designed to attain zero (on average)
x − y voltage production; as a result the MPC cost function can be simplified and the
λxy parameter eliminated. In this paper the opposite approach is taken following the
hypothesis that cost function parameters provide some flexibility that is lost otherwise.

3. Predictive Current Control of Multi-Phase IM

Multi-phase IM speed regulation can be done using a classical control loop. For the
stator current control, accurate tracking of α− β components and rejection of x− y currents
are needed. The electro-mechanical power conversion is due solely to α− β components.
The x− y plane does not contribute to torque and its components must be minimized.
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Figure 1 illustrates FCSMPC for stator current of a six-phase motor. It works by
providing the control signal u that sets the state of the VSI for a whole sampling period.
This is done computing, at discrete time k, the optimal switch configuration u(k + 1) for the
k + 1 period. The voltage v(k + 1) is impressed on the IM with the objective of producing
currents is(k + 2) following a reference trajectory i∗s (k + 2).

VSI model

A, B1, B2

IM model

J

Cost

function

min

FCSMPC

i*(k+2)

u(k+1)
M

~

6-phase

IM
6-phase

VSI

6
is(k)

v(k+1)

Figure 1. Diagram of FCSMPC of a six-phase IM.

The objective function considers predictions for (k + 2) since u(k + 1) will not affect
the measurements made until that time. The predictions are supplied by a mathematical
model of the drive which is derived from the IM equations. After some manipulation, the
predictive model takes the form

îs(k + 2|k) = A(ω)is(k) + B1u(k) + B2u(k + 1) + G(k) (1)

In (1), A(ω), B1 and B2 result from discretization of the continuous time dynamics [1].
The actual angular speed ω must be measured along with the components of the state
space vector is(k) =

(
isα, isβ, isx, isy

)>
(k). Also, in (1) the quantity G is due to rotor currents

(unmeasurable in most cases). This term is thus estimated using a backtracking method [1]
as follows

G(k) = (is(k)− is(k− 1))T−1
s −A(ω)is(k− 1)− B1u(k− 1) (2)

In the above equations, Ts is the sampling time and u is a vector of VSI switch states
u = (K1, K2, · · · , Kn)

>.
The actual control action u(k + 1) is computed at discrete time k minimizing a cost

function J. In this paper J is made up of terms corresponding to the penalization of tracking
errors in α− β, rejection of x− y components and a term penalizing the number of switch
changes in the VSI. This number is computed as

SC(k) =
n

∑
h=1
|uh(k + 1)− uh(k)| (3)

Then the objective function can be expressed as

J = ‖êαβ‖2 + λxy‖êxy‖2 + λncSC (4)

where ‖êαβ‖2 is the quadratic deviation of predictions from reference in α− β plane and
‖êxy‖2 is the quadratic deviation of predictions from reference in x− y plane. The temporal
index k has been omitted for clarity.
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3.1. Cost Function Tuning

Combining previous Equations (1)–(4) it is possible to derive u(k + 1) as the VSI state
that minimizes J. In FCSMPC and related approaches this is usually done by exhaustive
(or restrained) exploration of the possible VSI states.

In this scenario, tuning of the FCSMPC consists on selecting the values for parameters
λxy and λnc. This is usually done by trial and error, having as guidance some performance
indices or figures of merit as the ones presented later on in the paper.

The problem of cost function tuning (selection of cost functions weights) has appeared
in the literature associated with stator current control of multi-phase machines, but it also
appears in connection with Predictive Torque Control and in other applications where
conflicting criteria must be dealt with. In fact, it has received considerable attention in
recent works. The approach taken in this paper is that cost function tuning dictates the
future behavior of the IM drive. Figures of merit are usually used, in the broader context of
automatic control and also in the particular case of FCSMPC, to quantify such behavior in
a useful way. Having this in mind, the problem of cost function tuning is viewed as the
selection of weights to produce adequate figures of merit or performance indices such as
the ones presented in the following.

3.2. Performance Indices

Controllers for drives can be assessed by different figures of merit such as harmonic
content [14–16], speed of response [17], steady state torque ripple [18,19], current imbal-
ance [20], commutation losses [21,22], and total losses [23]. Of course these figures of merit
are not independent. Consider as an example the usual case of sinusoidal references for
α− β stator currents. The quality of tracking is then inversely proportional to Total Har-
monic Distortion (THD) so both quantities are somehow linked. Another example is current
content in the x− y being linked to copper losses and current THD. Oscillations in drive
speed are produced by ripples in torque that are produced by imperfect tracking in α− β
plane. Finally, average switching frequency is larger for tunings where current tracking
requirements are more stringent, so better tracking usually requires more commutations.

Continuing with the work [4], three measures (Γ1, Γ2 and Γ3) will be used as they
are directly related to most of the issues above presented. Their values are computed
from experiments where references for α− β are sinusoidal and zero for x− y. After the
experiment is performed, data from N sampling periods is used to compute the Γ values
as follows

Γ1 =

√√√√ 1
N

N

∑
k=1

e2
αβ(k) (5)

Γ2 =

√√√√ 1
N

N

∑
k=1

e2
xy(k) (6)

Γ3 =
10−3

N · Ts · fe

N

∑
k=1

SC(k) (7)

From the definition it is clear that Γ1 is the RMS value of the stator current tracking
error in α− β. From the considerations made above, this value is directly related to stator
current THD and to torque ripple, so, a low Γ1 provides not only better tracking, but also
less THD and less torque ripple. Similarly, Γ2 is the RMS value of the stator current tracking
error in x− y plane and is related to THD and copper losses. Clearly, the lower Γ2 the better
from an energy efficiency stand-point. Finally, Γ3 is the average commutation frequency
for the VSI. Please notice that in FCSMPC there is not fixed commutation rate, so one must
rely on averaged values such as Γ3. This commutation frequency must be kept low due to
VSI limits and due to energy efficiency considerations as commutation losses are related to
this quantity.
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In any application one can think of, the FCSMPC designer would try to minimize all Γ1,
Γ2 and Γ3. A good predictive model and low sampling period are key factors to achieve this
objective. This route has been explored in many papers dealing with identification [6,24,25],
different kinds of models (including models with observers) and schemes for diminishing
the application period such as in-sample or space-vector modulation [5,26–28] and virtual
voltage modulation [13,29].

Tuning of the cost function J also plays a crucial role in the observed values of the Γ
indices. This paper analyzes the links between the Γ values when λxy and λnc are varied
over a wide range of values. The distribution of Γ values shows a remarkable pattern never
reported before that links the three figures of merit. As an application, the paper also
proposes an adaptive scheme for automatic cost function tuning.

3.3. Six-Phase Drive

The multi-phase IM used in this paper is a motor with two three-phase sets of windings
in an asymmetrical configuration. Two three-phase VSI connected as depicted in Figure 2
are used to supply voltage to the motor.

Figure 2. Six-phase voltage constellation in α− β and x− y planes.

Table 1 presents the main data from the name-plate and the identified parameters for
the motor. The VSI are SKS21F (Semikron) inverters commanded using the TMS320F28335
Texas Instruments DSP on a MSK28335 board. Two neutral points are used and the stator
currents measured with four hall-effect sensors. The speed is measured using quadrature
encoders. Load can be applied independently thanks to a DC-motor sharing the shaft.
Figure 3 depicts the main components of the experimental setup.

Table 1. Electrical parameters for the experimental motor drive obtained by identification.

Symbol Parameter Value

Rs Stator resistance (Ω) 1.63
Ls Stator inductance (H) 0.2792
Rr Rotor resistance (Ω) 1.08
Lr Rotor inductance (H) 0.2886
Lm Mutual inductance (H) 0.2602
Lls Stator leakage inductance (H) 0.0189
fe Nominal frequency (Hz) 50
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Figure 3. Diagram of the experimental setup including photographs of various elements.

4. Cubic Titeica Approximation

The aim of this section is showing that the already reported links among figures of
merit (the Γ values) follow a simple formula that has been experimentally derived. This
discovery is by itself interesting as it show that some sort of conservation law is in place,
meaning that it is impossible to obtain better results in terms of Γ1 without altering the
other two figures of merit Γ2 and Γ3. This is important as in any application one can think
of, all three indices are important, so a compromise or trade-off solution must be sought.
In this section, the procedure followed for data-gathering and processing will be presented,
this will lead to the discovery that the Γ values lie in a surface and thus are tied to one
another. The particular surface will be identified leading the way for an application for
FCSMPC design.

4.1. Data Gathering

The first step for the analysis is collecting data from the operation of the 6-phase motor
driven by the FCSMPC in current control mode. For the analysis, thousands of data points
have to be collected corresponding to various tunings of the cost function (i.e., to different
combinations of (λxy, λnc). To do so, an adequate model must be derived to be used in
simulation. Sinusoidal excitation methods have been used to identify the parameters of
the IM [24]. A Runge-Kutta method for the numerical integration of the continuous-time
differential equations has then be deployed. In the simulations, the controller runs at
Ts = 100 (µs) and it is treated as a discrete-time subsystem. The reference signal for stator
current traking i∗(k) uses an amplitude I∗s (A) and a frequency fe (Hz); thus

i∗s (t) =


i∗sα(t)
i∗sβ(t)
i∗sx(t)
i∗sy(t)

 =


I∗s sin 2π fet
I∗s cos 2π fet

0
0

 (8)

For each (λxy, λnc) the simulation is run for a number of sampling periods N includ-
ing some electrical cycles enough to compute the quantities Γ1 to Γ3 as averages according
to their definition. The fit of the simulations to actual measurements has been checked
using the figures of merit as shown in [4]. Figure 4 shows the experimental waveforms for
two choices of (λxy, λnc). Notice that the vertical axis for the isx curve has been scaled to
provide a 5× zoom for readability. It can be seen that the effect of increasing λnc is notice-
able in stator current tracking, mainly (for this particular example) in x− y components.
This kind of representation is useful to compare few cases and to gain insight into the
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problem. However, to advance in the analysis one needs to resort to some quantification as
provided by the Γ indices. Then new information arises, as shown in Figure 5, that will be
discussed later.
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Figure 4. Experimental results for (λxy = 0.5, λnc = 5 × 10−4) (left) and for (λxy = 0.5,
λnc = 15× 10−4) (right).
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Figure 5. Performance indices Γ found for some combinations of controller parameters(λxy, λnc).
The legend and horizontal rule apply to all graphs.

4.2. Pareto Optimality

The values (Γ1, Γ2, Γ3) found for a combination (λxy, λnc) might have different merits
for different applications. It is clear, however, that the lower their value, the better. What
one finds in many cases is that, for some tunings, one of the Γ values decreases at the
expense of an increase in the other two.

The concept of Pareto optimality allows us to derive a reduced set of combinations that
are of interest for design in many fields. Recall that a combination is deemed Pareto-optimal
if it is not dominated by other combination. A combination Γj is said to be dominated by
Γk if Γk

i ≤ Γj
i for all i and for a particular m, Γk

m < Γj
m holds. These conditions indicate that

Γk is at least as good as Γj regarding all of their indices i, and at least for some index (m)
the combination Γk is actually better.

The Pareto frontier is the set of all combinations ΓP that are Pareto-optimal (i.e., not
dominated). In this paper, Pareto-optimality has been used to exclude combinations that
are not optimal regardless of the application. From a set of 4923 combinations of (λxy, λnc)
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just 1415 turned out to be on the Pareto frontier. This screening not only reduces the
number of data points to be considered but also allow for a more focused search for links
among figures of merit.

4.3. Data Surface

The relationship between Γ = (Γ1, Γ2, Γ3) and Λ = (λxy, λnc) is not straightforward.
It must be noted that the controller aims to minimize the cost function that includes
three terms that are related to the three components of Γ; however, the point to point
minimization of J (4) does not imply a similar minimization of the three components
of Γ. This can be checked in Figure 5, where the various performance indices found
in the simulations are plotted against some of the (λxy, λnc) combinations used in said
simulations. Some general tendencies can be seen, but not much more; in fact, the data
points seem to follow intricate paths. A low order approximation (e.g., linear, quadratic)
seems useless. Please note that there are gaps in the distribution. This is due to the pruning
of data points performed by the Pareto screening. In particular, the line of points for
λxy = 1 ends abruptly at around λnc = 0.012, this is not a mistake, is just a reflection of the
fact that not all tunings yield Pareto-optimal results.

On closer inspection, the 3D distribution of the Γ values seem to fit a smooth surface
as shown in Figure 6. A total of 671 points have been chosen from the Pareto optimal set in
order to provide a graphical representation that is not too dense or too sparse. The points
are represented with marks with a different color for each value of Γ3, in this way it is
easier to relate points in the projections. It can be seen that the distribution seems to be
asymptotic for large values of Γ, indicating a 3D generalization of the hyperbola. Such
generalization has the amazingly simple expression

x · y · z = K (9)

where (x, y, z) represent the coordinates of a point in 3D space and K denotes a constant.
The cubic Equation (9) yields a titeica surface studied by G. Tzitzéica [30]. Figure 7 presents
the titeica surface; several cuts have been performed by horizontal planes for some z = zc
showing the resulting hyperbolas of the form y = 1/(xzc).
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Figure 6. 3D distribution of pareto optimal Γ values (top) and projections (botttom). Color indicates
height (in the Γ3 direction) and has been added to enhance perception.
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Y

X

Z

Figure 7. Cubic surface x · y · z = K (left) and its projection in the XY plane (right) including some
horizontal cuts.

It is possible to fit the Γ values to the model (9) by allowing some translation of the axis.
Thus, if one takes x = Γ1− ∆1, y = Γ2− ∆2, and z = Γ3− ∆3 then the observed value for K
is K̂ = 0.0051 obtained for (∆1, ∆2, ∆3) = (−0.0015,−0.0157,−0.585). This is a remarkable
finding as it links the performance indices to one another via a simple expression.

(Γ1 − ∆1) · (Γ2 − ∆2) · (Γ3 − ∆3) = K̂ (10)

This clearly shows that it is impossible to improve one index without degrading at
least one of the other two. Further implications will be discussed later.

Figure 8 shows the titeica surface fitted to data represented by Equation (10). Please
notice that the upper part of the surface has been trimmed for ease of presentation. In ad-
dition, some Γ values are presented to further study the distribution. These values are
commented in the following.

1. Line A is made up of Γ values from simulations where λnc = 0. The Γ values gather
close to a line placed on the surface in the upper region. In fact this line is the upper
limit of Γ3. The line is not an hyperbola (although its general shape resembles one,
specially viewed from above) as it contains some wiggles or bumps specially for low
values of (Γ1, Γ2). λxy increases from right to left producing increasing values of Γ1
and decreasing values of Γ2 according to (10).

2. Line B corresponds to tunings where λxy = 0.1. The value of λnc goes from λnc = 0 at
the intersection with line A to a value of λnc = 0.01 near the bottom. The switching
frequency goes down as both (Γ1, Γ2) increase.

3. Line C corresponds to tunings where λxy = 0.5. The line found is similar to that of
the previous case. Please note that both λxy = 0.1 and λxy = 0.5 have been proposed
in the literature combined with low values of λnc. This tuning produces Γ values
that are close to the Z axis, meaning that (Γ1, Γ2) have both a low value even with
a decrease in Γ3 as the surface is very steep at that region. These two choices are
adequate in cases where current tracking is the main concern leaving little allowance
for lowering losses.

4. Line D, finally, is made up of Γ values from simulations where λxy · λnc = 0.006.
The line is almost parallel to the XZ plane. It provides tunings where Γ2 changes little
at the expense of pronounced changes in the other two indices.

The cases commented above are easy to implement as they just require selecting
values of the design parameters λxy and λnc. These cases provide insight into the cubic
surface and the underlying relationship of Equation (10). In particular, they show that the
relationship between Λ and Γ is far from trivial.



Energies 2021, 14, 5222 10 of 14

0

0.1

0.20 0.05 0.1 0.15 0.2 0.25 0.3 0.35

0

2

4

6

8

10

Γ
1

B

A

C

Γ
2

D

Γ 3

Figure 8. Fitted surface (meshed lines) and some experimental data points forming lines A, B, C and
D (see text for details).

5. Application to FCSMPC Design

The above results highlight two aspects that difficult FCSMPC design for multi-phase
IM: (1) cost function parameters have not a straightforward link to figures of merit and (2)
figures of merit are not free to take any combination.

In the following, a novel scheme for FCSMPC design is presented. A commonplace
scenario is chosen to illustrate the procedure but the method can be applied to other
situations. In many applications the main concern is that of performance with losses being
a secondary objective. Losses are linked to high values of Γ2, Γ3 whereas performance
is achieved with low values of Γ1. Then, for this scenario, it makes sense to design the
FCSMPC cost function as the solution to the following optimization problem:

min
Λ

Γ1

s.t. ∏
i
(Γi − ∆i) = K̂

Γ2 ≤ ΓS
2

Γ3 ≤ ΓS
3 ,

(11)

where ΓS
2 is the maximum value of Γ2 that one is willing to accept and, similarly, ΓS

3 is the
maximum value for Γ3.

The optimization of (11) is still a time-consuming task, so it seems that nothing has
been gained. However, from the first constraint it is clear that minimization of Γ1 means
taking the extreme values for the other two figures of merit, that is: Γ2 = ΓS

2 and Γ3 = ΓS
3 .

Still it is not clear how to derive the value for Λ. An observation can be made here,
the tuning with Λ0 = (0, 0) will most likely produce the smallest value of Γ1 but producing
large values for the other two figures of merit. Now, the MIT rule can be used to set up
an adaptive scheme where the Λ values will evolve until the conditions Γ2 = ΓS

2 , Γ3 = ΓS
3

are met.
It is well known that the MIT rule requires the derivatives of the error to be computed.

A simplified version has been used sometimes to avoid such computation, the derivatives
are substituted by average values. Then the Λ values can be updated in the following way
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˙λxy = −ηxy

(
ΓS

2 − Γ2

)
(12)

˙λnc = −ηnc

(
ΓS

3 − Γ3

)
(13)

where ηxy, ηnc are adaptation gains that affect the convergence speed.

5.1. Implementation Details

It is important to notice that (12) and (13) require measurement of Γ2, Γ3. But these
values are computed as averaged measures over a temporal horizon. This means that the
adaptation should not be run at the same speed as the FCSMPC. This is not much of a
drawback for two reasons: first, in adaptive systems the adaptation is in most cases slow
to avoid instability issues due to the coupling of dynamics; second, the time required for
adaptation is still low compared with the mechanical time constant for much applications
(except perhaps for ultra-fast tiny motors).

In addition, note that the initial value taken for the FCSMPC parameter vector Λ is
not special and can be replaced with other values. The only particular consideration is that
Λ = (0, 0) should make the IM run, even with higher losses.

The amount of extra computations needed for the implementation of the adaptive
procedure is low if it is carried out by averaging quantities for each sampling time k in
accordance with (5)–(7). Then a particular sampling period can be devoted to update Λ.
The procedure is then repeated.

With this in mind, the parameter adaptation can be done every N sampling periods as

λxy ← λxy − ηxy

(
ΓS

2 − Γ2

)
(14)

λnc ← λnc − ηnc

(
ΓS

3 − Γ3

)
(15)

where the arrow operator is to be realized as an assignment in the particular programming
language of the DSP.

5.2. Experimental Results

The FCSMPC scheme with cost function (4) has been modified to include adaptation of
parameters (λxy, λnc) every N = 1250 sampling periods (0.025 s) according to (14) and (15).
The adaptation gains have been set to ηxy = 0.2 and ηnc = 2 · 10−5.

Figure 9 (top graph) shows the results obtained for the (λxy, λnc) adaptation. The ini-
tial value is (0, 0) (lower left) yielding Γ = (0.0081, 0.5833, 8.72) which does not comply
with the specifications. As the adaptation progresses, the parameters change values, first
more steeply because of the larger value of the error

(
ΓS − Γ

)
, and later on more slowly as

is the usual case with gradient-based schemes such as the MIT rule.
It can be seen that the sequence

{
λxy, λnc

}
converges to Λ = (0.14, 9× 10−4). After 20

adaptation steps (0.5 s), the figures of merit take values Γ = (0.0139, 0.0506, 6.146) that are
already close enough to the design values. It can be seen that performance is guaranteed by
the relatively low value of Γ1 whereas the other figures of merit lie in their specified region.

The lower part of Figure 9 shows the waveforms for stator currents in α and x axis for
the final values of the adapted parameters. Similar results are obtained for β and x and are
omitted for brevity. The adequacy of the tuning can be checked by visual inspection.
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Figure 9. Evolution of (λxy, λnc) using the simplified MIT rule (top) and waveforms for a time period
were the adaptated parameters are close to their final value Λ = (0.14, 9 × 10−4) (bottom).

6. Discussion

The problem of cost function design for FCSMPC of multi-phase IM has been tackled
taking a six-phase motor as an example.

The Pareto analysis of the figures of merit and posterior fitting to a cubic titeica
surface has resulted in the, not previously reported, mathematical expression of (10). This
expression allows a simple explanation of the complex behavior found in previously
reported results. In particular, the often-mentioned tedious task of cost function tuning
is clearly shown to be a difficult problem. But perhaps the most striking result is the
simple formula found for the figures of merit (8). This experimentally-derived expression
clearly shows that, once in the Pareto frontier, improving one figure of merit must come
in detriment of the other two in a drastic way as indicated by the hyperbolic inverse law
embedded in (8).

The Pareto analysis and the cubic titeica approximation also provide support for
developing new techniques. As an example, an adaptive method for the tuning of FCSMPC
cost function parameters has been presented. With this approach, the problem of cost
function design no longer imply the cumbersome trial and error process of past approaches.
Also, thanks to the analysis performed previously, optimality (with respect to the figures of
merit) is taken care of. The experiments and analysis of the proposed adaptive cost function
show its feasibility and flexibility to accommodate different design criteria. In particular
the case in which one is mainly concerned with performance (provided by accurate α− β
tracking) and a bit less by energy efficiency (x− y content and commutations) has been
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used as an example. The experimental waveforms confirm the validity of the proposed
scheme and its adaptation law.
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Abbreviations

IM variables
i Current
v Voltage
ω Angular speed
fe Electrical frequency
Subscripts
α− β Subspace for energy conversion
x− y Subspace not related to energy conversion
Superscripts
∗ Reference
ˆ Prediction or estimated value
Control parameters and variables
J Cost function
λxy Weighting factor penalizing x− y currents
λnc Weighting factor penalizing commutations
Λ Vector of FCSMPC parameters
Γ Vector containing figures of merit
Ts Sampling period
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Factor Design of Predictive Current Controller of a Six-Phase Induction Machine based on Particle Swarm Optimization Algorithm.
IEEE J. Emerg. Sel. Top. Power Electron. 2021. [CrossRef]

10. Zhang, Z.; Wei, H.; Zhang, W.; Jiang, J. Ripple Attenuation for Induction Motor Finite Control Set Model Predictive Torque
Control Using Novel Fuzzy Adaptive Techniques. Processes 2021, 9, 710. [CrossRef]

http://doi.org/10.1016/j.conengprac.2017.08.001
http://dx.doi.org/10.1109/TEC.2019.2929622
http://dx.doi.org/10.1016/j.conengprac.2018.09.012
http://dx.doi.org/10.1109/TIE.2009.2016505
http://dx.doi.org/10.1109/TIE.2013.2248334
http://dx.doi.org/10.1109/ACCESS.2021.3085083
http://dx.doi.org/10.1109/JESTPE.2021.3100687
http://dx.doi.org/10.3390/pr9040710


Energies 2021, 14, 5222 14 of 14

11. Mamdouh, M.; Abido, M.; Hamouz, Z. Weighting Factor Selection Techniques for Predictive Torque Control of Induction Motor
Drives: A Comparison Study. Arab. J. Sci. Eng. 2018, 43, 433–445. [CrossRef]

12. Ipoum-Ngome, P.G.; Mon-Nzongo, D.L.; Song-Manguelle, J.; Flesch, R.C.; Jin, T. Optimal finite state predictive direct torque
control without weighting factors for motor drive applications. IET Power Electron. 2019, 12, 1434–1444. [CrossRef]

13. Aciego, J.J.; Prieto, I.G.; Duran, M.J.; Bermudez, M.; Salas-Biedma, P. Model predictive control based on dynamic voltage vectors
for six-phase induction machines. IEEE J. Emerg. Sel. Top. Power Electron. 2020, 9, 2710–2722. [CrossRef]

14. Luo, Y.; Liu, C. A Simplified Model Predictive Control for a Dual Three-Phase PMSM Motor with Reduced Harmonic Currents.
IEEE Trans. Ind. Electron. 2018, 65, 9079–9089. [CrossRef]

15. Hachi, N.; Kouzou, A.; Hafaifa, A.; Iqbal, A. Application of the Model Predictive Control and the SVPWM Techniques on
Five-phase Inverter. Electroteh. Electron. Autom. 2019, 67, 17–28.

16. Kindl, V.; Cermak, R.; Ferkova, Z.; Skala, B. Review of time and space harmonics in multi-phase induction machine. Energies
2020, 13, 496. [CrossRef]

17. Mohamed, Y.A.R.I.; El-Saadany, E.F. Robust high bandwidth discrete-time predictive current control with predictive internal
model—A unified approach for voltage-source PWM converters. IEEE Trans. Power Electron. 2008, 23, 126–136. [CrossRef]

18. Xia, C.; Wang, Y.; Shi, T. Implementation of finite-state model predictive control for commutation torque ripple minimization of
permanent-magnet brushless DC motor. IEEE Trans. Ind. Electron. 2013, 60, 896–905. [CrossRef]

19. Zhang, Y.; Yang, H.; Xia, B. Model predictive torque control of induction motor drives with reduced torque ripple. IET Electr.
Power Appl. 2015, 9, 595–604. [CrossRef]

20. Hu, Y.; Zhu, Z.Q.; Liu, K. Current control for dual three-phase permanent magnet synchronous motors accounting for current
unbalance and harmonics. IEEE J. Emerg. Sel. Top. Power Electron. 2014, 2, 272–284.

21. Preindl, M.; Schaltz, E.; Thogersen, P. Switching frequency reduction using model predictive direct current control for high-power
voltage source inverters. IEEE Trans. Ind. Electron. 2011, 58, 2826–2835. [CrossRef]

22. Li, Z.; Guo, Y.; Xia, J.; Li, H.; Zhang, X. Variable sampling frequency model predictive torque control for VSI-fed im drives
without current sensors. IEEE J. Emerg. Sel. Top. Power Electron. 2020, 9, 1507–1517. [CrossRef]

23. Rivas, J.J.R.; Montiel, J.P.; Badaoui, M.; Farias, J.M.A.; Castillo, O.C.; González, R.O. Optimization of the efficiency in an induction
machine drive by algorithm based on the interior point method. Rev. Iberoam. Autom. Inform. Ind. 2021. [CrossRef]

24. Yepes, A.G.; Riveros, J.A.; Doval-Gandoy, J.; Barrero, F.; López, O.; Bogado, B.; Jones, M.; Levi, E. Parameter identification of
multiphase induction machines with distributed windings—Part 1: Sinusoidal excitation methods. IEEE Trans. Energy Convers.
2012, 27, 1056–1066. [CrossRef]

25. Heydari, R.; Young, H.; Rafiee, Z.; Flores-Bahamonde, F.; Savaghebi, M.; Rodriguez, J. Model-Free Predictive Current Control of a
Voltage Source Inverter based on Identification Algorithm. In Proceedings of the IECON 2020 The 46th Annual Conference of the
IEEE Industrial Electronics Society, Singapore, 18–21 October 2020; pp. 3065–3070.

26. Difi, D.; Halbaoui, K.; Boukhetala, D. Hybrid control of five-phase permanent magnet synchronous machine using space vector
modulation. Turk. J. Electr. Eng. Comput. Sci. 2019, 27, 921–938. [CrossRef]

27. Difi, D.; Halbaoui, K.; Boukhetala, D. High Efficiency and Quick Response of Torque Control for a Multi-Phase Machine Using
Discrete/Continuous Approach: Application to Five-phase Permanent Magnet Synchronous Machine. System 2021, 1, 2.

28. Song, Z.; Hu, S.; Bao, Z. Variable Action Period Predictive Flux Control Strategy for Permanent Magnet Synchronous Machines.
IEEE Trans. Power Electron. 2019, 35, 6185–6197. [CrossRef]

29. Yuan, Q.; Li, A.; Qian, J.; Xia, K. Dc-link capacitor voltage control for the NPC three-level inverter with a newly MPC-based
virtual vector modulation. IET Power Electron. 2020, 13, 1093–1102. [CrossRef]

30. Tzitzéica, M.G. Sur une nouvelle classe de surfaces. Rend. Circ. Mat. Palermo 1908, 25, 180–187. [CrossRef]

http://dx.doi.org/10.1007/s13369-017-2842-2
http://dx.doi.org/10.1049/iet-pel.2018.5795
http://dx.doi.org/10.1109/JESTPE.2020.2977144
http://dx.doi.org/10.1109/TIE.2018.2814013
http://dx.doi.org/10.3390/en13020496
http://dx.doi.org/10.1109/TPEL.2007.911797
http://dx.doi.org/10.1109/TIE.2012.2189536
http://dx.doi.org/10.1049/iet-epa.2015.0138
http://dx.doi.org/10.1109/TIE.2010.2072894
http://dx.doi.org/10.1109/JESTPE.2020.2968387
http://dx.doi.org/10.4995/riai.2020.13418
http://dx.doi.org/10.1109/TEC.2012.2220967
http://dx.doi.org/10.3906/elk-1805-193
http://dx.doi.org/10.1109/TPEL.2019.2953941
http://dx.doi.org/10.1049/iet-pel.2019.0891
http://dx.doi.org/10.1007/BF03029121

	Introduction
	Related Works
	Predictive Current Control of Multi-Phase IM
	Cost Function Tuning
	Performance Indices
	Six-Phase Drive

	Cubic Titeica Approximation
	Data Gathering
	Pareto Optimality
	Data Surface

	Application to FCSMPC Design
	Implementation Details
	Experimental Results

	Discussion
	References

