Thermodynamic Modeling of Mutual Solubilities in Gas-Laden Brines Systems Containing CO2, CH4, N2, O2, H2, H2O, NaCl, CaCl2, and KCl: Application to Degassing in Geothermal Processes
Abstract
:1. Introduction
2. Thermodynamic Modeling
2.1. From GLR to the Gas-Laden Brine Composition
2.2. Equation of State (EoS)
2.3. Calculation Procedure
3. Results and Discussion
3.1. Mutual Solubilities of Gas-Water and Gas-Brine (Single or Mixed Salts) Systems
- a.
- Water content in gas rich-phase
- b.
- CO2 solubility in different brines (NaCl, CaCl2, or KCl)
- -
- The original alpha function of water was kept as a function of the NaCl molality and was not modified for the other salts for the following reasons: (1) To propose a salt equivalence technique considering NaCl as the reference salt (see hereafter); (2) the alpha function proposed by SW is obtained by fitting on vapor pressure data of the H2O + NaCl system and the difference between the vapor pressures of the brines of different salts does not have significant effects on the representation of the phase equilibria especially at the thermodynamic conditions of interest (high pressure).
- -
- The coefficients of the CO2-H2O binary interaction parameter expression in the aqueous phase (Equation (17)) were readjusted on the CO2 solubility data in the mentioned brines (H2O + CaCl2 and H2O + KCl). The readjusted Kij coefficients are listed in Table 1.
- -
- The CO2-H2O binary interaction parameter in the non-aqueous phase (Equation (18)) was not modified for the other salts because: (1) there are no (or few) water content data of CO2 in equilibrium with CaCl2 and KCl brines; (2) the salting-out effect on water content is much less important than on gas solubility. Thus, for the salts CaCl2 and KCl, the kij used are: Equation (17) for the aqueous phase with the coefficients listed in Table 1 and Equation (18) for the non-aqueous phase.
- c.
- CO2 solubility in mixed-salt brine (NaCl + CaCl2 + H2O)
- d.
- CH4, N2, O2, and H2 solubility in water and NaCl brine
- e.
- Mixed-gas cosolubility: CO2 + CH4 + H2O and CO2 + N2 + H2O systems
3.2. Application: Geothermal Fields Operations
3.2.1. Estimation of the Bubble-Point Pressure from the GLR
3.2.2. Estimation of Bubble-Point Pressure and GHG Emission Rate in the Upper Rhine Graben Geothermal Site
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Poponi, D.; Bryant, T.; Burnard, K.; Cazzola, P.; Dulac, J.; Pales, A.F.; Husar, J.; Janoska, P.; Masanet, E.R.; Munuera, L. Energy Technology Perspectives 2016: Towards Sustainable Urban Energy Systems; International Energy Agency: Paris, France, 2016. [Google Scholar]
- Dickson, M.H.; Fanelli, M. What Is Geothermal Energy; Istituto di Geoscienze E Georisorse: Pisa, Italy, 2002. [Google Scholar]
- Pan, S.-Y.; Gao, M.; Shah, K.J.; Zheng, J.; Pei, S.-L.; Chiang, P.-C. Establishment of enhanced geothermal energy utilization plans: Barriers and strategies. Renew. Energy 2019, 132, 19–32. [Google Scholar] [CrossRef]
- Haehnlein, S.; Bayer, P.; Blum, P. International legal status of the use of shallow geothermal energy. Renew. Sustain. Energy Rev. 2010, 14, 2611–2625. [Google Scholar] [CrossRef]
- Lu, S.-M. A global review of enhanced geothermal system (EGS). Renew. Sustain. Energy Rev. 2018, 81, 2902–2921. [Google Scholar] [CrossRef]
- Pratiwi, A.; Ravier, G.; Genter, A. Life-cycle climate-change impact assessment of enhanced geothermal system plants in the Upper Rhine Valley. Geothermics 2018, 75, 26–39. [Google Scholar] [CrossRef]
- Curtis, R.; Ledingham, P.; Law, R.; Bennett, T. Geothermal energy use, country update for United Kingdom. In Proceedings of the European Geothermal Congress, Pisa, Italy, 3–7 June 2013; pp. 1–9. [Google Scholar]
- Boissavy, C.; Rocher, P.; Laplaige, P.; Brange, C. Geothermal energy use, country update for France. In Proceedings of the European Geothermal Congress, Strasbourg, France, 19–23 September 2016. [Google Scholar]
- Mouchot, J.; Ravier, G.; Seibel, O.; Pratiwi, A. Deep geothermal plants operation in Upper Rhine Graben: Lessons learned. In Proceedings of the European Geothermal Congress, The Hague, The Netherlands, 11–14 June 2019; pp. 11–14. [Google Scholar]
- Yearsley, E.N. Common characteristics of pumped wells in geothermal power projects. In Proceedings of the 41st New Zealand Geothermal Workshop, Auckland, New Zealand, 25–27 November 2019. [Google Scholar]
- Haizlip, J.R.; Guney, A.; Tut Haklidir, F.; Garg, S.K. The impact of high non condensable gas concentrations on well performance—Kizildere Geothermal Reservoir, Turkey. In Proceedings of the Thirty-Seventh Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, CA, USA, 30 January–1 February 2012. [Google Scholar]
- Yildirim, N.; Yildirim, A. High total inorganic carbon concentration dependent carbonate scaling and mitigation system in moderate to high enthalpy geothermal fields in Turkey. In Proceedings of the World Geothermal Congress, Melbourne, Australia, 19–24 April 2015; pp. 25–29. [Google Scholar]
- Fridriksson, T.; Merino, A.M.; Orucu, A.Y.; Audinet, P. Greenhouse gas emissions from geothermal power production. In Proceedings of the 42nd Workshop on Geothermal Reservoir Engineering, Stanford, CA, USA, 13–15 February 2017. [Google Scholar]
- Júlíusson, B.M.; Gunnarsson, I.; Matthíasdóttir, K.V.; Markússon, S.H.; Bjarnason, B.; Sveinsson, O.G.; Gíslason, T.; Thorsteinsson, H. Tackling the challenge of H2S emissions. In Proceedings of the World Geothermal Congress, Melbourne, Australia, 19–24 April 2015; pp. 1–5. [Google Scholar]
- McLean, K.; Richardson, I. Greenhouse gas emissions from New Zealand geothermal power generation in context. In Proceedings of the 38th New Zealand Geothermal Workshop, Auckland, Australia, 23–25 November 2016; p. 25. [Google Scholar]
- Bertani, R.; Thain, I. Geothermal power generating plant CO2 emission survey. IGA News 2002, 49, 1–3. [Google Scholar]
- Fridleifsson, I.B.; Bertani, R.; Huenges, E.; Lund, J.W.; Ragnarsson, A.; Rybach, L. The possible role and contribution of geothermal energy to the mitigation of climate change. In Proceedings of the IPCC Scoping Meeting on Renewable Energy Sources, Luebeck, Germany, 20 January 2008; pp. 59–80. [Google Scholar]
- Aksoy, N. Power generation from geothermal resources in Turkey. Renew. Energy 2014, 68, 595–601. [Google Scholar] [CrossRef]
- Layman, E.B. Geothermal projects in Turkey: Extreme greenhouse gas emission rates comparable to or exceeding those from coal-fired plants. In Proceedings of the 42nd Workshop on Geothermal Reservoir Engineering, Stanford, CA, USA, 13–15 February 2017. [Google Scholar]
- Haizlip, J.R.; Stover, M.M.; Garg, S.K.; Haklidir, F.; Prina, N. Origin and impacts of high concentrations of carbon dioxide in geothermal fluids of western Turkey. In Proceedings of the 41st Workshop on Geothermal Reservoir Engineering, Stanford, CA USA, 22–24 February 2016; pp. 22–24. [Google Scholar]
- Iberl, P.; Alt, N.; Schluecker, E. Evaluation of corrosion of materials for application in geothermal systems in Central Europe. Mater. Corros. 2015, 66, 733–755. [Google Scholar] [CrossRef]
- Klyen, L. Sampling Techniques for Geothermal Fluids; Institute of Geological & Nuclear Sciences Limited: Lower Hutt, New Zealand, 1996. [Google Scholar]
- Brown, K.L.; Simmons, S.F. Precious metals in high-temperature geothermal systems in New Zealand. Geothermics 2003, 32, 619–625. [Google Scholar] [CrossRef]
- Arnórsson, S.; Stefánsson, A.; Bjarnason, J. Wet-steam well discharges. I. Sampling and calculation of total discharge compositions. In Proceedings of the World Geothermal Congress, Antalya, Turkey, 24–29 April 2005; pp. 24–29. [Google Scholar]
- Wolff-Boenisch, D.; Evans, K. Review of available fluid sampling tools and sample recovery techniques for groundwater and unconventional geothermal research as well as carbon storage in deep sedimentary aquifers. J. Hydrol. 2014, 513, 68–80. [Google Scholar] [CrossRef]
- Pátzay, G.; Stáhl, G.; Kármán, F.; Kálmán, E. Modeling of scale formation and corrosion from geothermal water. Electrochim. Acta 1998, 43, 137–147. [Google Scholar] [CrossRef]
- Pátzay, G.; Kármán, F.H.; Póta, G. Preliminary investigations of scaling and corrosion in high enthalpy geothermal wells in Hungary. Geothermics 2003, 32, 627–638. [Google Scholar] [CrossRef]
- Akin, T.; Guney, A.; Kargi, H. Modeling of calcite scaling and estimation of gas breakout depth in a geothermal well by using PHREEQC. In Proceedings of the 40th Workshop on Geothermal Reservoir Engineering, Stanford, CA, USA, 26–28 January 2015; p. 8. [Google Scholar]
- Wamalwa, R.N. Evaluation of factors controlling the concentration of non-condensible gases and their possible impact on the performance of wells in Olkaria, Kenya. In Proceedings of the 41st Workshop on Geothermal Reservoir Engineering, Stanford, CA USA, 22–24 February 2016. [Google Scholar]
- Mouchot, J.; Scheiber, J.; Florencio, J.; Seibt, A.; Jähnichen, S. Scale and Corrosion control program, Example of two geothermal plants in Operation in the Upper Rhine Graben. In Proceedings of the European Geothermal Congress, The Hague, The Netherlands, 11–14 June 2019. [Google Scholar]
- Vandenberghe, N.; Dusar, M.; Boonen, P.; Fan, L.S.; Voets, R.; Bouckaert, J. The Merksplas-Beerse geothermal well (17W265) and the Dinantian reservoir. Geol. Belg. 2001, 3, 349–367. [Google Scholar] [CrossRef]
- Sanjuan, B.; Millot, R.; Innocent, C.; Dezayes, C.; Scheiber, J.; Brach, M. Major geochemical characteristics of geothermal brines from the Upper Rhine Graben granitic basement with constraints on temperature and circulation. Chem. Geol. 2016, 428, 27–47. [Google Scholar] [CrossRef]
- Dhima, A.; de Hemptinne, J.-C.; Jose, J. Solubility of hydrocarbons and CO2 mixtures in water under high pressure. Ind. Eng. Chem. Res. 1999, 38, 3144–3161. [Google Scholar] [CrossRef]
- Qin, J.; Rosenbauer, R.J.; Duan, Z. Experimental measurements of vapor-liquid equilibria of the H2O+ CO2+ CH4 ternary system. J. Chem. Eng. Data 2008, 53, 1246–1249. [Google Scholar] [CrossRef]
- Hayashi, Y. Direct measurement of solubility of methane and carbon dioxide in high pressure water using gas chromatography. J. Jpn. Pet. Inst. 2014, 57, 125–132. [Google Scholar] [CrossRef] [Green Version]
- Al Ghafri, S.Z.; Forte, E.; Maitland, G.C.; Rodriguez-Henríquez, J.J.; Trusler, J.M. Experimental and modeling study of the phase behavior of (methane+ CO2+ water) mixtures. J. Phys. Chem. B 2014, 118, 14461–14478. [Google Scholar] [CrossRef]
- Foltran, S.; Vosper, M.E.; Suleiman, N.B.; Wriglesworth, A.; Ke, J.; Drage, T.C.; Poliakoff, M.; George, M.W. Understanding the solubility of water in carbon capture and storage mixtures: An FTIR spectroscopic study of H2O+ CO2+ N2 ternary mixtures. Int. J. Greenh. Gas Control 2015, 35, 131–137. [Google Scholar] [CrossRef]
- Hassanpouryouzband, A.; Farahani, M.V.; Yang, J.; Tohidi, B.; Chuvilin, E.; Istomin, V.; Bukhanov, B. Solubility of flue gas or carbon dioxide-nitrogen gas mixtures in water and aqueous solutions of salts: Experimental measurement and thermodynamic modeling. Ind. Eng. Chem. Res. 2019, 58, 3377–3394. [Google Scholar] [CrossRef]
- Poulain, M.; Messabeb, H.; Lach, A.; Contamine, F.; Cézac, P.; Serin, J.-P.; Dupin, J.-C.; Martinez, H. Experimental measurements of carbon dioxide solubility in Na–Ca–K–Cl solutions at high temperatures and pressures up to 20 MPa. J. Chem. Eng. Data 2019, 64, 2497–2503. [Google Scholar] [CrossRef]
- Al Ghafri, S.; Maitland, G.C.; Trusler, J.M. Densities of aqueous MgCl2 (aq), CaCl2 (aq), KI (aq), NaCl (aq), KCl (aq), AlCl3 (aq), and (0.964 NaCl+ 0.136 KCl)(aq) at temperatures between (283 and 472) K, pressures up to 68.5 MPa, and molalities up to 6 mol·kg–1. J. Chem. Eng. Data 2012, 57, 1288–1304. [Google Scholar] [CrossRef]
- Kunz, O.; Wagner, W. The GERG-2008 wide-range equation of state for natural gases and other mixtures: An expansion of GERG-2004. J. Chem. Eng. Data 2012, 57, 3032–3091. [Google Scholar] [CrossRef]
- NIST. Available online: https://github.com/usnistgov/AGA8/blob/master/AGA8CODE/FORTRAN/GERG2008.FOR (accessed on 17 August 2021).
- Giggenbach, W.F. Geothermal gas equilibria. Geochim. Cosmochim. Acta 1980, 44, 2021–2032. [Google Scholar] [CrossRef]
- D’Amore, F.; Truesdell, A.H. A review of solubilities and equilibrium constants for gaseous species of geothermal interest. Inventaire des solubilités et constantes d’équilibre des espèces aqueuses intéressantes en géochimie. Sci. Geol. Bull. Membr. 1988, 41, 309–332. [Google Scholar] [CrossRef]
- Van Konynenburg, P.; Scott, R. Critical lines and phase equilibria in binary van der Waals mixtures. Philos. Trans. R. Soc. Lond. A 1980, 298, 495–540. [Google Scholar]
- Søreide, I.; Whitson, C.H. Peng-Robinson predictions for hydrocarbons, CO2, N2, and H2S with pure water and NaCl brine. Fluid Phase Equilib. 1992, 77, 217–240. [Google Scholar] [CrossRef]
- Chabab, S.; Théveneau, P.; Corvisier, J.; Coquelet, C.; Paricaud, P.; Houriez, C.; El Ahmar, E. Thermodynamic study of the CO2–H2O–NaCl system: Measurements of CO2 solubility and modeling of phase equilibria using Soreide and Whitson, electrolyte CPA and SIT models. Int. J. Greenh. Gas Control 2019, 91, 102825. [Google Scholar] [CrossRef]
- Olsen, M.D.; Kontogeorgis, G.M.; Liang, X.; von Solms, N. Investigation of the performance of e-CPA for a wide range of properties for aqueous NaCl solutions. Fluid Phase Equilib. 2021, 548, 113167. [Google Scholar] [CrossRef]
- Baudouin, O.; Dechelotte, S.; Guittard, P.; Vacher, A. Simulis® thermodynamics: An open framework for users and developers. Comput. Aided Chem. Eng. 2008, 25, 635. [Google Scholar]
- Afanasyev, A.; Vedeneeva, E. Compositional modeling of multicomponent gas injection into saline aquifers with the MUFITS simulator. J. Nat. Gas Sci. Eng. 2021, 94, 103988. [Google Scholar] [CrossRef]
- Schlumberger, P. PVTi and ECLIPSE 300: An Introduction to PVT Analysis and Compositional Simulation; PVTi Eclipse: Abingdon, UK, 2005; 300p. [Google Scholar]
- Petitfrere, M.; Patacchini, L.; de Loubens, R. Three-phase EoS-based reservoir simulation with salinity dependent phase-equilibrium calculations. In Proceedings of the ECMOR XV-15th European Conference on the Mathematics of Oil Recovery, Amsterdam, The Netherlands, 29 August–1 September 2016. [Google Scholar]
- Whitson, C.H.; Brulé, M.R. Phase Behavior; Society of Petroleum Engineers: Richardson, TX, USA, 2000; Volume 20. [Google Scholar]
- Lasala, S. Advanced Cubic Equations of State for Accurate Modelling of Fluid Mixtures. Application to CO2 Capture Systems. Ph.D. Thesis, Politecnico di Milano, Milan, Italy, February 2016. [Google Scholar]
- Firoozabadi, A. Thermodynamics of Hydrocarbon Reservoirs; McGraw-Hill: New York, NY, USA, 1999. [Google Scholar]
- Michelsen, M.; Mollerup, J. Thermodynamic Models: Fundamentals & Computational Aspects; Tie-Line Publications: Holte, Denmark, 2004. [Google Scholar]
- Chabab, S. Thermodynamic Study of Complex Systems Containing Gas, Water, and Electrolytes: Application to Underground Gas Storage. Ph.D. Thesis, Université Paris Sciences et Lettres, Paris, France, 2020. [Google Scholar]
- Sandler, S.I. Chemical, Biochemical, and Engineering Thermodynamics; John Wiley & Sons: Hoboken, NJ, USA, 2017. [Google Scholar]
- Wylie, R.G.; Fisher, R.S. Molecular interaction of water vapor and oxygen. J. Chem. Eng. Data 1996, 41, 175–180. [Google Scholar] [CrossRef]
- Gillespie, P.; Wilson, G. GPA Research Report RR-41; Gas Processors Association: Tulsa, OK, USA, 1980. [Google Scholar]
- Briones, J.; Mullins, J.; Thies, M.; Kim, B.-U. Ternary phase equilibria for acetic acid-water mixtures with supercritical carbon dioxide. Fluid Phase Equilib. 1987, 36, 235–246. [Google Scholar] [CrossRef]
- King, A.D., Jr.; Coan, C. Solubility of water in compressed carbon dioxide, nitrous oxide, and ethane. Evidence for hydration of carbon dioxide and nitrous oxide in the gas phase. J. Am. Chem. Soc. 1971, 93, 1857–1862. [Google Scholar] [CrossRef]
- Dohrn, R.; Bünz, A.; Devlieghere, F.; Thelen, D. Experimental measurements of phase equilibria for ternary and quaternary systems of glucose, water, CO2 and ethanol with a novel apparatus. Fluid Phase Equilib. 1993, 83, 149–158. [Google Scholar] [CrossRef]
- Hou, S.-X.; Maitland, G.C.; Trusler, J.M. Measurement and modeling of the phase behavior of the (carbon dioxide + water) mixture at temperatures from 298.15 K to 448.15 K. J. Supercrit. Fluids 2013, 73, 87–96. [Google Scholar] [CrossRef] [Green Version]
- Hou, S.-X.; Maitland, G.C.; Trusler, J.M. Phase equilibria of (CO2+ H2O+ NaCl) and (CO2+ H2O+ KCl): Measurements and modeling. J. Supercrit. Fluids 2013, 78, 78–88. [Google Scholar] [CrossRef]
- Zhao, H.; Dilmore, R.M.; Lvov, S.N. Experimental studies and modeling of CO2 solubility in high temperature aqueous CaCl2, MgCl2, Na2SO4, and KCl solutions. AIChE J. 2015, 61, 2286–2297. [Google Scholar] [CrossRef]
- Guo, H.; Huang, Y.; Chen, Y.; Zhou, Q. Quantitative Raman Spectroscopic Measurements of CO2 Solubility in NaCl Solution from (273.15 to 473.15) K at p=(10.0, 20.0, 30.0, and 40.0) MPa. J. Chem. Eng. Data 2015, 61, 466–474. [Google Scholar] [CrossRef]
- Koschel, D.; Coxam, J.-Y.; Rodier, L.; Majer, V. Enthalpy and solubility data of CO2 in water and NaCl (aq) at conditions of interest for geological sequestration. Fluid Phase Equilib. 2006, 247, 107–120. [Google Scholar] [CrossRef]
- Yan, W.; Huang, S.; Stenby, E.H. Measurement and modeling of CO2 solubility in NaCl brine and CO2–saturated NaCl brine density. Int. J. Greenh. Gas Control 2011, 5, 1460–1477. [Google Scholar] [CrossRef]
- Messabeb, H.; Contamine, F.O.; Cézac, P.; Serin, J.P.; Gaucher, E.C. Experimental Measurement of CO2 Solubility in Aqueous NaCl Solution at Temperature from 323.15 to 423.15 K and Pressure of up to 20 MPa. J. Chem. Eng. Data 2016, 61, 3573–3584. [Google Scholar] [CrossRef]
- Ahmadi, P.; Chapoy, A. CO2 solubility in formation water under sequestration conditions. Fluid Phase Equilib. 2018, 463, 80–90. [Google Scholar] [CrossRef]
- Bamberger, A.; Sieder, G.; Maurer, G. High-pressure (vapor+ liquid) equilibrium in binary mixtures of (carbon dioxide+ water or acetic acid) at temperatures from 313 to 353 K. J. Supercrit. Fluids 2000, 17, 97–110. [Google Scholar] [CrossRef]
- Wiebe, R.; Gaddy, V. The solubility in water of carbon dioxide at 50, 75 and 100, at pressures to 700 atmospheres. J. Am. Chem. Soc. 1939, 61, 315–318. [Google Scholar] [CrossRef]
- Messabeb, H.; Contamine, F.; Cézac, P.; Serin, J.P.; Pouget, C.M.; Gaucher, E.C. Experimental measurement of CO2 solubility in aqueous CaCl2 solution at temperature from 323.15 to 423.15 K and pressure up to 20 MPa using the conductometric titration. J. Chem. Eng. Data 2017, 62, 4228–4234. [Google Scholar] [CrossRef]
- Lara Cruz, J.; Neyrolles, E.; Contamine, F.; Cézac, P. Experimental study of carbon dioxide solubility in sodium chloride and calcium chloride brines at 333.15 and 453.15 K for pressures up to 40 MPa. J. Chem. Eng. Data 2021, 66, 249–261. [Google Scholar] [CrossRef]
- Markham, A.E.; Kobe, K.A. The solubility of carbon dioxide and nitrous oxide in aqueous salt solutions. J. Am. Chem. Soc. 1941, 63, 449–454. [Google Scholar] [CrossRef]
- Ratnakar, R.R.; Venkatraman, A.; Kalra, A.; Dindoruk, B. On the prediction of gas solubility in brine solutions with single or mixed salts: Applications to gas injection and CO2 capture/sequestration. J. Nat. Gas Sci. Eng. 2020, 81, 103450. [Google Scholar] [CrossRef]
- Chabab, S.; Ahmadi, P.; Théveneau, P.; Coquelet, C.; Chapoy, A.; Corvisier, J.; Paricaud, P. Measurements and modeling of high-pressure O2 and CO2 solubility in brine (H2O + NaCl) between 303 and 373 K and pressures up to 36 MPa. J. Chem. Eng. Data 2021, 66, 609–620. [Google Scholar] [CrossRef]
- Chabab, S.; Théveneau, P.; Coquelet, C.; Corvisier, J.; Paricaud, P. Measurements and predictive models of high-pressure H2 solubility in brine (H2O+NaCl) for underground hydrogen storage application. Int. J. Hydrog. Energy 2020, 45, 32206–32220. [Google Scholar] [CrossRef]
- O’Sullivan, T.D.; Smith, N.O. Solubility and partial molar volume of nitrogen and methane in water and in aqueous sodium chloride from 50 to 125. deg. and 100 to 600 atm. J. Phys. Chem. 1970, 74, 1460–1466. [Google Scholar] [CrossRef]
- Battino, R.; Seybold, P.G. The O2/N2 ratio gas solubility mystery. J. Chem. Eng. Data 2011, 56, 5036–5044. [Google Scholar] [CrossRef]
- Kontogeorgis, G.M.; Folas, G.K.; Muro-Suñé, N.; Roca Leon, F.; Michelsen, M.L. Solvation phenomena in association theories with applications to oil & gas and chemical industries. Oil Gas Sci. Technol. 2008, 63, 305–319. [Google Scholar]
- Campanell, F.C.; Battino, R.; Seybold, P.G. On the role of solute polarizability in determining the solubilities of gases in liquids. J. Chem. Eng. Data 2010, 55, 37–40. [Google Scholar] [CrossRef]
- Liu, Y.; Hou, M.; Ning, H.; Yang, D.; Yang, G.; Han, B. Phase equilibria of CO2+ N2+ H2O and N2+ CO2+ H2O+ NaCl+ KCl+ CaCl2 systems at different temperatures and pressures. J. Chem. Eng. Data 2012, 57, 1928–1932. [Google Scholar] [CrossRef]
- Ungemach, P. Handling of corrosion and scaling shortcommings in low enthalpy geothermal environments. Eur. Summer Sch. Geotherm. Energy Appl. 2001, 113–127. [Google Scholar]
- Mouchot, J.; Genter, A.; Cuenot, N.; Scheiber, J.; Seibel, O.; Bosia, C.; Ravier, G.; Mouchot, J.; Genter, A.; Cuenot, N. First year of operation from EGS geothermal plants in Alsace, France: Scaling issues. In Proceedings of the 43rd Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, CA, USA, 12–14 February 2018; p. 12. [Google Scholar]
NaCl | CaCl2 | KCl | |
---|---|---|---|
a | 0.43575155 | 0.478902106 | 0.44269716 |
b | −5.766906744 × 10−2 | −7.35093213 × 10−2 | −5.746192569 × 10−2 |
c | 8.26464849 × 10−3 | 2.05379759 × 10−2 | 6.655117 × 10−3 |
d | 1.29539193 × 10−3 | 2.04457138 × 10−3 | −1.318885435 × 10−3 |
e | −1.6698848 × 10−3 | −3.22673398 × 10−3 | 6.161936936 × 10−4 |
f | −0.47866096 | −0.50876635 | −0.488832169 |
Data Reference | AAD% (SW Model) a | |
---|---|---|
CO2 + H2O + CaCl2 | Zhao et al., 2015 [66] | 2.24 |
Messabeb et al., 2017 [74] | 4.13 | |
Lara Cruz et al., 2021 [75] | 3.36 | |
CO2 + H2O + KCl | Zhao et al., 2015 [66] | 6.97 |
Hou et al., 2013 [65] | 2.97 |
Gas-H2O Interaction Parameters in Aqueous and Non-Aqueous Phases | |
---|---|
CH4 | |
O2 | |
N2 | |
H2 |
Data Source | Depth (m bgl) | CO2 (% mol) | CH4 (% mol) | N2 (% mol) | O2 (% mol) | GLR (m3/m3) | T Exp (K) | Pb Exp (MPa) | NaCl Molality (mol/kgw) | Pb Calc (MPa) | AD% Pb |
---|---|---|---|---|---|---|---|---|---|---|---|
Vandenberghe et al. (2001) [31] | 1646 | 0.9367 | 0.0340 | 0.0271 | 0.0022 | 1.62 | 347.05 | 2.654 | 2.5 | 2.470 | 6.95 |
1646 | 0.9225 | 0.0321 | 0.0443 | 0.0011 | 1.11 | 347.05 | 1.482 | 2.5 | 2.074 | 39.93 | |
1740 | 0.8311 | 0.0627 | 0.1015 | 0.0047 | 0.96 | 347.05 | 2.654 | 2.5 | 3.158 | 18.95 | |
1740 | 0.9243 | 0.0354 | 0.0323 | 0.0079 | 0.71 | 347.05 | 1.276 | 2.5 | 1.331 | 4.38 | |
1646 | 0.8795 | 0.0443 | 0.0751 | 0.0011 | 1.22 | 347.05 | 2.896 | 2.5 | 3.107 | 7.28 | |
Ungemach, P. (2001) [85] | 160 | 0.5241 | 0.2113 | 0.2646 | - | 0.23 | 335.35 | 0.790 | 0.5 | 0.737 | 6.77 |
1818 | 0.5353 | 0.2006 | 0.2641 | - | 0.25 | 337.35 | 0.820 | 0.5 | 0.767 | 6.41 | |
1818 | 0.5245 | 0.1937 | 0.2818 | - | 0.26 | 337.35 | 0.840 | 0.5 | 0.820 | 2.41 | |
160 | 0.5307 | 0.1994 | 0.2699 | - | 0.28 | 333.35 | 0.830 | 0.5 | 0.890 | 7.24 |
Geothermal Site | Gas Composition at Production Well a | GLR (Nm3/m3) at 0 °C and 1 atm a | T (K) | Pb (MPa) Exp at T a | NaCl Molality (mol/kgw) b | Pb Calc (MPa) c | P (MPa) | Geothermal Brine Flow Rate (kg/s) a | Degassed Amount (kg/h) c | ||
---|---|---|---|---|---|---|---|---|---|---|---|
CO2 (% mol) a | CH4 (% mol) a | N2 (% mol) a | |||||||||
Soultz-sous-Forêts | 0.91 | 0.02 | 0.07 | 1.03 | 423.15 | 1.426 | 2.296 | ≥2.296 | 30 | 0 | |
0.91 | 0.02 | 0.07 | 1.03 | 423.15 | N.A. | 1.426 | 2.296 | 2.100 | 30 | 7.7763 | |
0.91 | 0.02 | 0.07 | 1.03 | 423.15 | N.A. | 1.426 | 2.296 | 1.900 | 30 | 18.6904 | |
0.91 | 0.02 | 0.07 | 1.03 | 423.15 | N.A. | 1.426 | 2.296 | 1.5 | 30 | 62.6332 | |
Rittershoffen | 0.91 | 0.02 | 0.07 | 1.2 | 443.15 | 1.3 | 2.59 | ≥2.59 | 72.5 | 0 | |
0.91 | 0.02 | 0.07 | 1.2 | 443.15 | N.A. | 1.3 | 2.59 | 2.100 | 72.5 | 84.3599 | |
0.91 | 0.02 | 0.07 | 1.2 | 443.15 | N.A. | 1.3 | 2.59 | 1.900 | 72.5 | 154.0723 | |
0.91 | 0.02 | 0.07 | 1.2 | 443.15 | N.A. | 1.3 | 2.59 | 1.5 | 72.5 | 425.6754 |
Geothermal Site | T (K) | P (MPa) | (Molar) | Geother-mal Brine Flow Rate (kg/s) a | Geother-mal Brine Flow Rate (mol/s) b | b | b | b | b | Degassed Amount (mol/s) b | Degassed Amount (kg/s) b | GHG Emitted (g-eqCO2/kWh) b |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Soultz-sous-Forêts (12 GWhe/y) | 423.15 | 2.10 | 30 | 1662.561 | 0.23081 | 0.45380 | 0.04583 | 0.26956 | 0.0666364 | 0.0021601 | 6.71 | |
423.15 | 1.90 | 30 | 1662.561 | 0.25370 | 0.48601 | 0.04174 | 0.21855 | 0.1585203 | 0.0051918 | 15.86 | ||
423.15 | 1.50 | 30 | 1662.561 | 0.31739 | 0.53799 | 0.02783 | 0.11679 | 0.5254182 | 0.0173981 | 48.06 | ||
Rittershoffen (180 GWhth/y) | 443.15 | 2.10 | 72.5 | 4017.522 | 0.38136 | 0.43862 | 0.02994 | 0.15008 | 0.7593836 | 0.0234333 | 4.16 | |
443.15 | 1.90 | 72.5 | 4017.522 | 0.41889 | 0.44965 | 0.02408 | 0.10738 | 1.3927135 | 0.04279786 | 7.18 | ||
443.15 | 1.50 | 72.5 | 4017.522 | 0.52317 | 0.41666 | 0.01255 | 0.04762 | 4.0359467 | 0.11824318 | 16.51 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chabab, S.; Cruz, J.L.; Poulain, M.; Ducousso, M.; Contamine, F.; Serin, J.P.; Cézac, P. Thermodynamic Modeling of Mutual Solubilities in Gas-Laden Brines Systems Containing CO2, CH4, N2, O2, H2, H2O, NaCl, CaCl2, and KCl: Application to Degassing in Geothermal Processes. Energies 2021, 14, 5239. https://doi.org/10.3390/en14175239
Chabab S, Cruz JL, Poulain M, Ducousso M, Contamine F, Serin JP, Cézac P. Thermodynamic Modeling of Mutual Solubilities in Gas-Laden Brines Systems Containing CO2, CH4, N2, O2, H2, H2O, NaCl, CaCl2, and KCl: Application to Degassing in Geothermal Processes. Energies. 2021; 14(17):5239. https://doi.org/10.3390/en14175239
Chicago/Turabian StyleChabab, Salaheddine, José Lara Cruz, Marie Poulain, Marion Ducousso, François Contamine, Jean Paul Serin, and Pierre Cézac. 2021. "Thermodynamic Modeling of Mutual Solubilities in Gas-Laden Brines Systems Containing CO2, CH4, N2, O2, H2, H2O, NaCl, CaCl2, and KCl: Application to Degassing in Geothermal Processes" Energies 14, no. 17: 5239. https://doi.org/10.3390/en14175239
APA StyleChabab, S., Cruz, J. L., Poulain, M., Ducousso, M., Contamine, F., Serin, J. P., & Cézac, P. (2021). Thermodynamic Modeling of Mutual Solubilities in Gas-Laden Brines Systems Containing CO2, CH4, N2, O2, H2, H2O, NaCl, CaCl2, and KCl: Application to Degassing in Geothermal Processes. Energies, 14(17), 5239. https://doi.org/10.3390/en14175239